Browse Source

llm: architecture patch (#5316)

Jeffrey Morgan 10 months ago
parent
commit
161229a153
1 changed files with 305 additions and 0 deletions
  1. 305 0
      llm/patches/07-gemma.diff

+ 305 - 0
llm/patches/07-gemma.diff

@@ -0,0 +1,305 @@
+From 5cadb45f39d001ffbad95b690d6cf0abcb4a6d96 Mon Sep 17 00:00:00 2001
+From: Ollama maintainers <hello@ollama.com>
+Date: Wed, 26 Jun 2024 16:18:09 -0700
+Subject: [PATCH] Architecture support
+
+---
+ llama.cpp | 194 +++++++++++++++++++++++++++++++++++++++++++++++++++++-
+ 1 file changed, 193 insertions(+), 1 deletion(-)
+
+diff --git a/llama.cpp b/llama.cpp
+index 61948751..3b4196f5 100644
+--- a/llama.cpp
++++ b/llama.cpp
+@@ -217,6 +217,7 @@ enum llm_arch {
+     LLM_ARCH_INTERNLM2,
+     LLM_ARCH_MINICPM,
+     LLM_ARCH_GEMMA,
++    LLM_ARCH_GEMMA2,
+     LLM_ARCH_STARCODER2,
+     LLM_ARCH_MAMBA,
+     LLM_ARCH_XVERSE,
+@@ -255,6 +256,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
+     { LLM_ARCH_INTERNLM2,       "internlm2"    },
+     { LLM_ARCH_MINICPM,         "minicpm"      },
+     { LLM_ARCH_GEMMA,           "gemma"        },
++    { LLM_ARCH_GEMMA2,          "gemma2"       },
+     { LLM_ARCH_STARCODER2,      "starcoder2"   },
+     { LLM_ARCH_MAMBA,           "mamba"        },
+     { LLM_ARCH_XVERSE,          "xverse"       },
+@@ -464,10 +466,12 @@ enum llm_tensor {
+     LLM_TENSOR_ATTN_NORM,
+     LLM_TENSOR_ATTN_NORM_2,
+     LLM_TENSOR_ATTN_OUT_NORM,
++    LLM_TENSOR_ATTN_POST_NORM,
+     LLM_TENSOR_ATTN_ROT_EMBD,
+     LLM_TENSOR_FFN_GATE_INP,
+     LLM_TENSOR_FFN_GATE_INP_SHEXP,
+     LLM_TENSOR_FFN_NORM,
++    LLM_TENSOR_FFN_POST_NORM,
+     LLM_TENSOR_FFN_GATE,
+     LLM_TENSOR_FFN_DOWN,
+     LLM_TENSOR_FFN_UP,
+@@ -960,6 +964,24 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
+             { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+         },
+     },
++    {
++        LLM_ARCH_GEMMA2,
++        {
++            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
++            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
++            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
++            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
++            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
++            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
++            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
++            { LLM_TENSOR_ATTN_POST_NORM,  "blk.%d.post_attention_norm" },
++            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
++            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
++            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
++            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
++            { LLM_TENSOR_FFN_POST_NORM,   "blk.%d.post_ffw_norm" },
++        },
++    },
+     {
+         LLM_ARCH_STARCODER2,
+         {
+@@ -1941,6 +1963,8 @@ enum e_model {
+     MODEL_8x22B,
+     MODEL_16x12B,
+     MODEL_10B_128x3_66B,
++    MODEL_9B,
++    MODEL_27B,
+ };
+ 
+ static const size_t kiB = 1024;
+@@ -2114,6 +2138,7 @@ struct llama_layer {
+     struct ggml_tensor * attn_out_norm_b;
+     struct ggml_tensor * attn_q_a_norm;
+     struct ggml_tensor * attn_kv_a_norm;
++    struct ggml_tensor * attn_post_norm;
+ 
+     // attention
+     struct ggml_tensor * wq;
+@@ -2136,6 +2161,7 @@ struct llama_layer {
+     // normalization
+     struct ggml_tensor * ffn_norm;
+     struct ggml_tensor * ffn_norm_b;
++    struct ggml_tensor * ffn_post_norm;
+     struct ggml_tensor * layer_out_norm;
+     struct ggml_tensor * layer_out_norm_b;
+     struct ggml_tensor * ffn_norm_exps;
+@@ -4529,6 +4555,16 @@ static void llm_load_hparams(
+                 }
+             } break;
+         case LLM_ARCH_GEMMA:
++            {
++                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
++
++                switch (hparams.n_layer) {
++                    case 18: model.type = e_model::MODEL_9B; break;
++                    case 28: model.type = e_model::MODEL_27B; break;
++                    default: model.type = e_model::MODEL_UNKNOWN;
++               }
++            } break;
++        case LLM_ARCH_GEMMA2:
+             {
+                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+ 
+@@ -6305,6 +6341,40 @@ static bool llm_load_tensors(
+                         layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
+                     }
+                 } break;
++            case LLM_ARCH_GEMMA2:
++                {
++                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
++
++                    // output
++                    model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
++                    model.output      = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD,  "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
++
++                    const int64_t n_ff          = hparams.n_ff;
++                    const int64_t n_embd_head_k = hparams.n_embd_head_k;
++                    const int64_t n_embd_k_gqa  = hparams.n_embd_k_gqa();
++                    const int64_t n_embd_v_gqa  = hparams.n_embd_v_gqa();
++
++                    for (uint32_t i = 0; i < n_layer; ++i) {
++                        ggml_context * ctx_layer = ctx_for_layer(i);
++                        ggml_context * ctx_split = ctx_for_layer_split(i);
++
++                        auto & layer = model.layers[i];
++
++                        layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
++
++                        layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
++                        layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
++                        layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
++                        layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
++                        layer.attn_post_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
++
++                        layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
++                        layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
++                        layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
++                        layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
++                        layer.ffn_post_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd});
++                    }
++                } break;
+             case LLM_ARCH_STARCODER2:
+                 {
+                     model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
+@@ -10614,6 +10684,123 @@ struct llm_build_context {
+         return gf;
+     }
+ 
++    struct ggml_cgraph * build_gemma2() {
++        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
++
++        const int64_t n_embd_head_k = hparams.n_embd_head_k;
++
++        struct ggml_tensor * cur;
++        struct ggml_tensor * inpL;
++
++        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
++
++        inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
++        cb(inpL, "inp_scaled", -1);
++
++        // inp_pos - contains the positions
++        struct ggml_tensor * inp_pos = build_inp_pos();
++
++        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
++        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
++
++        for (int il = 0; il < n_layer; ++il) {
++            // norm
++            cur = llm_build_norm(ctx0, inpL, hparams,
++                    model.layers[il].attn_norm, NULL,
++                    LLM_NORM_RMS, cb, il);
++            cb(cur, "attn_norm", il);
++
++            // self-attention
++            {
++                // compute Q and K and RoPE them
++                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
++                cb(Qcur, "Qcur", il);
++
++                struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
++                cb(Kcur, "Kcur", il);
++
++                struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
++                cb(Vcur, "Vcur", il);
++
++                Qcur = ggml_rope_ext(
++                        ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head,    n_tokens), inp_pos, nullptr,
++                        n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
++                        ext_factor, attn_factor, beta_fast, beta_slow);
++                cb(Qcur, "Qcur", il);
++
++                Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
++                cb(Qcur, "Qcur_scaled", il);
++
++                Kcur = ggml_rope_ext(
++                        ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
++                        n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
++                        ext_factor, attn_factor, beta_fast, beta_slow);
++                cb(Kcur, "Kcur", il);
++
++                cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
++                        model.layers[il].wo, NULL,
++                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
++            }
++
++            if (il == n_layer - 1) {
++                // skip computing output for unused tokens
++                struct ggml_tensor * inp_out_ids = build_inp_out_ids();
++                cur  = ggml_get_rows(ctx0,  cur, inp_out_ids);
++                inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
++            }
++
++            cur = llm_build_norm(ctx0, cur, hparams,
++                    model.layers[il].attn_post_norm, NULL,
++                    LLM_NORM_RMS, cb, il);
++            cb(cur, "attn_post_norm", il);
++
++            struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
++            cb(sa_out, "sa_out", il);
++
++            cur = llm_build_norm(ctx0, sa_out, hparams,
++                    model.layers[il].ffn_norm, NULL,
++                    LLM_NORM_RMS, cb, il);
++            cb(cur, "ffn_norm", il);
++
++            // feed-forward network
++            {
++                cur = llm_build_ffn(ctx0, cur,
++                        model.layers[il].ffn_up, NULL,
++                        model.layers[il].ffn_gate, NULL,
++                        model.layers[il].ffn_down, NULL,
++                        NULL,
++                        LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
++                cb(cur, "ffn_out", il);
++            }
++
++            cur = llm_build_norm(ctx0, cur, hparams,
++                model.layers[il].ffn_post_norm, NULL,
++                LLM_NORM_RMS, cb, -1);
++            cb(cur, "ffn_post_norm", -1);
++
++            cur = ggml_add(ctx0, cur, sa_out);
++            cb(cur, "l_out", il);
++
++            // input for next layer
++            inpL = cur;
++        }
++
++        cur = inpL;
++
++        cur = llm_build_norm(ctx0, cur, hparams,
++                model.output_norm, NULL,
++                LLM_NORM_RMS, cb, -1);
++        cb(cur, "result_norm", -1);
++
++        // lm_head
++        cur = ggml_mul_mat(ctx0, model.output, cur);
++        cb(cur, "result_output", -1);
++
++        ggml_build_forward_expand(gf, cur);
++
++        return gf;
++    }
++
+     struct ggml_cgraph * build_starcoder2() {
+         struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
+ 
+@@ -11847,6 +12034,10 @@ static struct ggml_cgraph * llama_build_graph(
+             {
+                 result = llm.build_gemma();
+             } break;
++        case LLM_ARCH_GEMMA2:
++            {
++                result = llm.build_gemma2();
++            } break;
+         case LLM_ARCH_STARCODER2:
+             {
+                 result = llm.build_starcoder2();
+@@ -16671,6 +16862,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
+         case LLM_ARCH_PHI2:
+         case LLM_ARCH_PHI3:
+         case LLM_ARCH_GEMMA:
++        case LLM_ARCH_GEMMA2:
+         case LLM_ARCH_STARCODER2:
+         case LLM_ARCH_GPTNEOX:
+             return LLAMA_ROPE_TYPE_NEOX;
+@@ -18551,7 +18743,7 @@ static int32_t llama_chat_apply_template_internal(
+         if (add_ass) {
+             ss << "<s>assistant\n";
+         }
+-    } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
++    } else if (tmpl == "gemma" || tmpl == "gemma2" || tmpl.find("<start_of_turn>") != std::string::npos) {
+         // google/gemma-7b-it
+         std::string system_prompt = "";
+         for (auto message : chat) {
+-- 
+2.45.2
+