|
@@ -0,0 +1,76 @@
|
|
|
+commit c260daa84166c568cd998410dc9ba5628c530bee
|
|
|
+Author: Josh Yan <jyan00017@gmail.com>
|
|
|
+Date: Tue Jul 9 15:34:24 2024 -0700
|
|
|
+
|
|
|
+ quantize progress
|
|
|
+
|
|
|
+diff --git a/llama.cpp b/llama.cpp
|
|
|
+index 61948751..c06d31b6 100644
|
|
|
+--- a/llama.cpp
|
|
|
++++ b/llama.cpp
|
|
|
+@@ -15370,7 +15370,7 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa
|
|
|
+ return new_size;
|
|
|
+ }
|
|
|
+
|
|
|
+-static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
|
|
|
++static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, llama_model_quantize_params * params) {
|
|
|
+ ggml_type default_type;
|
|
|
+ llama_ftype ftype = params->ftype;
|
|
|
+
|
|
|
+@@ -15586,6 +15586,15 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
|
+ const auto tn = LLM_TN(model.arch);
|
|
|
+ new_ofstream(0);
|
|
|
+ for (int i = 0; i < ml.n_tensors; ++i) {
|
|
|
++
|
|
|
++ if (params->quantize_callback){
|
|
|
++ if (!params->quantize_callback(i/ml.n_tensors, params->quantize_callback_data)) {
|
|
|
++ close_ofstream();
|
|
|
++ params->quantize_callback_data = nullptr;
|
|
|
++ return;
|
|
|
++ }
|
|
|
++ }
|
|
|
++
|
|
|
+ auto weight = ml.get_weight(i);
|
|
|
+ struct ggml_tensor * tensor = weight->tensor;
|
|
|
+ if (weight->idx != cur_split && params->keep_split) {
|
|
|
+@@ -16119,6 +16128,8 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
|
|
|
+ /*.keep_split =*/ false,
|
|
|
+ /*.imatrix =*/ nullptr,
|
|
|
+ /*.kv_overrides =*/ nullptr,
|
|
|
++ /*.quantize_callback =*/ nullptr,
|
|
|
++ /*.quantize_callback_data =*/ nullptr,
|
|
|
+ };
|
|
|
+
|
|
|
+ return result;
|
|
|
+@@ -16784,7 +16795,7 @@ struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const ch
|
|
|
+ uint32_t llama_model_quantize(
|
|
|
+ const char * fname_inp,
|
|
|
+ const char * fname_out,
|
|
|
+- const llama_model_quantize_params * params) {
|
|
|
++ llama_model_quantize_params * params) {
|
|
|
+ try {
|
|
|
+ llama_model_quantize_internal(fname_inp, fname_out, params);
|
|
|
+ return 0;
|
|
|
+diff --git a/llama.h b/llama.h
|
|
|
+index da310ffa..847c40d4 100644
|
|
|
+--- a/llama.h
|
|
|
++++ b/llama.h
|
|
|
+@@ -196,6 +196,8 @@ extern "C" {
|
|
|
+
|
|
|
+ typedef bool (*llama_progress_callback)(float progress, void * user_data);
|
|
|
+
|
|
|
++ typedef bool (*llama_quantize_callback)(int progress, void * user_data);
|
|
|
++
|
|
|
+ // Input data for llama_decode
|
|
|
+ // A llama_batch object can contain input about one or many sequences
|
|
|
+ // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
|
|
|
+@@ -337,6 +339,9 @@ extern "C" {
|
|
|
+ bool keep_split; // quantize to the same number of shards
|
|
|
+ void * imatrix; // pointer to importance matrix data
|
|
|
+ void * kv_overrides; // pointer to vector containing overrides
|
|
|
++
|
|
|
++ llama_quantize_callback quantize_callback;
|
|
|
++ void * quantize_callback_data;
|
|
|
+ } llama_model_quantize_params;
|
|
|
+
|
|
|
+ // grammar types
|