|
@@ -1,4 +1,4 @@
|
|
-From 9935fbbf26ad4d9ca7735ec6ba4c0a206c0c8329 Mon Sep 17 00:00:00 2001
|
|
|
|
|
|
+From 52f526a86b6fdd50784678c02d8212edc2412a5b Mon Sep 17 00:00:00 2001
|
|
From: jmorganca <jmorganca@gmail.com>
|
|
From: jmorganca <jmorganca@gmail.com>
|
|
Date: Tue, 24 Sep 2024 11:53:40 -0700
|
|
Date: Tue, 24 Sep 2024 11:53:40 -0700
|
|
Subject: [PATCH] add mllama support
|
|
Subject: [PATCH] add mllama support
|
|
@@ -12,28 +12,27 @@ kv cache once per run
|
|
|
|
|
|
remaining is to implement the cross attention mask
|
|
remaining is to implement the cross attention mask
|
|
---
|
|
---
|
|
- include/llama.h | 5 +
|
|
|
|
- src/llama.cpp | 470 ++++++++++++++++++++++++++++++++++++++++++++++--
|
|
|
|
- 2 files changed, 461 insertions(+), 14 deletions(-)
|
|
|
|
|
|
+ include/llama.h | 4 +
|
|
|
|
+ src/llama.cpp | 456 ++++++++++++++++++++++++++++++++++++++++++++++--
|
|
|
|
+ 2 files changed, 447 insertions(+), 13 deletions(-)
|
|
|
|
|
|
diff --git a/include/llama.h b/include/llama.h
|
|
diff --git a/include/llama.h b/include/llama.h
|
|
-index bfc37e88..94ce82a4 100644
|
|
|
|
|
|
+index bfc37e88..792520cc 100644
|
|
--- a/include/llama.h
|
|
--- a/include/llama.h
|
|
+++ b/include/llama.h
|
|
+++ b/include/llama.h
|
|
-@@ -449,6 +449,11 @@ extern "C" {
|
|
|
|
|
|
+@@ -449,6 +449,10 @@ extern "C" {
|
|
struct llama_model * model,
|
|
struct llama_model * model,
|
|
struct llama_context_params params);
|
|
struct llama_context_params params);
|
|
|
|
|
|
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
|
|
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
|
|
+ // and not set on the context for all batches.
|
|
+ // and not set on the context for all batches.
|
|
+ LLAMA_API void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state);
|
|
+ LLAMA_API void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state);
|
|
-+ LLAMA_API void llama_reset_cross_attn_state(struct llama_context * ctx);
|
|
|
|
+
|
|
+
|
|
// Frees all allocated memory
|
|
// Frees all allocated memory
|
|
LLAMA_API void llama_free(struct llama_context * ctx);
|
|
LLAMA_API void llama_free(struct llama_context * ctx);
|
|
|
|
|
|
diff --git a/src/llama.cpp b/src/llama.cpp
|
|
diff --git a/src/llama.cpp b/src/llama.cpp
|
|
-index b7771f53..72a57a38 100644
|
|
|
|
|
|
+index b7771f53..cf70ea90 100644
|
|
--- a/src/llama.cpp
|
|
--- a/src/llama.cpp
|
|
+++ b/src/llama.cpp
|
|
+++ b/src/llama.cpp
|
|
@@ -170,6 +170,7 @@ static std::string format(const char * fmt, ...) {
|
|
@@ -170,6 +170,7 @@ static std::string format(const char * fmt, ...) {
|
|
@@ -124,16 +123,7 @@ index b7771f53..72a57a38 100644
|
|
{
|
|
{
|
|
LLM_ARCH_BAICHUAN,
|
|
LLM_ARCH_BAICHUAN,
|
|
{
|
|
{
|
|
-@@ -1449,6 +1495,8 @@ static llm_arch llm_arch_from_string(const std::string & name) {
|
|
|
|
- return LLM_ARCH_UNKNOWN;
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-+
|
|
|
|
-+
|
|
|
|
- // helper to handle gguf constants
|
|
|
|
- // usage:
|
|
|
|
- //
|
|
|
|
-@@ -2267,6 +2315,7 @@ enum e_model {
|
|
|
|
|
|
+@@ -2267,6 +2313,7 @@ enum e_model {
|
|
MODEL_40B,
|
|
MODEL_40B,
|
|
MODEL_65B,
|
|
MODEL_65B,
|
|
MODEL_70B,
|
|
MODEL_70B,
|
|
@@ -141,7 +131,7 @@ index b7771f53..72a57a38 100644
|
|
MODEL_236B,
|
|
MODEL_236B,
|
|
MODEL_314B,
|
|
MODEL_314B,
|
|
MODEL_SMALL,
|
|
MODEL_SMALL,
|
|
-@@ -2309,6 +2358,7 @@ struct llama_hparams {
|
|
|
|
|
|
+@@ -2309,6 +2356,7 @@ struct llama_hparams {
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
|
|
|
|
|
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
|
|
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
|
|
@@ -149,7 +139,7 @@ index b7771f53..72a57a38 100644
|
|
|
|
|
|
uint32_t n_layer_dense_lead = 0;
|
|
uint32_t n_layer_dense_lead = 0;
|
|
uint32_t n_lora_q = 0;
|
|
uint32_t n_lora_q = 0;
|
|
-@@ -2372,10 +2422,11 @@ struct llama_hparams {
|
|
|
|
|
|
+@@ -2372,10 +2420,11 @@ struct llama_hparams {
|
|
if (this->n_expert != other.n_expert) return true;
|
|
if (this->n_expert != other.n_expert) return true;
|
|
if (this->n_expert_used != other.n_expert_used) return true;
|
|
if (this->n_expert_used != other.n_expert_used) return true;
|
|
|
|
|
|
@@ -165,7 +155,7 @@ index b7771f53..72a57a38 100644
|
|
|
|
|
|
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
|
|
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
|
|
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
|
|
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
|
|
-@@ -2490,6 +2541,10 @@ struct llama_hparams {
|
|
|
|
|
|
+@@ -2490,6 +2539,10 @@ struct llama_hparams {
|
|
|
|
|
|
GGML_ABORT("fatal error");
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
}
|
|
@@ -176,7 +166,7 @@ index b7771f53..72a57a38 100644
|
|
};
|
|
};
|
|
|
|
|
|
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
|
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
|
-@@ -2672,6 +2727,16 @@ struct llama_layer {
|
|
|
|
|
|
+@@ -2672,6 +2725,16 @@ struct llama_layer {
|
|
struct ggml_tensor * ffn_down_scale;
|
|
struct ggml_tensor * ffn_down_scale;
|
|
|
|
|
|
struct ggml_tensor * bskcn_tv;
|
|
struct ggml_tensor * bskcn_tv;
|
|
@@ -193,30 +183,20 @@ index b7771f53..72a57a38 100644
|
|
};
|
|
};
|
|
|
|
|
|
// very similar to llama_batch,
|
|
// very similar to llama_batch,
|
|
-@@ -3268,6 +3333,10 @@ struct llama_context {
|
|
|
|
- // host buffer for the model output (logits and embeddings)
|
|
|
|
- ggml_backend_buffer_t buf_output = nullptr;
|
|
|
|
-
|
|
|
|
-+ // TODO (jmorganca): this should most likely be passed in as part of a batch
|
|
|
|
-+ // and not set on the context for all batches.
|
|
|
|
-+ float * cross_attn_state = nullptr;
|
|
|
|
-+
|
|
|
|
- // decode output (2-dimensional array: [n_outputs][n_vocab])
|
|
|
|
- size_t logits_size = 0; // capacity (of floats) for logits
|
|
|
|
- float * logits = nullptr;
|
|
|
|
-@@ -3317,6 +3386,11 @@ struct llama_context {
|
|
|
|
|
|
+@@ -3317,6 +3380,12 @@ struct llama_context {
|
|
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
|
|
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
|
|
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
|
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
|
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
|
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
|
+
|
|
+
|
|
-+ // TODO (jmorganca): this should most likely be passed in via
|
|
|
|
-+ // the input. Ideally we remove this state from llama_context
|
|
|
|
|
|
++ // TODO (jmorganca): this should most likely be passed in as part of a batch
|
|
|
|
++ // and not set on the context for all batches.
|
|
|
|
++ float * cross_attn_state = nullptr;
|
|
+ bool cross_attn_state_first_pass = true;
|
|
+ bool cross_attn_state_first_pass = true;
|
|
+ struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
|
|
+ struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
|
|
};
|
|
};
|
|
|
|
|
|
struct llama_lora_weight {
|
|
struct llama_lora_weight {
|
|
-@@ -3543,6 +3617,18 @@ static bool llama_kv_cache_init(
|
|
|
|
|
|
+@@ -3543,6 +3612,18 @@ static bool llama_kv_cache_init(
|
|
cache.v_l.reserve(n_layer);
|
|
cache.v_l.reserve(n_layer);
|
|
|
|
|
|
for (int i = 0; i < (int) n_layer; i++) {
|
|
for (int i = 0; i < (int) n_layer; i++) {
|
|
@@ -235,7 +215,7 @@ index b7771f53..72a57a38 100644
|
|
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
|
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
|
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
|
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
|
|
|
|
|
-@@ -5312,12 +5398,14 @@ static void llm_load_hparams(
|
|
|
|
|
|
+@@ -5312,12 +5393,14 @@ static void llm_load_hparams(
|
|
}
|
|
}
|
|
|
|
|
|
// zero-out the per-layer hparams
|
|
// zero-out the per-layer hparams
|
|
@@ -255,7 +235,7 @@ index b7771f53..72a57a38 100644
|
|
|
|
|
|
// n_head_kv is optional, default to n_head
|
|
// n_head_kv is optional, default to n_head
|
|
hparams.n_head_kv_arr = hparams.n_head_arr;
|
|
hparams.n_head_kv_arr = hparams.n_head_arr;
|
|
-@@ -5366,7 +5454,7 @@ static void llm_load_hparams(
|
|
|
|
|
|
+@@ -5366,7 +5449,7 @@ static void llm_load_hparams(
|
|
|
|
|
|
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
|
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
|
|
|
|
|
@@ -264,7 +244,7 @@ index b7771f53..72a57a38 100644
|
|
if (hparams.n_rot != hparams.n_embd_head_k) {
|
|
if (hparams.n_rot != hparams.n_embd_head_k) {
|
|
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
|
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
|
}
|
|
}
|
|
-@@ -5404,6 +5492,16 @@ static void llm_load_hparams(
|
|
|
|
|
|
+@@ -5404,6 +5487,16 @@ static void llm_load_hparams(
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
} break;
|
|
@@ -281,7 +261,7 @@ index b7771f53..72a57a38 100644
|
|
case LLM_ARCH_MINICPM:
|
|
case LLM_ARCH_MINICPM:
|
|
{
|
|
{
|
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
-@@ -6918,6 +7016,55 @@ static bool llm_load_tensors(
|
|
|
|
|
|
+@@ -6918,6 +7011,55 @@ static bool llm_load_tensors(
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} break;
|
|
} break;
|
|
@@ -337,7 +317,7 @@ index b7771f53..72a57a38 100644
|
|
case LLM_ARCH_GROK:
|
|
case LLM_ARCH_GROK:
|
|
{
|
|
{
|
|
if (n_expert == 0) {
|
|
if (n_expert == 0) {
|
|
-@@ -8678,7 +8825,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
|
|
|
|
|
+@@ -8678,7 +8820,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
|
|
|
|
|
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
|
|
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
|
|
model.hparams.n_vocab != model.vocab.id_to_token.size()) {
|
|
model.hparams.n_vocab != model.vocab.id_to_token.size()) {
|
|
@@ -346,15 +326,16 @@ index b7771f53..72a57a38 100644
|
|
}
|
|
}
|
|
|
|
|
|
if (params.vocab_only) {
|
|
if (params.vocab_only) {
|
|
-@@ -8754,7 +8901,6 @@ static struct ggml_tensor * llm_build_inp_embd(
|
|
|
|
-
|
|
|
|
- if (batch.token) {
|
|
|
|
- lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
|
|
|
|
-- cb(lctx.inp_tokens, "inp_tokens", -1);
|
|
|
|
- ggml_set_input(lctx.inp_tokens);
|
|
|
|
|
|
+@@ -8759,7 +8901,7 @@ static struct ggml_tensor * llm_build_inp_embd(
|
|
|
|
|
|
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
|
|
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
|
|
-@@ -8769,6 +8915,22 @@ static struct ggml_tensor * llm_build_inp_embd(
|
|
|
|
|
|
+ } else {
|
|
|
|
+- lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
|
|
|
|
++ lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
|
|
|
|
+ inpL = lctx.inp_embd;
|
|
|
|
+ ggml_set_input(lctx.inp_embd);
|
|
|
|
+ }
|
|
|
|
+@@ -8769,6 +8911,22 @@ static struct ggml_tensor * llm_build_inp_embd(
|
|
return inpL;
|
|
return inpL;
|
|
}
|
|
}
|
|
|
|
|
|
@@ -377,15 +358,7 @@ index b7771f53..72a57a38 100644
|
|
static void llm_build_kv_store(
|
|
static void llm_build_kv_store(
|
|
struct ggml_context * ctx,
|
|
struct ggml_context * ctx,
|
|
const llama_hparams & hparams,
|
|
const llama_hparams & hparams,
|
|
-@@ -8790,6 +8952,7 @@ static void llm_build_kv_store(
|
|
|
|
-
|
|
|
|
- struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa, ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa)*kv_head);
|
|
|
|
- cb(k_cache_view, "k_cache_view", il);
|
|
|
|
-+ cb(k_cur, "k_cur", il);
|
|
|
|
-
|
|
|
|
- // note: storing RoPE-ed version of K in the KV cache
|
|
|
|
- ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
|
|
|
|
-@@ -9743,6 +9906,7 @@ struct llm_build_context {
|
|
|
|
|
|
+@@ -9743,6 +9901,7 @@ struct llm_build_context {
|
|
lctx.inp_pos_bucket = nullptr;
|
|
lctx.inp_pos_bucket = nullptr;
|
|
lctx.inp_embd_enc = nullptr;
|
|
lctx.inp_embd_enc = nullptr;
|
|
lctx.inp_KQ_mask_cross = nullptr;
|
|
lctx.inp_KQ_mask_cross = nullptr;
|
|
@@ -393,7 +366,7 @@ index b7771f53..72a57a38 100644
|
|
}
|
|
}
|
|
|
|
|
|
void free() {
|
|
void free() {
|
|
-@@ -10158,6 +10322,253 @@ struct llm_build_context {
|
|
|
|
|
|
+@@ -10158,6 +10317,253 @@ struct llm_build_context {
|
|
LLM_NORM_RMS, cb, -1);
|
|
LLM_NORM_RMS, cb, -1);
|
|
cb(cur, "result_norm", -1);
|
|
cb(cur, "result_norm", -1);
|
|
|
|
|
|
@@ -647,7 +620,7 @@ index b7771f53..72a57a38 100644
|
|
// lm_head
|
|
// lm_head
|
|
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
|
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
|
cb(cur, "result_output", -1);
|
|
cb(cur, "result_output", -1);
|
|
-@@ -15493,6 +15904,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|
|
|
|
|
+@@ -15493,6 +15899,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|
{
|
|
{
|
|
result = llm.build_llama();
|
|
result = llm.build_llama();
|
|
} break;
|
|
} break;
|
|
@@ -658,31 +631,22 @@ index b7771f53..72a57a38 100644
|
|
case LLM_ARCH_BAICHUAN:
|
|
case LLM_ARCH_BAICHUAN:
|
|
{
|
|
{
|
|
result = llm.build_baichuan();
|
|
result = llm.build_baichuan();
|
|
-@@ -15736,7 +16151,6 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
|
|
|
|
-
|
|
|
|
- if (batch.token) {
|
|
|
|
- const int64_t n_tokens = batch.n_tokens;
|
|
|
|
--
|
|
|
|
- ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
|
|
|
|
|
|
+@@ -15753,6 +16163,14 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
|
|
|
|
+ ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
|
|
}
|
|
}
|
|
|
|
|
|
-@@ -16123,6 +16537,15 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-+
|
|
|
|
+ // TODO (jmorganca): this might copy a lot of data on every request of a
|
|
+ // TODO (jmorganca): this might copy a lot of data on every request of a
|
|
+ // single generation even though it doesn't change, so we should
|
|
+ // single generation even though it doesn't change, so we should
|
|
+ // find a way to not set this more than one time per image
|
|
+ // find a way to not set this more than one time per image
|
|
-+ if (lctx.cross_attn_state &&
|
|
|
|
-+ lctx.inp_cross_attn_state &&
|
|
|
|
|
|
++ if (lctx.inp_cross_attn_state &&
|
|
+ lctx.inp_cross_attn_state->buffer) {
|
|
+ lctx.inp_cross_attn_state->buffer) {
|
|
+ ggml_backend_tensor_set(lctx.inp_cross_attn_state, lctx.cross_attn_state, 0, hparams.n_embd * 1601 * 4 * ggml_element_size(lctx.inp_cross_attn_state));
|
|
+ ggml_backend_tensor_set(lctx.inp_cross_attn_state, lctx.cross_attn_state, 0, hparams.n_embd * 1601 * 4 * ggml_element_size(lctx.inp_cross_attn_state));
|
|
+ }
|
|
+ }
|
|
- }
|
|
|
|
-
|
|
|
|
- // Make sure enough space is available for outputs.
|
|
|
|
-@@ -16430,6 +16853,10 @@ static int llama_decode_internal(
|
|
|
|
|
|
++
|
|
|
|
+ if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
|
|
|
|
+ GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
|
|
|
|
+ const int64_t n_tokens = batch.n_tokens;
|
|
|
|
+@@ -16430,6 +16848,10 @@ static int llama_decode_internal(
|
|
|
|
|
|
llama_set_inputs(lctx, ubatch);
|
|
llama_set_inputs(lctx, ubatch);
|
|
|
|
|
|
@@ -693,7 +657,7 @@ index b7771f53..72a57a38 100644
|
|
llama_graph_compute(lctx, gf, n_threads, threadpool);
|
|
llama_graph_compute(lctx, gf, n_threads, threadpool);
|
|
|
|
|
|
// update the kv ring buffer
|
|
// update the kv ring buffer
|
|
-@@ -17586,7 +18013,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
|
|
|
|
+@@ -17586,7 +18008,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
if (llama_model_has_encoder(&model)) {
|
|
if (llama_model_has_encoder(&model)) {
|
|
n_attn_layer *= 3;
|
|
n_attn_layer *= 3;
|
|
}
|
|
}
|
|
@@ -704,26 +668,19 @@ index b7771f53..72a57a38 100644
|
|
}
|
|
}
|
|
|
|
|
|
size_t total_size_org = 0;
|
|
size_t total_size_org = 0;
|
|
-@@ -18681,6 +19110,18 @@ struct llama_context * llama_new_context_with_model(
|
|
|
|
|
|
+@@ -18681,6 +19105,11 @@ struct llama_context * llama_new_context_with_model(
|
|
return ctx;
|
|
return ctx;
|
|
}
|
|
}
|
|
|
|
|
|
+void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state) {
|
|
+void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state) {
|
|
-+ ctx->cross_attn_state = cross_attn_state;
|
|
|
|
-+}
|
|
|
|
-+
|
|
|
|
-+void llama_reset_cross_attn_state(struct llama_context * ctx) {
|
|
|
|
+ ctx->cross_attn_state_first_pass = true;
|
|
+ ctx->cross_attn_state_first_pass = true;
|
|
-+ if (ctx->cross_attn_state) {
|
|
|
|
-+ free(ctx->cross_attn_state);
|
|
|
|
-+ ctx->cross_attn_state = nullptr;
|
|
|
|
-+ }
|
|
|
|
|
|
++ ctx->cross_attn_state = cross_attn_state;
|
|
+}
|
|
+}
|
|
+
|
|
+
|
|
void llama_free(struct llama_context * ctx) {
|
|
void llama_free(struct llama_context * ctx) {
|
|
delete ctx;
|
|
delete ctx;
|
|
}
|
|
}
|
|
-@@ -18731,6 +19172,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|
|
|
|
|
+@@ -18731,6 +19160,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|
|
|
|
|
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
|
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
|
case LLM_ARCH_LLAMA:
|
|
case LLM_ARCH_LLAMA:
|