|
@@ -0,0 +1,186 @@
|
|
|
|
+package bert
|
|
|
|
+
|
|
|
|
+import (
|
|
|
|
+ "math"
|
|
|
|
+
|
|
|
|
+ "github.com/ollama/ollama/ml"
|
|
|
|
+ "github.com/ollama/ollama/ml/nn"
|
|
|
|
+ "github.com/ollama/ollama/model"
|
|
|
|
+)
|
|
|
|
+
|
|
|
|
+func init() {
|
|
|
|
+ model.Register("bert", New)
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+type PoolingType int
|
|
|
|
+
|
|
|
|
+const (
|
|
|
|
+ PoolingTypeNone PoolingType = iota
|
|
|
|
+ PoolingTypeMean
|
|
|
|
+ PoolingTypeCLS
|
|
|
|
+ PoolingTypeLast
|
|
|
|
+ PoolingTypeRank
|
|
|
|
+)
|
|
|
|
+
|
|
|
|
+type Options struct {
|
|
|
|
+ hiddenSize, numHeads int64
|
|
|
|
+ eps float32
|
|
|
|
+ poolingType PoolingType
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+type Model struct {
|
|
|
|
+ model.Base
|
|
|
|
+ model.BytePairEncoding
|
|
|
|
+
|
|
|
|
+ TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
|
|
|
+ TypeEmbedding *nn.Embedding `gguf:"type_embd,alt:token_types"`
|
|
|
|
+ PositionEmbedding *nn.Embedding `gguf:"position_embd"`
|
|
|
|
+ TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"`
|
|
|
|
+
|
|
|
|
+ Layers []EncoderLayer `gguf:"blk"`
|
|
|
|
+
|
|
|
|
+ *Options
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+// Forward implements model.Model.
|
|
|
|
+func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
|
|
|
|
+ inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
|
|
|
|
+ if err != nil {
|
|
|
|
+ return nil, err
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ types, err := ctx.FromIntSlice([]int32{0}, 1)
|
|
|
|
+ if err != nil {
|
|
|
|
+ return nil, err
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
|
|
|
|
+ if err != nil {
|
|
|
|
+ return nil, err
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
|
|
|
+ hiddenState = hiddenState.Add(ctx, m.TypeEmbedding.Forward(ctx, types))
|
|
|
|
+ hiddenState = hiddenState.Add(ctx, m.PositionEmbedding.Forward(ctx, positions))
|
|
|
|
+ hiddenState = m.TokenEmbeddingNorm.Forward(ctx, hiddenState, m.eps)
|
|
|
|
+
|
|
|
|
+ for i, layer := range m.Layers {
|
|
|
|
+ hiddenState = layer.Forward(ctx, hiddenState, positions, opts.Cache.Sub(i), m.Options)
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ switch m.poolingType {
|
|
|
|
+ case PoolingTypeMean:
|
|
|
|
+ sum := func(s []int32) (sum int32) {
|
|
|
|
+ for _, v := range s {
|
|
|
|
+ sum += v
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ // TODO: handle batch
|
|
|
|
+ f32s := make([]float32, len(opts.Positions())*len(opts.Positions()))
|
|
|
|
+ for i := range opts.Positions() {
|
|
|
|
+ f32s[i] = 1 / float32(sum(opts.Positions()))
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ means, err := ctx.FromFloatSlice(f32s, len(opts.Positions()), len(opts.Positions()))
|
|
|
|
+ if err != nil {
|
|
|
|
+ return nil, err
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
|
|
|
+ hiddenState = hiddenState.Mulmat(ctx, means)
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return hiddenState, nil
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+type EncoderLayer struct {
|
|
|
|
+ SelfAttention *SelfAttention
|
|
|
|
+ AttentionOutputNorm *nn.LayerNorm `gguf:"attn_output_norm"`
|
|
|
|
+
|
|
|
|
+ MLP *MLP
|
|
|
|
+ MLPOutputNorm *nn.LayerNorm `gguf:"layer_output_norm"`
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+func (e *EncoderLayer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
|
|
|
|
+ residual := hiddenState
|
|
|
|
+
|
|
|
|
+ hiddenState = e.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
|
|
|
+ hiddenState = hiddenState.Add(ctx, residual)
|
|
|
|
+ hiddenState = e.AttentionOutputNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
|
+ residual = hiddenState
|
|
|
|
+
|
|
|
|
+ hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
|
|
|
|
+ hiddenState = hiddenState.Add(ctx, residual)
|
|
|
|
+ return e.MLPOutputNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+type SelfAttention struct {
|
|
|
|
+ Query *nn.Linear `gguf:"attn_q"`
|
|
|
|
+ Key *nn.Linear `gguf:"attn_k"`
|
|
|
|
+ Value *nn.Linear `gguf:"attn_v"`
|
|
|
|
+ Output *nn.Linear `gguf:"attn_output"`
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
|
|
|
|
+ batchSize := hiddenState.Dim(1)
|
|
|
|
+ headDim := opts.hiddenSize / opts.numHeads
|
|
|
|
+
|
|
|
|
+ query := sa.Query.Forward(ctx, hiddenState)
|
|
|
|
+ query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
|
|
|
+
|
|
|
|
+ key := sa.Key.Forward(ctx, hiddenState)
|
|
|
|
+ key = key.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
|
|
|
+
|
|
|
|
+ value := sa.Value.Forward(ctx, hiddenState)
|
|
|
|
+ value = value.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
|
|
|
+
|
|
|
|
+ key, value = cache.Put(ctx, key, value, cache.Options)
|
|
|
|
+
|
|
|
|
+ query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
|
|
+ key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
|
|
+ value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
|
|
|
+
|
|
|
|
+ scores := key.Mulmat(ctx, query)
|
|
|
|
+ scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
|
|
|
|
+ scores = scores.Softmax(ctx)
|
|
|
|
+
|
|
|
|
+ attention := value.Mulmat(ctx, scores)
|
|
|
|
+ attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
|
|
+ attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
|
|
|
|
+
|
|
|
|
+ return sa.Output.Forward(ctx, attention)
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+type MLP struct {
|
|
|
|
+ Up *nn.Linear `gguf:"ffn_up"`
|
|
|
|
+ Down *nn.Linear `gguf:"ffn_down"`
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
|
|
|
|
+ return mlp.Down.Forward(ctx, mlp.Up.Forward(ctx, hiddenState).GELU(ctx))
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+func New(c ml.Config) (model.Model, error) {
|
|
|
|
+ return &Model{
|
|
|
|
+ Layers: make([]EncoderLayer, c.Uint("block_count")),
|
|
|
|
+ BytePairEncoding: model.NewBytePairEncoding(
|
|
|
|
+ c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
|
|
|
+ &model.Vocabulary{
|
|
|
|
+ Values: c.Strings("tokenizer.ggml.tokens"),
|
|
|
|
+ Types: c.Uints("tokenizer.ggml.token_type"),
|
|
|
|
+ Merges: c.Strings("tokenizer.ggml.merges"),
|
|
|
|
+ BOS: c.Uint("tokenizer.ggml.bos_token_id"),
|
|
|
|
+ EOS: c.Uint("tokenizer.ggml.eos_token_id"),
|
|
|
|
+ },
|
|
|
|
+ ),
|
|
|
|
+ Options: &Options{
|
|
|
|
+ hiddenSize: int64(c.Uint("embedding_length")),
|
|
|
|
+ numHeads: int64(c.Uint("attention.head_count")),
|
|
|
|
+ eps: c.Float("attention.layer_norm_epsilon"),
|
|
|
|
+ poolingType: PoolingType(c.Uint("pooling_type")),
|
|
|
|
+ },
|
|
|
|
+ }, nil
|
|
|
|
+}
|