|
@@ -0,0 +1,223 @@
|
|
|
+import json
|
|
|
+import os
|
|
|
+import threading
|
|
|
+import click
|
|
|
+from transformers import AutoModel
|
|
|
+from tqdm import tqdm
|
|
|
+from pathlib import Path
|
|
|
+from llama_cpp import Llama
|
|
|
+from flask import Flask, Response, stream_with_context, request
|
|
|
+from flask_cors import CORS
|
|
|
+from template import template
|
|
|
+
|
|
|
+app = Flask(__name__)
|
|
|
+CORS(app) # enable CORS for all routes
|
|
|
+
|
|
|
+# llms tracks which models are loaded
|
|
|
+llms = {}
|
|
|
+lock = threading.Lock()
|
|
|
+
|
|
|
+
|
|
|
+def models_directory():
|
|
|
+ home_dir = Path.home()
|
|
|
+ models_dir = home_dir / ".ollama/models"
|
|
|
+
|
|
|
+ if not models_dir.exists():
|
|
|
+ models_dir.mkdir(parents=True)
|
|
|
+
|
|
|
+ return models_dir
|
|
|
+
|
|
|
+
|
|
|
+def load(model=None, path=None):
|
|
|
+ """
|
|
|
+ Load a model.
|
|
|
+
|
|
|
+ The model can be specified by providing either the path or the model name,
|
|
|
+ but not both. If both are provided, this function will raise a ValueError.
|
|
|
+ If the model does not exist or could not be loaded, this function returns an error.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ model (str, optional): The name of the model to load.
|
|
|
+ path (str, optional): The path to the model file.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ dict or None: If the model cannot be loaded, a dictionary with an 'error' key is returned.
|
|
|
+ If the model is successfully loaded, None is returned.
|
|
|
+ """
|
|
|
+
|
|
|
+ with lock:
|
|
|
+ if path is not None and model is not None:
|
|
|
+ raise ValueError(
|
|
|
+ "Both path and model are specified. Please provide only one of them."
|
|
|
+ )
|
|
|
+ elif path is not None:
|
|
|
+ name = os.path.basename(path)
|
|
|
+ load_from = path
|
|
|
+ elif model is not None:
|
|
|
+ name = model
|
|
|
+ dir = models_directory()
|
|
|
+ load_from = str(dir / f"{model}.bin")
|
|
|
+ else:
|
|
|
+ raise ValueError("Either path or model must be specified.")
|
|
|
+
|
|
|
+ if not os.path.exists(load_from):
|
|
|
+ return {"error": f"The model at {load_from} does not exist."}
|
|
|
+
|
|
|
+ if name not in llms:
|
|
|
+ # TODO: download model from a repository if it does not exist
|
|
|
+ llms[name] = Llama(model_path=load_from)
|
|
|
+
|
|
|
+ # TODO: this should start a persistent instance of ollama with the model loaded
|
|
|
+ return None
|
|
|
+
|
|
|
+
|
|
|
+def unload(model):
|
|
|
+ """
|
|
|
+ Unload a model.
|
|
|
+
|
|
|
+ Remove a model from the list of loaded models. If the model is not loaded, this is a no-op.
|
|
|
+
|
|
|
+ Args:
|
|
|
+ model (str): The name of the model to unload.
|
|
|
+ """
|
|
|
+ llms.pop(model, None)
|
|
|
+
|
|
|
+
|
|
|
+def generate(model, prompt):
|
|
|
+ # auto load
|
|
|
+ error = load(model)
|
|
|
+ print(error)
|
|
|
+ if error is not None:
|
|
|
+ return error
|
|
|
+ generated = llms[model](
|
|
|
+ str(prompt), # TODO: optimize prompt based on model
|
|
|
+ max_tokens=4096,
|
|
|
+ stop=["Q:", "\n"],
|
|
|
+ stream=True,
|
|
|
+ )
|
|
|
+ for output in generated:
|
|
|
+ yield json.dumps(output)
|
|
|
+
|
|
|
+
|
|
|
+def models():
|
|
|
+ dir = models_directory()
|
|
|
+ all_files = os.listdir(dir)
|
|
|
+ bin_files = [
|
|
|
+ file.replace(".bin", "") for file in all_files if file.endswith(".bin")
|
|
|
+ ]
|
|
|
+ return bin_files
|
|
|
+
|
|
|
+
|
|
|
+@app.route("/load", methods=["POST"])
|
|
|
+def load_route_handler():
|
|
|
+ data = request.get_json()
|
|
|
+ model = data.get("model")
|
|
|
+ if not model:
|
|
|
+ return Response("Model is required", status=400)
|
|
|
+ error = load(model)
|
|
|
+ if error is not None:
|
|
|
+ return error
|
|
|
+ return Response(status=204)
|
|
|
+
|
|
|
+
|
|
|
+@app.route("/unload", methods=["POST"])
|
|
|
+def unload_route_handler():
|
|
|
+ data = request.get_json()
|
|
|
+ model = data.get("model")
|
|
|
+ if not model:
|
|
|
+ return Response("Model is required", status=400)
|
|
|
+ unload(model)
|
|
|
+ return Response(status=204)
|
|
|
+
|
|
|
+
|
|
|
+@app.route("/generate", methods=["POST"])
|
|
|
+def generate_route_handler():
|
|
|
+ data = request.get_json()
|
|
|
+ model = data.get("model")
|
|
|
+ prompt = data.get("prompt")
|
|
|
+ if not model:
|
|
|
+ return Response("Model is required", status=400)
|
|
|
+ if not prompt:
|
|
|
+ return Response("Prompt is required", status=400)
|
|
|
+ if not os.path.exists(f"{model}"):
|
|
|
+ return {"error": "The model does not exist."}, 400
|
|
|
+ return Response(
|
|
|
+ stream_with_context(generate(model, prompt)), mimetype="text/event-stream"
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+@app.route("/models", methods=["GET"])
|
|
|
+def models_route_handler():
|
|
|
+ bin_files = models()
|
|
|
+ return Response(json.dumps(bin_files), mimetype="application/json")
|
|
|
+
|
|
|
+
|
|
|
+@click.group(invoke_without_command=True)
|
|
|
+@click.pass_context
|
|
|
+def cli(ctx):
|
|
|
+ # allows the script to respond to command line input when executed directly
|
|
|
+ if ctx.invoked_subcommand is None:
|
|
|
+ click.echo(ctx.get_help())
|
|
|
+
|
|
|
+
|
|
|
+@cli.command()
|
|
|
+@click.option("--port", default=5000, help="Port to run the server on")
|
|
|
+@click.option("--debug", default=False, help="Enable debug mode")
|
|
|
+def serve(port, debug):
|
|
|
+ print("Serving on http://localhost:{port}")
|
|
|
+ app.run(host="0.0.0.0", port=port, debug=debug)
|
|
|
+
|
|
|
+
|
|
|
+@cli.command(name="load")
|
|
|
+@click.argument("model")
|
|
|
+@click.option("--file", default=False, help="Indicates that a file path is provided")
|
|
|
+def load_cli(model, file):
|
|
|
+ if file:
|
|
|
+ error = load(path=model)
|
|
|
+ else:
|
|
|
+ error = load(model)
|
|
|
+ if error is not None:
|
|
|
+ print(error)
|
|
|
+ return
|
|
|
+ print("Model loaded")
|
|
|
+
|
|
|
+
|
|
|
+@cli.command(name="generate")
|
|
|
+@click.argument("model")
|
|
|
+@click.option("--prompt", default="", help="The prompt for the model")
|
|
|
+def generate_cli(model, prompt):
|
|
|
+ if prompt == "":
|
|
|
+ prompt = input("Prompt: ")
|
|
|
+ output = ""
|
|
|
+ prompt = template(model, prompt)
|
|
|
+ for generated in generate(model, prompt):
|
|
|
+ generated_json = json.loads(generated)
|
|
|
+ text = generated_json["choices"][0]["text"]
|
|
|
+ output += text
|
|
|
+ print(f"\r{output}", end="", flush=True)
|
|
|
+
|
|
|
+
|
|
|
+def download_model(model_name):
|
|
|
+ dir = models_directory()
|
|
|
+ AutoModel.from_pretrained(model_name, cache_dir=dir)
|
|
|
+
|
|
|
+
|
|
|
+@cli.command(name="models")
|
|
|
+def models_cli():
|
|
|
+ print(models())
|
|
|
+
|
|
|
+
|
|
|
+@cli.command(name="pull")
|
|
|
+@click.argument("model")
|
|
|
+def pull_cli(model):
|
|
|
+ print("not implemented")
|
|
|
+
|
|
|
+
|
|
|
+@cli.command(name="import")
|
|
|
+@click.argument("model")
|
|
|
+def import_cli(model):
|
|
|
+ print("not implemented")
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ cli()
|