|
@@ -1,71 +1,71 @@
|
|
-# Ollama Docker image
|
|
|
|
-
|
|
|
|
-### CPU only
|
|
|
|
-
|
|
|
|
-```bash
|
|
|
|
-docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
|
|
|
-```
|
|
|
|
-
|
|
|
|
-### Nvidia GPU
|
|
|
|
-Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installation).
|
|
|
|
-
|
|
|
|
-#### Install with Apt
|
|
|
|
-1. Configure the repository
|
|
|
|
-```bash
|
|
|
|
-curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
|
|
|
|
- | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
|
|
|
|
-curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
|
|
|
|
- | sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
|
|
|
|
- | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
|
|
|
|
-sudo apt-get update
|
|
|
|
-```
|
|
|
|
-2. Install the NVIDIA Container Toolkit packages
|
|
|
|
-```bash
|
|
|
|
-sudo apt-get install -y nvidia-container-toolkit
|
|
|
|
-```
|
|
|
|
-
|
|
|
|
-#### Install with Yum or Dnf
|
|
|
|
-1. Configure the repository
|
|
|
|
-
|
|
|
|
-```bash
|
|
|
|
-curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
|
|
|
|
- | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
|
|
|
|
-```
|
|
|
|
-
|
|
|
|
-2. Install the NVIDIA Container Toolkit packages
|
|
|
|
-
|
|
|
|
-```bash
|
|
|
|
-sudo yum install -y nvidia-container-toolkit
|
|
|
|
-```
|
|
|
|
-
|
|
|
|
-#### Configure Docker to use Nvidia driver
|
|
|
|
-```
|
|
|
|
-sudo nvidia-ctk runtime configure --runtime=docker
|
|
|
|
-sudo systemctl restart docker
|
|
|
|
-```
|
|
|
|
-
|
|
|
|
-#### Start the container
|
|
|
|
-
|
|
|
|
-```bash
|
|
|
|
-docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
|
|
|
-```
|
|
|
|
-
|
|
|
|
-### AMD GPU
|
|
|
|
-
|
|
|
|
-To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
|
|
|
|
-
|
|
|
|
-```
|
|
|
|
-docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
|
|
|
|
-```
|
|
|
|
-
|
|
|
|
-### Run model locally
|
|
|
|
-
|
|
|
|
-Now you can run a model:
|
|
|
|
-
|
|
|
|
-```
|
|
|
|
-docker exec -it ollama ollama run llama3.1
|
|
|
|
-```
|
|
|
|
-
|
|
|
|
-### Try different models
|
|
|
|
-
|
|
|
|
-More models can be found on the [Ollama library](https://ollama.com/library).
|
|
|
|
|
|
+# Ollama Docker image
|
|
|
|
+
|
|
|
|
+### CPU only
|
|
|
|
+
|
|
|
|
+```bash
|
|
|
|
+docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
|
|
|
+```
|
|
|
|
+
|
|
|
|
+### Nvidia GPU
|
|
|
|
+Install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installation).
|
|
|
|
+
|
|
|
|
+#### Install with Apt
|
|
|
|
+1. Configure the repository
|
|
|
|
+```bash
|
|
|
|
+curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey \
|
|
|
|
+ | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
|
|
|
|
+curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list \
|
|
|
|
+ | sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' \
|
|
|
|
+ | sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
|
|
|
|
+sudo apt-get update
|
|
|
|
+```
|
|
|
|
+2. Install the NVIDIA Container Toolkit packages
|
|
|
|
+```bash
|
|
|
|
+sudo apt-get install -y nvidia-container-toolkit
|
|
|
|
+```
|
|
|
|
+
|
|
|
|
+#### Install with Yum or Dnf
|
|
|
|
+1. Configure the repository
|
|
|
|
+
|
|
|
|
+```bash
|
|
|
|
+curl -s -L https://nvidia.github.io/libnvidia-container/stable/rpm/nvidia-container-toolkit.repo \
|
|
|
|
+ | sudo tee /etc/yum.repos.d/nvidia-container-toolkit.repo
|
|
|
|
+```
|
|
|
|
+
|
|
|
|
+2. Install the NVIDIA Container Toolkit packages
|
|
|
|
+
|
|
|
|
+```bash
|
|
|
|
+sudo yum install -y nvidia-container-toolkit
|
|
|
|
+```
|
|
|
|
+
|
|
|
|
+#### Configure Docker to use Nvidia driver
|
|
|
|
+```
|
|
|
|
+sudo nvidia-ctk runtime configure --runtime=docker
|
|
|
|
+sudo systemctl restart docker
|
|
|
|
+```
|
|
|
|
+
|
|
|
|
+#### Start the container
|
|
|
|
+
|
|
|
|
+```bash
|
|
|
|
+docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
|
|
|
|
+```
|
|
|
|
+
|
|
|
|
+### AMD GPU
|
|
|
|
+
|
|
|
|
+To run Ollama using Docker with AMD GPUs, use the `rocm` tag and the following command:
|
|
|
|
+
|
|
|
|
+```
|
|
|
|
+docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama:rocm
|
|
|
|
+```
|
|
|
|
+
|
|
|
|
+### Run model locally
|
|
|
|
+
|
|
|
|
+Now you can run a model:
|
|
|
|
+
|
|
|
|
+```
|
|
|
|
+docker exec -it ollama ollama run llama3.1
|
|
|
|
+```
|
|
|
|
+
|
|
|
|
+### Try different models
|
|
|
|
+
|
|
|
|
+More models can be found on the [Ollama library](https://ollama.com/library).
|