Forráskód Böngészése

subprocess llama.cpp server (#401)

* remove c code
* pack llama.cpp
* use request context for llama_cpp
* let llama_cpp decide the number of threads to use
* stop llama runner when app stops
* remove sample count and duration metrics
* use go generate to get libraries
* tmp dir for running llm
Bruce MacDonald 1 éve
szülő
commit
42998d797d

+ 0 - 1
.gitignore

@@ -5,4 +5,3 @@
 .swp
 dist
 ollama
-/ggml-metal.metal

+ 3 - 0
.gitmodules

@@ -0,0 +1,3 @@
+[submodule "llm/llama.cpp/ggml"]
+	path = llm/llama.cpp/ggml
+	url = https://github.com/ggerganov/llama.cpp.git

+ 7 - 18
api/types.go

@@ -7,7 +7,6 @@ import (
 	"math"
 	"os"
 	"reflect"
-	"runtime"
 	"strings"
 	"time"
 )
@@ -113,8 +112,6 @@ type GenerateResponse struct {
 
 	TotalDuration      time.Duration `json:"total_duration,omitempty"`
 	LoadDuration       time.Duration `json:"load_duration,omitempty"`
-	SampleCount        int           `json:"sample_count,omitempty"`
-	SampleDuration     time.Duration `json:"sample_duration,omitempty"`
 	PromptEvalCount    int           `json:"prompt_eval_count,omitempty"`
 	PromptEvalDuration time.Duration `json:"prompt_eval_duration,omitempty"`
 	EvalCount          int           `json:"eval_count,omitempty"`
@@ -130,15 +127,6 @@ func (r *GenerateResponse) Summary() {
 		fmt.Fprintf(os.Stderr, "load duration:        %v\n", r.LoadDuration)
 	}
 
-	if r.SampleCount > 0 {
-		fmt.Fprintf(os.Stderr, "sample count:         %d token(s)\n", r.SampleCount)
-	}
-
-	if r.SampleDuration > 0 {
-		fmt.Fprintf(os.Stderr, "sample duration:      %s\n", r.SampleDuration)
-		fmt.Fprintf(os.Stderr, "sample rate:          %.2f tokens/s\n", float64(r.SampleCount)/r.SampleDuration.Seconds())
-	}
-
 	if r.PromptEvalCount > 0 {
 		fmt.Fprintf(os.Stderr, "prompt eval count:    %d token(s)\n", r.PromptEvalCount)
 	}
@@ -182,15 +170,16 @@ type Options struct {
 	RopeFrequencyScale float32 `json:"rope_frequency_scale,omitempty"`
 
 	// Predict options
-	RepeatLastN      int      `json:"repeat_last_n,omitempty"`
-	RepeatPenalty    float32  `json:"repeat_penalty,omitempty"`
-	FrequencyPenalty float32  `json:"frequency_penalty,omitempty"`
-	PresencePenalty  float32  `json:"presence_penalty,omitempty"`
-	Temperature      float32  `json:"temperature,omitempty"`
+	NumPredict       int      `json:"num_predict,omitempty"`
 	TopK             int      `json:"top_k,omitempty"`
 	TopP             float32  `json:"top_p,omitempty"`
 	TFSZ             float32  `json:"tfs_z,omitempty"`
 	TypicalP         float32  `json:"typical_p,omitempty"`
+	RepeatLastN      int      `json:"repeat_last_n,omitempty"`
+	Temperature      float32  `json:"temperature,omitempty"`
+	RepeatPenalty    float32  `json:"repeat_penalty,omitempty"`
+	PresencePenalty  float32  `json:"presence_penalty,omitempty"`
+	FrequencyPenalty float32  `json:"frequency_penalty,omitempty"`
 	Mirostat         int      `json:"mirostat,omitempty"`
 	MirostatTau      float32  `json:"mirostat_tau,omitempty"`
 	MirostatEta      float32  `json:"mirostat_eta,omitempty"`
@@ -314,7 +303,7 @@ func DefaultOptions() Options {
 		MirostatEta:      0.1,
 		PenalizeNewline:  true,
 
-		NumThread: runtime.NumCPU(),
+		NumThread: 0, // let the runtime decide
 	}
 }
 

+ 1 - 1
app/src/index.ts

@@ -158,7 +158,7 @@ function restart() {
 app.on('before-quit', () => {
   if (proc) {
     proc.off('exit', restart)
-    proc.kill()
+    proc.kill('SIGINT') // send SIGINT signal to the server, which also stops any loaded llms
   }
 })
 

+ 7 - 5
docs/development.md

@@ -1,19 +1,21 @@
 # Development
 
+- Install cmake or (optionally, required tools for GPUs)
+- run `go generate ./...`
+- run `go build .`
+
 Install required tools:
 
 ```
-brew install go
+brew install go cmake gcc
 ```
 
-Enable CGO:
+Get the required libraries:
 
 ```
-export CGO_ENABLED=1
+go generate ./...
 ```
 
-You will also need a C/C++ compiler such as GCC for MacOS and Linux or Mingw-w64 GCC for Windows.
-
 Then build ollama:
 
 ```

+ 2 - 2
go.mod

@@ -38,9 +38,9 @@ require (
 	github.com/twitchyliquid64/golang-asm v0.15.1 // indirect
 	github.com/ugorji/go/codec v1.2.11 // indirect
 	golang.org/x/arch v0.3.0 // indirect
-	golang.org/x/crypto v0.10.0 // indirect
+	golang.org/x/crypto v0.10.0
 	golang.org/x/net v0.10.0 // indirect
-	golang.org/x/sys v0.10.0 // indirect
+	golang.org/x/sys v0.11.0 // indirect
 	golang.org/x/term v0.10.0
 	golang.org/x/text v0.10.0 // indirect
 	gonum.org/v1/gonum v0.13.0

+ 3 - 2
go.sum

@@ -120,6 +120,7 @@ golang.org/x/arch v0.3.0/go.mod h1:5om86z9Hs0C8fWVUuoMHwpExlXzs5Tkyp9hOrfG7pp8=
 golang.org/x/crypto v0.0.0-20210711020723-a769d52b0f97/go.mod h1:GvvjBRRGRdwPK5ydBHafDWAxML/pGHZbMvKqRZ5+Abc=
 golang.org/x/crypto v0.10.0 h1:LKqV2xt9+kDzSTfOhx4FrkEBcMrAgHSYgzywV9zcGmM=
 golang.org/x/crypto v0.10.0/go.mod h1:o4eNf7Ede1fv+hwOwZsTHl9EsPFO6q6ZvYR8vYfY45I=
+golang.org/x/exp v0.0.0-20230321023759-10a507213a29 h1:ooxPy7fPvB4kwsA2h+iBNHkAbp/4JxTSwCmvdjEYmug=
 golang.org/x/net v0.0.0-20210226172049-e18ecbb05110/go.mod h1:m0MpNAwzfU5UDzcl9v0D8zg8gWTRqZa9RBIspLL5mdg=
 golang.org/x/net v0.10.0 h1:X2//UzNDwYmtCLn7To6G58Wr6f5ahEAQgKNzv9Y951M=
 golang.org/x/net v0.10.0/go.mod h1:0qNGK6F8kojg2nk9dLZ2mShWaEBan6FAoqfSigmmuDg=
@@ -130,8 +131,8 @@ golang.org/x/sys v0.0.0-20210806184541-e5e7981a1069/go.mod h1:oPkhp1MJrh7nUepCBc
 golang.org/x/sys v0.0.0-20220310020820-b874c991c1a5/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
 golang.org/x/sys v0.0.0-20220704084225-05e143d24a9e/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
 golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
-golang.org/x/sys v0.10.0 h1:SqMFp9UcQJZa+pmYuAKjd9xq1f0j5rLcDIk0mj4qAsA=
-golang.org/x/sys v0.10.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
+golang.org/x/sys v0.11.0 h1:eG7RXZHdqOJ1i+0lgLgCpSXAp6M3LYlAo6osgSi0xOM=
+golang.org/x/sys v0.11.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
 golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
 golang.org/x/term v0.10.0 h1:3R7pNqamzBraeqj/Tj8qt1aQ2HpmlC+Cx/qL/7hn4/c=
 golang.org/x/term v0.10.0/go.mod h1:lpqdcUyK/oCiQxvxVrppt5ggO2KCZ5QblwqPnfZ6d5o=

+ 0 - 575
llm/ggml-alloc.c

@@ -1,575 +0,0 @@
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "ggml-alloc.h"
-#include "ggml.h"
-#include <assert.h>
-#include <stdarg.h>
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-#define UNUSED(x) (void)(x)
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
-
-//#define GGML_ALLOCATOR_DEBUG
-
-//#define AT_PRINTF printf
-#define AT_PRINTF(...) ((void)0)
-
-struct hash_node {
-    struct ggml_tensor * t;
-    int n_children;
-    int n_views;
-};
-
-static size_t hash(void * p) {
-    return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
-}
-
-static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
-    size_t h = hash(t);
-
-    // linear probing
-    size_t i = h;
-    while (hash_table[i].t != NULL) {
-        if (hash_table[i].t == t) {
-            return &hash_table[i];
-        }
-        i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
-        if (i == h) {
-            // hash table is full
-            GGML_ASSERT(false);
-        }
-    }
-
-    hash_table[i].t = t;
-    return &hash_table[i];
-}
-
-// TODO: GGML_PAD ?
-static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
-    assert(alignment && !(alignment & (alignment - 1))); // power of 2
-    size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
-    return offset + align;
-}
-
-struct free_block {
-    void * addr;
-    size_t size;
-};
-
-#define MAX_FREE_BLOCKS 128
-
-struct ggml_allocr {
-    void * data;
-    size_t size;
-    size_t alignment;
-    int n_free_blocks;
-    struct free_block free_blocks[MAX_FREE_BLOCKS];
-    struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
-    size_t max_size;
-    bool measure;
-
-#ifdef GGML_ALLOCATOR_DEBUG
-    struct ggml_tensor * allocated_tensors[1024];
-#endif
-};
-
-#ifdef GGML_ALLOCATOR_DEBUG
-static void add_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
-    for (int i = 0; i < 1024; i++) {
-        if (alloc->allocated_tensors[i] == NULL) {
-            alloc->allocated_tensors[i] = tensor;
-            return;
-        }
-    }
-    GGML_ASSERT(!"out of allocated_tensors");
-}
-static void remove_allocated_tensor(struct ggml_allocator * alloc, struct ggml_tensor * tensor) {
-    for (int i = 0; i < 1024; i++) {
-        if (alloc->allocated_tensors[i] == tensor ||
-            (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
-            alloc->allocated_tensors[i] = NULL;
-            return;
-        }
-    }
-    printf("tried to free tensor %s not found\n", tensor->name);
-    GGML_ASSERT(!"tensor not found");
-}
-#endif
-
-
-static size_t ggml_allocator_get_alloc_size(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
-    return ggml_nbytes(tensor);
-
-    UNUSED(alloc);
-}
-
-void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
-    size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
-    size = aligned_offset(NULL, size, alloc->alignment);
-
-    AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
-
-    size_t max_avail = 0;
-
-    // find the best fitting free block
-    int best_fit_block = -1;
-    size_t best_fit_size = SIZE_MAX;
-    for (int i = 0; i < alloc->n_free_blocks; i++) {
-        struct free_block * block = &alloc->free_blocks[i];
-        max_avail = MAX(max_avail, block->size);
-        if (block->size >= size && block->size <= best_fit_size) {
-            best_fit_block = i;
-            best_fit_size = block->size;
-        }
-    }
-
-    AT_PRINTF("block %d\n", best_fit_block);
-
-    if (best_fit_block == -1) {
-        fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
-                __func__, size, max_avail);
-        GGML_ASSERT(!"not enough space in the buffer");
-        return;
-    }
-    struct free_block * block = &alloc->free_blocks[best_fit_block];
-    void * addr = block->addr;
-    block->addr = (char*)block->addr + size;
-    block->size -= size;
-    if (block->size == 0) {
-        // remove block if empty
-        alloc->n_free_blocks--;
-        for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
-            alloc->free_blocks[j] = alloc->free_blocks[j+1];
-        }
-    }
-
-    tensor->data = addr;
-
-#ifdef GGML_ALLOCATOR_DEBUG
-    add_allocated_tensor(alloc, tensor);
-    size_t cur_max = (char*)addr - (char*)alloc->data + size;
-    if (cur_max > alloc->max_size) {
-        printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
-        for (int i = 0; i < 1024; i++) {
-            if (alloc->allocated_tensors[i]) {
-                printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
-            }
-        }
-        printf("\n");
-    }
-#endif
-
-    alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
-}
-
-// this is a very naive implementation, but for our case the number of free blocks should be very small
-static void ggml_allocator_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
-    void * ptr = tensor->data;
-
-    if (ptr < alloc->data || (char*)ptr >= (char*)alloc->data + alloc->max_size) {
-        // the tensor was not allocated in this buffer
-        // this can happen because the graph allocator will try to free weights and other tensors from different buffers
-        // the easiest way to deal with this is just to ignore it
-        return;
-    }
-
-    size_t size = ggml_allocator_get_alloc_size(alloc, tensor);
-    size = aligned_offset(NULL, size, alloc->alignment);
-    AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
-
-#ifdef GGML_ALLOCATOR_DEBUG
-    remove_allocated_tensor(alloc, tensor);
-#endif
-
-    // see if we can merge with an existing block
-    for (int i = 0; i < alloc->n_free_blocks; i++) {
-        struct free_block * block = &alloc->free_blocks[i];
-        // check if ptr is at the end of the block
-        if ((char*)block->addr + block->size == ptr) {
-            block->size += size;
-            // check if we can merge with the next block
-            if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
-                block->size += alloc->free_blocks[i+1].size;
-                alloc->n_free_blocks--;
-                for (int j = i+1; j < alloc->n_free_blocks; j++) {
-                    alloc->free_blocks[j] = alloc->free_blocks[j+1];
-                }
-            }
-            return;
-        }
-        // check if ptr is at the beginning of the block
-        if ((char*)ptr + size == block->addr) {
-            block->addr = ptr;
-            block->size += size;
-            // check if we can merge with the previous block
-            if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
-                alloc->free_blocks[i-1].size += block->size;
-                alloc->n_free_blocks--;
-                for (int j = i; j < alloc->n_free_blocks; j++) {
-                    alloc->free_blocks[j] = alloc->free_blocks[j+1];
-                }
-            }
-            return;
-        }
-    }
-    // otherwise, add a new block
-    GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
-    // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
-    int insert_pos = 0;
-    while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
-        insert_pos++;
-    }
-    // shift all blocks from insert_pos onward to make room for the new block
-    for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
-        alloc->free_blocks[i] = alloc->free_blocks[i-1];
-    }
-    // insert the new block
-    alloc->free_blocks[insert_pos].addr = ptr;
-    alloc->free_blocks[insert_pos].size = size;
-    alloc->n_free_blocks++;
-}
-
-void ggml_allocr_reset(struct ggml_allocr * alloc) {
-    alloc->n_free_blocks = 1;
-    size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
-    alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
-    alloc->free_blocks[0].size = alloc->size - align_offset;
-}
-
-struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
-    struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
-
-    *alloc = (struct ggml_allocr){
-        /*.data          = */ data,
-        /*.size          = */ size,
-        /*.alignment     = */ alignment,
-        /*.n_free_blocks = */ 0,
-        /*.free_blocks   = */ {{0}},
-        /*.hash_table    = */ {{0}},
-        /*.max_size      = */ 0,
-        /*.measure       = */ false,
-#ifdef GGML_ALLOCATOR_DEBUG
-        /*.allocated_tensors = */ = {0},
-#endif
-    };
-
-    ggml_allocr_reset(alloc);
-
-    return alloc;
-}
-
-// address and size of the buffer when measuring
-// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
-static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
-static const size_t MEASURE_MAX_SIZE  = 1ULL<<40; // 1 TB
-
-struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
-    struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
-
-    *alloc = (struct ggml_allocr){
-        /*.data          = */ MEASURE_BASE_ADDR,
-        /*.size          = */ MEASURE_MAX_SIZE,
-        /*.alignment     = */ alignment,
-        /*.n_free_blocks = */ 0,
-        /*.free_blocks   = */ {{0}},
-        /*.hash_table    = */ {{0}},
-        /*.max_size      = */ 0,
-        /*.measure       = */ true,
-#ifdef GGML_ALLOCATOR_DEBUG
-        /*.allocated_tensors = */ = {0},
-#endif
-    };
-
-    ggml_allocr_reset(alloc);
-
-    return alloc;
-}
-
-void ggml_allocr_free(struct ggml_allocr * alloc) {
-    free(alloc);
-}
-
-bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
-    return alloc->measure;
-}
-
-//////////// compute graph allocator
-
-static bool ggml_is_view(struct ggml_tensor * t) {
-    return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
-           t->op == GGML_OP_PERMUTE || t->op == GGML_OP_CPY;
-}
-
-static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
-    if (a->type != b->type) {
-        return false;
-    }
-    for (int i = 0; i < GGML_MAX_DIMS; i++) {
-        if (a->ne[i] != b->ne[i]) {
-            return false;
-        }
-        if (a->nb[i] != b->nb[i]) {
-            return false;
-        }
-    }
-    return true;
-}
-
-static struct ggml_tensor * get_view_parent(struct ggml_tensor * t) {
-    switch (t->op) {
-        case GGML_OP_PERMUTE:
-        case GGML_OP_RESHAPE:
-        case GGML_OP_TRANSPOSE:
-        case GGML_OP_VIEW:
-            return t->src[0];
-        case GGML_OP_CPY:
-            return t->src[1];
-        default:
-            return NULL;
-    }
-}
-
-static struct ggml_tensor * get_view_source(struct ggml_tensor * t) {
-    struct ggml_tensor * parent = t;
-    do {
-        parent = get_view_parent(parent);
-    } while (ggml_is_view(parent));
-    return parent;
-}
-
-static bool ggml_op_can_inplace(enum ggml_op op) {
-    switch (op) {
-        case GGML_OP_SCALE:
-        case GGML_OP_DIAG_MASK_ZERO:
-        case GGML_OP_DIAG_MASK_INF:
-        case GGML_OP_ADD:
-        case GGML_OP_ADD1:
-        case GGML_OP_ACC:
-        case GGML_OP_SUB:
-        case GGML_OP_MUL:
-        case GGML_OP_DIV:
-        case GGML_OP_SQR:
-        case GGML_OP_SQRT:
-        case GGML_OP_LOG:
-        case GGML_OP_UNARY:
-        case GGML_OP_ROPE:
-        case GGML_OP_RMS_NORM:
-        case GGML_OP_SET:
-        case GGML_OP_SOFT_MAX:
-        case GGML_OP_CONT:
-            return true;
-
-        default:
-            return false;
-    }
-}
-
-static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
-    struct hash_node * ht = alloc->hash_table;
-    if (node->data == NULL) {
-        if (ggml_is_view(node)) {
-            size_t offset;
-            switch(node->op) {
-                case GGML_OP_VIEW:
-                    memcpy(&offset, node->op_params, sizeof(size_t));
-                    node->data = (char *) node->src[0]->data + offset;
-                    break;
-                case GGML_OP_PERMUTE:
-                case GGML_OP_RESHAPE:
-                case GGML_OP_TRANSPOSE:
-                    node->data = node->src[0]->data;
-                    break;
-                case GGML_OP_CPY:
-                    node->data = node->src[1]->data;
-                    break;
-                default:
-                    GGML_ASSERT(!"unknown view op");
-                    break;
-            }
-        } else {
-            // see if we can reuse a parent's buffer (inplace)
-            if (ggml_op_can_inplace(node->op)) {
-                for (int i = 0; i < GGML_MAX_SRC; i++) {
-                    struct ggml_tensor * parent = node->src[i];
-                    if (parent == NULL) {
-                        break;
-                    }
-
-                    // if the node's data is external, then we cannot re-use it
-                    if ((char *) parent->data < (char *) alloc->data ||
-                        (char *) parent->data >= ((char *) alloc->data + alloc->size)) {
-                        AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
-                        continue;
-                    }
-
-                    struct hash_node * p_hn = hash_get(ht, parent);
-                    if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
-                        if (ggml_is_view(parent)) {
-                            struct ggml_tensor * view_src = get_view_source(parent);
-                            struct hash_node * view_src_hn = hash_get(ht, view_src);
-                            if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
-                                // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
-                                // the parent's data that it will need later (same layout requirement). the problem is that then
-                                // we cannot free the tensor because the original address of the allocation is lost.
-                                // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
-                                // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
-                                AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
-                                node->data = parent->data;
-                                return;
-                            }
-                        }
-                        else {
-                            AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
-                            node->data = parent->data;
-                        }
-                        return;
-                    }
-                }
-            }
-            ggml_allocr_alloc(alloc, node);
-        }
-    }
-}
-
-static size_t ggml_allocator_alloc_graph_tensors_n(
-    struct ggml_allocr * alloc,
-    struct ggml_cgraph ** graphs, int n_graphs,
-    struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
-
-    // reset hash table
-    struct hash_node * ht = alloc->hash_table;
-    memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
-
-    // count number of children and views
-    for (int g = 0; g < n_graphs; g++) {
-        struct ggml_cgraph * gf = graphs[g];
-        for (int i = 0; i < gf->n_nodes; i++) {
-            struct ggml_tensor * node = gf->nodes[i];
-
-            if (ggml_is_view(node)) {
-                struct ggml_tensor * view_src = get_view_source(node);
-                hash_get(ht, view_src)->n_views += 1;
-            }
-
-            for (int j = 0; j < GGML_MAX_SRC; j++) {
-                struct ggml_tensor * parent = node->src[j];
-                if (parent == NULL) {
-                    break;
-                }
-                hash_get(ht, parent)->n_children += 1;
-            }
-        }
-    }
-
-    // allocate tensors
-    for (int g = 0; g < n_graphs; g++) {
-        struct ggml_cgraph * gf = graphs[g];
-        AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
-        // graph inputs are allocated first to ensure that they are not overwritten by each other
-        if (inputs != NULL && inputs[g] != NULL) {
-            for (int i = 0; inputs[g][i] != NULL; i++) {
-                struct ggml_tensor * input = inputs[g][i];
-                AT_PRINTF("input: %s\n", input->name);
-                allocate_node(alloc, input);
-            }
-        }
-        for (int i = 0; i < gf->n_nodes; i++) {
-            struct ggml_tensor * node = gf->nodes[i];
-
-            // allocate parents (leafs)
-            for (int j = 0; j < GGML_MAX_SRC; j++) {
-                struct ggml_tensor * parent = node->src[j];
-                if (parent == NULL) {
-                    break;
-                }
-                allocate_node(alloc, parent);
-            }
-
-            // allocate node
-            allocate_node(alloc, node);
-
-            AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
-            for (int j = 0; j < GGML_MAX_SRC; j++) {
-                struct ggml_tensor * parent = node->src[j];
-                if (parent == NULL) {
-                    break;
-                }
-                AT_PRINTF("%s", parent->name);
-                if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
-                    AT_PRINTF(", ");
-                }
-            }
-            AT_PRINTF("\n");
-
-            // update parents
-            for (int j = 0; j < GGML_MAX_SRC; j++) {
-                struct ggml_tensor * parent = node->src[j];
-                if (parent == NULL) {
-                    break;
-                }
-                struct hash_node * p_hn = hash_get(ht, parent);
-                p_hn->n_children -= 1;
-
-                //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
-
-                if (p_hn->n_children == 0 && p_hn->n_views == 0) {
-                    if (ggml_is_view(parent)) {
-                        struct ggml_tensor * view_src = get_view_source(parent);
-                        struct hash_node * view_src_hn = hash_get(ht, view_src);
-                        view_src_hn->n_views -= 1;
-                        AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src->n_children, view_src->n_views);
-                        if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
-                            ggml_allocator_free_tensor(alloc, view_src);
-                        }
-                    }
-                    else {
-                        if (parent->data != node->data) {
-                            ggml_allocator_free_tensor(alloc, parent);
-                        }
-                    }
-                }
-            }
-            AT_PRINTF("\n");
-        }
-        // free graph outputs here that wouldn't be freed otherwise because they have no children
-        if (outputs != NULL && outputs[g] != NULL) {
-            for (int i = 0; outputs[g][i] != NULL; i++) {
-                struct ggml_tensor * output = outputs[g][i];
-                AT_PRINTF("output: %s\n", output->name);
-                ggml_allocator_free_tensor(alloc, output);
-            }
-        }
-    }
-
-    return alloc->max_size;
-}
-
-size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
-    return ggml_allocator_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
-}

+ 0 - 48
llm/ggml-alloc.h

@@ -1,48 +0,0 @@
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#pragma once
-
-#include "ggml.h"
-
-#ifdef  __cplusplus
-extern "C" {
-#endif
-
-
-GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
-GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
-
-GGML_API void   ggml_allocr_free(struct ggml_allocr * alloc);
-GGML_API bool   ggml_allocr_is_measure(struct ggml_allocr * alloc);
-GGML_API void   ggml_allocr_reset(struct ggml_allocr * alloc);
-GGML_API void   ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor);
-GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
-
-
-#ifdef  __cplusplus
-}
-#endif

+ 0 - 6497
llm/ggml-cuda.cu

@@ -1,6497 +0,0 @@
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include <cstddef>
-#include <cstdint>
-#include <limits>
-#include <stdint.h>
-#include <stdio.h>
-#include <atomic>
-#include <assert.h>
-
-#include <cuda_runtime.h>
-#include <cublas_v2.h>
-#include <cuda_fp16.h>
-
-#include "ggml-cuda.h"
-#include "ggml.h"
-
-#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
-#define CC_TURING   700
-
-#if defined(_MSC_VER)
-#pragma warning(disable: 4244 4267) // possible loss of data
-#endif
-
-static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
-
-#define CUDA_CHECK(err)                                                                 \
-    do {                                                                                \
-        cudaError_t err_ = (err);                                                       \
-        if (err_ != cudaSuccess) {                                                      \
-            fprintf(stderr, "CUDA error %d at %s:%d: %s\n", err_, __FILE__, __LINE__,   \
-                cudaGetErrorString(err_));                                              \
-            exit(1);                                                                    \
-        }                                                                               \
-    } while (0)
-
-#if CUDART_VERSION >= 12000
-#define CUBLAS_CHECK(err)                                                               \
-    do {                                                                                \
-        cublasStatus_t err_ = (err);                                                    \
-        if (err_ != CUBLAS_STATUS_SUCCESS) {                                            \
-            fprintf(stderr, "\ncuBLAS error %d at %s:%d: %s\n",                         \
-                    err_, __FILE__, __LINE__, cublasGetStatusString(err_));             \
-            exit(1);                                                                    \
-        }                                                                               \
-    } while (0)
-#else
-#define CUBLAS_CHECK(err)                                                               \
-    do {                                                                                \
-        cublasStatus_t err_ = (err);                                                    \
-        if (err_ != CUBLAS_STATUS_SUCCESS) {                                            \
-            fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__);  \
-            exit(1);                                                                    \
-        }                                                                               \
-    } while (0)
-#endif // CUDART_VERSION >= 11
-
-#ifdef GGML_CUDA_F16
-typedef half dfloat; // dequantize float
-typedef half2 dfloat2;
-#else
-typedef float dfloat; // dequantize float
-typedef float2 dfloat2;
-#endif //GGML_CUDA_F16
-
-static __device__ __forceinline__ int get_int_from_int8(const int8_t * x8, const int & i32) {
-    const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
-
-    int x32 = 0;
-    x32 |= x16[0] <<  0;
-    x32 |= x16[1] << 16;
-
-    return x32;
-}
-
-static __device__ __forceinline__ int get_int_from_uint8(const uint8_t * x8, const int & i32) {
-    const uint16_t * x16 = (uint16_t *) (x8 + sizeof(int) * i32); // assume at least 2 byte alignment
-
-    int x32 = 0;
-    x32 |= x16[0] <<  0;
-    x32 |= x16[1] << 16;
-
-    return x32;
-}
-
-static __device__ __forceinline__ int get_int_from_int8_aligned(const int8_t * x8, const int & i32) {
-    return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
-}
-
-static __device__ __forceinline__ int get_int_from_uint8_aligned(const uint8_t * x8, const int & i32) {
-    return *((int *) (x8 + sizeof(int) * i32)); // assume at least 4 byte alignment
-}
-
-typedef void (*dequantize_kernel_t)(const void * vx, const int ib, const int iqs, dfloat2 & v);
-typedef void (*to_fp32_cuda_t)(const void * __restrict__ x, float * __restrict__ y, int k, cudaStream_t stream);
-typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
-typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
-typedef void (*ggml_cuda_func_t)(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
-typedef void (*ggml_cuda_op_t)(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i, float * src0_ddf_i,
-    float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
-    cudaStream_t & cudaStream_main);
-
-// QK = number of values after dequantization
-// QR = QK / number of values before dequantization
-// QI = number of 32 bit integers before dequantization
-
-#define QK4_0 32
-#define QR4_0 2
-#define QI4_0 (QK4_0 / (4 * QR4_0))
-typedef struct {
-    half    d;              // delta
-    uint8_t qs[QK4_0 / 2];  // nibbles / quants
-} block_q4_0;
-static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
-
-#define QK4_1 32
-#define QR4_1 2
-#define QI4_1 (QK4_1 / (4 * QR4_1))
-typedef struct {
-    half2   dm;             // dm.x = delta, dm.y = min
-    uint8_t qs[QK4_1 / 2];  // nibbles / quants
-} block_q4_1;
-static_assert(sizeof(block_q4_1) == sizeof(ggml_fp16_t) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding");
-
-#define QK5_0 32
-#define QR5_0 2
-#define QI5_0 (QK5_0 / (4 * QR5_0))
-typedef struct {
-    half d;                 // delta
-    uint8_t qh[4];          // 5-th bit of quants
-    uint8_t qs[QK5_0 / 2];  // nibbles / quants
-} block_q5_0;
-static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
-
-#define QK5_1 32
-#define QR5_1 2
-#define QI5_1 (QK5_1 / (4 * QR5_1))
-typedef struct {
-    half2 dm;               // dm.x = delta, dm.y = min
-    uint8_t qh[4];          // 5-th bit of quants
-    uint8_t qs[QK5_1 / 2];  // nibbles / quants
-} block_q5_1;
-static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
-
-#define QK8_0 32
-#define QR8_0 1
-#define QI8_0 (QK8_0 / (4 * QR8_0))
-typedef struct {
-    half    d;              // delta
-    int8_t  qs[QK8_0];      // quants
-} block_q8_0;
-static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
-
-#define QK8_1 32
-#define QR8_1 1
-#define QI8_1 (QK8_1 / (4 * QR8_1))
-typedef struct {
-    half2   ds;             // ds.x = delta, ds.y = sum
-    int8_t  qs[QK8_0];      // quants
-} block_q8_1;
-static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_fp16_t) + QK8_0, "wrong q8_1 block size/padding");
-
-typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
-typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
-typedef void (*load_tiles_cuda_t)(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
-typedef float (*vec_dot_q_mul_mat_cuda_t)(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
-
-//================================= k-quants
-
-#ifdef GGML_QKK_64
-#define QK_K 64
-#define K_SCALE_SIZE 4
-#else
-#define QK_K 256
-#define K_SCALE_SIZE 12
-#endif
-
-#define QR2_K 4
-#define QI2_K (QK_K / (4*QR2_K))
-typedef struct {
-    uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
-    uint8_t qs[QK_K/4];      // quants
-    half2 dm;                // super-block scale for quantized scales/mins
-} block_q2_K;
-static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
-
-#define QR3_K 4
-#define QI3_K (QK_K / (4*QR3_K))
-typedef struct {
-    uint8_t hmask[QK_K/8];     // quants - high bit
-    uint8_t qs[QK_K/4];        // quants - low 2 bits
-#ifdef GGML_QKK_64
-    uint8_t scales[2]; // scales, quantized with 8 bits
-#else
-    uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
-#endif
-    half d;             // super-block scale
-} block_q3_K;
-//static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + K_SCALE_SIZE, "wrong q3_K block size/padding");
-
-#define QR4_K 2
-#define QI4_K (QK_K / (4*QR4_K))
-#ifdef GGML_QKK_64
-typedef struct {
-    half    d[2];              // super-block scales/mins
-    uint8_t scales[2];         // 4-bit block scales/mins
-    uint8_t qs[QK_K/2];        // 4--bit quants
-} block_q4_K;
-static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
-#else
-typedef struct {
-    half2 dm;                  // super-block scale for quantized scales/mins
-    uint8_t scales[3*QK_K/64]; // scales, quantized with 6 bits
-    uint8_t qs[QK_K/2];        // 4--bit quants
-} block_q4_K;
-static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + 3*QK_K/64 + QK_K/2, "wrong q4_K block size/padding");
-#endif
-
-#define QR5_K 2
-#define QI5_K (QK_K / (4*QR5_K))
-#ifdef GGML_QKK_64
-typedef struct {
-    half d;                  // super-block scale
-    int8_t scales[QK_K/16];  // block scales
-    uint8_t qh[QK_K/8];      // quants, high bit
-    uint8_t qs[QK_K/2];      // quants, low 4 bits
-} block_q5_K;
-static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
-#else
-typedef struct {
-    half2 dm;                     // super-block scale for quantized scales/mins
-    uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
-    uint8_t qh[QK_K/8];           // quants, high bit
-    uint8_t qs[QK_K/2];           // quants, low 4 bits
-} block_q5_K;
-static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
-#endif
-
-#define QR6_K 2
-#define QI6_K (QK_K / (4*QR6_K))
-typedef struct {
-    uint8_t ql[QK_K/2];   // quants, lower 4 bits
-    uint8_t qh[QK_K/4];   // quants, upper 2 bits
-    int8_t  scales[QK_K/16]; // scales
-    half    d;         // delta
-} block_q6_K;
-static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + 13*QK_K/16, "wrong q6_K block size/padding");
-
-#define WARP_SIZE 32
-#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
-
-#define CUDA_ADD_BLOCK_SIZE 256
-#define CUDA_MUL_BLOCK_SIZE 256
-#define CUDA_GELU_BLOCK_SIZE 256
-#define CUDA_SILU_BLOCK_SIZE 256
-#define CUDA_CPY_BLOCK_SIZE 32
-#define CUDA_SCALE_BLOCK_SIZE 256
-#define CUDA_ROPE_BLOCK_SIZE 256
-#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
-#define CUDA_QUANTIZE_BLOCK_SIZE 256
-#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
-
-// dmmv = dequantize_mul_mat_vec
-#ifndef GGML_CUDA_DMMV_X
-#define GGML_CUDA_DMMV_X 32
-#endif
-#ifndef GGML_CUDA_MMV_Y
-#define GGML_CUDA_MMV_Y 1
-#endif
-
-#ifndef K_QUANTS_PER_ITERATION
-#define K_QUANTS_PER_ITERATION 2
-#else
-static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
-#endif
-
-struct ggml_tensor_extra_gpu {
-    void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
-    cudaEvent_t events[GGML_CUDA_MAX_DEVICES]; // events for synchronizing multiple GPUs
-};
-
-static int g_device_count = -1;
-static int g_main_device = 0;
-static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
-static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
-static bool g_mul_mat_q = false;
-
-static void * g_scratch_buffer = nullptr;
-static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default
-static size_t g_scratch_offset = 0;
-
-static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
-
-static cudaStream_t g_cudaStreams_main[GGML_CUDA_MAX_DEVICES] = { nullptr };
-
-static __global__ void add_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
-    if (i >= kx) {
-        return;
-    }
-    dst[i] = x[i] + y[i%ky];
-}
-
-static __global__ void add_f16_f32_f16(const half * x, const float * y, half * dst, const int k) {
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
-    if (i >= k) {
-        return;
-    }
-    dst[i] = __hadd(x[i], __float2half(y[i]));
-}
-
-static __global__ void mul_f32(const float * x, const float * y, float * dst, const int kx, const int ky) {
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
-    if (i >= kx) {
-        return;
-    }
-    dst[i] = x[i] * y[i%ky];
-}
-
-static __global__ void gelu_f32(const float * x, float * dst, const int k) {
-    const float GELU_COEF_A    = 0.044715f;
-    const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
-    if (i >= k) {
-        return;
-    }
-
-    float xi = x[i];
-    dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi)));
-}
-
-static __global__ void silu_f32(const float * x, float * dst, const int k) {
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
-    if (i >= k) {
-        return;
-    }
-    dst[i] = x[i] / (1.0f + expf(-x[i]));
-}
-
-static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
-    const int row = blockIdx.x*blockDim.y + threadIdx.y;
-    const int tid = threadIdx.x;
-
-    const float eps = 1e-5f;
-
-    float mean = 0.0f;
-    float var = 0.0f;
-
-    for (int col = tid; col < ncols; col += WARP_SIZE) {
-        const float xi = x[row*ncols + col];
-        mean += xi;
-        var += xi * xi;
-    }
-
-    // sum up partial sums
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        mean += __shfl_xor_sync(0xffffffff, mean, mask, 32);
-        var += __shfl_xor_sync(0xffffffff, var, mask, 32);
-    }
-
-    mean /= ncols;
-    var = var / ncols - mean * mean;
-    const float inv_var = rsqrtf(var + eps);
-
-    for (int col = tid; col < ncols; col += WARP_SIZE) {
-        dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_var;
-    }
-}
-
-static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
-    const int row = blockIdx.x*blockDim.y + threadIdx.y;
-    const int tid = threadIdx.x;
-
-    float tmp = 0.0f; // partial sum for thread in warp
-
-    for (int col = tid; col < ncols; col += WARP_SIZE) {
-        const float xi = x[row*ncols + col];
-        tmp += xi * xi;
-    }
-
-    // sum up partial sums
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
-    }
-
-    const float mean = tmp / ncols;
-    const float scale = rsqrtf(mean + eps);
-
-    for (int col = tid; col < ncols; col += WARP_SIZE) {
-        dst[row*ncols + col] = scale * x[row*ncols + col];
-    }
-}
-
-static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
-    const block_q4_0 * x = (const block_q4_0 *) vx;
-
-    const dfloat d = x[ib].d;
-
-    const int vui = x[ib].qs[iqs];
-
-    v.x = vui & 0xF;
-    v.y = vui >> 4;
-
-#ifdef GGML_CUDA_F16
-    v = __hsub2(v, {8.0f, 8.0f});
-    v = __hmul2(v, {d, d});
-#else
-    v.x = (v.x - 8.0f) * d;
-    v.y = (v.y - 8.0f) * d;
-#endif // GGML_CUDA_F16
-}
-
-static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
-    const block_q4_1 * x = (const block_q4_1 *) vx;
-
-    const dfloat d = x[ib].dm.x;
-    const dfloat m = x[ib].dm.y;
-
-    const int vui = x[ib].qs[iqs];
-
-    v.x = vui & 0xF;
-    v.y = vui >> 4;
-
-#ifdef GGML_CUDA_F16
-    v = __hmul2(v, {d, d});
-    v = __hadd2(v, {m, m});
-#else
-    v.x = (v.x * d) + m;
-    v.y = (v.y * d) + m;
-#endif // GGML_CUDA_F16
-}
-
-static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
-    const block_q5_0 * x = (const block_q5_0 *) vx;
-
-    const dfloat d = x[ib].d;
-
-    uint32_t qh;
-    memcpy(&qh, x[ib].qh, sizeof(qh));
-
-    const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
-    const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
-
-    v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
-    v.y = ((x[ib].qs[iqs] >>  4) | xh_1);
-
-#ifdef GGML_CUDA_F16
-    v = __hsub2(v, {16.0f, 16.0f});
-    v = __hmul2(v, {d, d});
-#else
-    v.x = (v.x - 16.0f) * d;
-    v.y = (v.y - 16.0f) * d;
-#endif // GGML_CUDA_F16
-}
-
-static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int ib, const int iqs, dfloat2 & v){
-    const block_q5_1 * x = (const block_q5_1 *) vx;
-
-    const dfloat d = x[ib].dm.x;
-    const dfloat m = x[ib].dm.y;
-
-    uint32_t qh;
-    memcpy(&qh, x[ib].qh, sizeof(qh));
-
-    const int xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
-    const int xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
-
-    v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
-    v.y = ((x[ib].qs[iqs] >>  4) | xh_1);
-
-#ifdef GGML_CUDA_F16
-    v = __hmul2(v, {d, d});
-    v = __hadd2(v, {m, m});
-#else
-    v.x = (v.x * d) + m;
-    v.y = (v.y * d) + m;
-#endif // GGML_CUDA_F16
-}
-
-static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int ib, const int iqs, dfloat2 & v){
-    const block_q8_0 * x = (const block_q8_0 *) vx;
-
-    const dfloat d = x[ib].d;
-
-    v.x = x[ib].qs[iqs + 0];
-    v.y = x[ib].qs[iqs + 1];
-
-#ifdef GGML_CUDA_F16
-    v = __hmul2(v, {d, d});
-#else
-    v.x *= d;
-    v.y *= d;
-#endif // GGML_CUDA_F16
-}
-
-//================================== k-quants
-
-static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, float * __restrict__ yy) {
-
-    const int i   = blockIdx.x;
-    const block_q2_K * x = (const block_q2_K *) vx;
-
-    const int tid = threadIdx.x;
-#if QK_K == 256
-    const int n   = tid/32;
-    const int l   = tid - 32*n;
-    const int is  = 8*n + l/16;
-
-    const uint8_t q = x[i].qs[32*n + l];
-    float * y = yy + i*QK_K + 128*n;
-
-    float dall = x[i].dm.x;
-    float dmin = x[i].dm.y;
-    y[l+ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
-    y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
-    y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
-    y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
-#else
-    const int is = tid/16;  // 0 or 1
-    const int il = tid%16;  // 0...15
-    const uint8_t q = x[i].qs[il] >> (2*is);
-    float * y = yy + i*QK_K + 16*is + il;
-    float dall = x[i].dm.x;
-    float dmin = x[i].dm.y;
-    y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
-    y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
-#endif
-
-}
-
-static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, float * __restrict__ yy) {
-
-    const int i = blockIdx.x;
-    const block_q3_K * x = (const block_q3_K *) vx;
-
-#if QK_K == 256
-    const int r = threadIdx.x/4;
-    const int tid = r/2;
-    const int is0 = r%2;
-    const int l0 = 16*is0 + 4*(threadIdx.x%4);
-    const int n = tid / 4;
-    const int j = tid - 4*n;
-
-    uint8_t m = 1 << (4*n + j);
-    int is = 8*n + 2*j + is0;
-    int shift = 2*j;
-
-    int8_t us = is <  4 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+8] >> 0) & 3) << 4) :
-                is <  8 ? (x[i].scales[is-0] & 0xF) | (((x[i].scales[is+4] >> 2) & 3) << 4) :
-                is < 12 ? (x[i].scales[is-8] >>  4) | (((x[i].scales[is+0] >> 4) & 3) << 4) :
-                          (x[i].scales[is-8] >>  4) | (((x[i].scales[is-4] >> 6) & 3) << 4);
-    float d_all = x[i].d;
-    float dl = d_all * (us - 32);
-
-    float * y = yy + i*QK_K + 128*n + 32*j;
-    const uint8_t * q = x[i].qs + 32*n;
-    const uint8_t * hm = x[i].hmask;
-
-    for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
-#else
-    const int tid = threadIdx.x;
-    const int is  = tid/16;  // 0 or 1
-    const int il  = tid%16;  // 0...15
-    const int im  = il/8;    // 0...1
-    const int in  = il%8;    // 0...7
-
-    float * y = yy + i*QK_K + 16*is + il;
-
-    const uint8_t q = x[i].qs[il] >> (2*is);
-    const uint8_t h = x[i].hmask[in] >> (2*is + im);
-    const float   d = (float)x[i].d;
-
-    if (is == 0) {
-        y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
-        y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
-    } else {
-        y[ 0] = d * ((x[i].scales[0] >>  4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
-        y[32] = d * ((x[i].scales[1] >>  4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
-    }
-#endif
-
-}
-
-#if QK_K == 256
-static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
-    if (j < 4) {
-        d = q[j] & 63; m = q[j + 4] & 63;
-    } else {
-        d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
-        m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
-    }
-}
-#endif
-
-static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, float * __restrict__ yy) {
-    const block_q4_K * x = (const block_q4_K *) vx;
-
-    const int i = blockIdx.x;
-
-#if QK_K == 256
-    // assume 32 threads
-    const int tid = threadIdx.x;
-    const int il  = tid/8;
-    const int ir  = tid%8;
-    const int is  = 2*il;
-    const int n   = 4;
-
-    float * y = yy + i*QK_K + 64*il + n*ir;
-
-    const float dall = x[i].dm.x;
-    const float dmin = x[i].dm.y;
-
-    const uint8_t * q = x[i].qs + 32*il + n*ir;
-
-    uint8_t sc, m;
-    get_scale_min_k4(is + 0, x[i].scales, sc, m);
-    const float d1 = dall * sc; const float m1 = dmin * m;
-    get_scale_min_k4(is + 1, x[i].scales, sc, m);
-    const float d2 = dall * sc; const float m2 = dmin * m;
-    for (int l = 0; l < n; ++l) {
-        y[l + 0] = d1 * (q[l] & 0xF) - m1;
-        y[l +32] = d2 * (q[l] >>  4) - m2;
-    }
-#else
-    const int tid = threadIdx.x;
-    const uint8_t * q = x[i].qs;
-    float * y = yy + i*QK_K;
-    const float d = (float)x[i].d[0];
-    const float m = (float)x[i].d[1];
-    y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
-    y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >>  4) - m * (x[i].scales[1] >> 4);
-#endif
-}
-
-static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, float * __restrict__ yy) {
-    const block_q5_K * x = (const block_q5_K *) vx;
-
-    const int i = blockIdx.x;
-
-#if QK_K == 256
-    // assume 64 threads - this is very slightly better than the one below
-    const int tid = threadIdx.x;
-    const int il  = tid/16;   // il is in 0...3
-    const int ir  = tid%16;   // ir is in 0...15
-    const int is  = 2*il;     // is is in 0...6
-
-    float * y = yy + i*QK_K + 64*il + 2*ir;
-
-    const float dall = x[i].dm.x;
-    const float dmin = x[i].dm.y;
-
-    const uint8_t * ql = x[i].qs + 32*il + 2*ir;
-    const uint8_t * qh = x[i].qh + 2*ir;
-
-    uint8_t sc, m;
-    get_scale_min_k4(is + 0, x[i].scales, sc, m);
-    const float d1 = dall * sc; const float m1 = dmin * m;
-    get_scale_min_k4(is + 1, x[i].scales, sc, m);
-    const float d2 = dall * sc; const float m2 = dmin * m;
-
-    uint8_t   hm  = 1 << (2*il);
-    y[ 0] = d1 * ((ql[ 0] & 0xF) + (qh[ 0] & hm ? 16 : 0)) - m1;
-    y[ 1] = d1 * ((ql[ 1] & 0xF) + (qh[ 1] & hm ? 16 : 0)) - m1;
-    hm <<= 1;
-    y[32] = d2 * ((ql[ 0] >>  4) + (qh[ 0] & hm ? 16 : 0)) - m2;
-    y[33] = d2 * ((ql[ 1] >>  4) + (qh[ 1] & hm ? 16 : 0)) - m2;
-#else
-    const int tid = threadIdx.x;
-    const uint8_t q = x[i].qs[tid];
-    const int im = tid/8;  // 0...3
-    const int in = tid%8;  // 0...7
-    const int is = tid/16; // 0 or 1
-    const uint8_t h = x[i].qh[in] >> im;
-    const float d = x[i].d;
-    float * y = yy + i*QK_K + tid;
-    y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
-    y[32] = d * x[i].scales[is+2] * ((q >>  4) - ((h >> 4) & 1 ? 0 : 16));
-#endif
-}
-
-static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, float * __restrict__ yy) {
-    const block_q6_K * x = (const block_q6_K *) vx;
-
-    const int i = blockIdx.x;
-#if QK_K == 256
-
-    // assume 64 threads - this is very slightly better than the one below
-    const int tid = threadIdx.x;
-    const int ip  = tid/32;   // ip is 0 or 1
-    const int il  = tid - 32*ip; // 0...32
-    const int is  = 8*ip + il/16;
-
-    float * y = yy + i*QK_K + 128*ip + il;
-
-    const float d = x[i].d;
-
-    const uint8_t * ql = x[i].ql + 64*ip + il;
-    const uint8_t   qh = x[i].qh[32*ip + il];
-    const int8_t  * sc = x[i].scales + is;
-
-    y[ 0] = d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
-    y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
-    y[64] = d * sc[4] * ((int8_t)((ql[ 0]  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
-    y[96] = d * sc[6] * ((int8_t)((ql[32]  >> 4) | (((qh >> 6) & 3) << 4)) - 32);
-#else
-
-    // assume 32 threads
-    const int tid = threadIdx.x;
-    const int ip  = tid/16;         // 0 or 1
-    const int il  = tid - 16*ip;    // 0...15
-
-    float * y = yy + i*QK_K + 16*ip + il;
-
-    const float d = x[i].d;
-
-    const uint8_t   ql = x[i].ql[16*ip + il];
-    const uint8_t   qh = x[i].qh[il] >> (2*ip);
-    const int8_t  * sc = x[i].scales;
-
-    y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
-    y[32] = d * sc[ip+2] * ((int8_t)((ql  >> 4) | (((qh >> 4) & 3) << 4)) - 32);
-#endif
-}
-
-static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
-
-    static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
-
-    const int row = blockIdx.y*blockDim.y + threadIdx.y;
-    if (row > nrows) return;
-
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
-
-    const block_q2_K * x = (const block_q2_K *)vx + ib0;
-
-    float tmp = 0; // partial sum for thread in warp
-
-#if QK_K == 256
-    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...15
-    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1
-
-    const int step = 16/K_QUANTS_PER_ITERATION;
-
-    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
-    const int in = tid - step*im;                        // 0...15 or 0...7
-
-    const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15 or 0...14 in steps of 2
-    const int q_offset = 32*im + l0;
-    const int s_offset = 8*im;
-    const int y_offset = 128*im + l0;
-
-    uint32_t aux[4];
-    const uint8_t * d = (const uint8_t *)aux;
-    const uint8_t * m = (const uint8_t *)(aux + 2);
-
-    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
-
-        const float   * y = yy + i * QK_K + y_offset;
-        const uint8_t * q = x[i].qs + q_offset;
-
-        const float dall = x[i].dm.x;
-        const float dmin = x[i].dm.y;
-
-        const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
-        aux[0] = a[0] & 0x0f0f0f0f;
-        aux[1] = a[1] & 0x0f0f0f0f;
-        aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
-        aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
-
-        float sum1 = 0, sum2 = 0;
-        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
-            sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
-                  + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
-                  + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
-                  + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
-                  + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
-                  + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
-                  + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
-                  +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
-            sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
-                  + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
-
-        }
-        tmp += dall * sum1 - dmin * sum2;
-
-    }
-#else
-    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
-    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
-    const int offset = tid * K_QUANTS_PER_ITERATION;
-
-    uint32_t uaux[2];
-    const uint8_t * d = (const uint8_t *)uaux;
-
-    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
-
-        const float   * y = yy + i * QK_K + offset;
-        const uint8_t * q = x[i].qs + offset;
-        const uint32_t * s = (const uint32_t *)x[i].scales;
-
-        uaux[0] = s[0] & 0x0f0f0f0f;
-        uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
-
-        const float2 dall = __half22float2(x[i].dm);
-
-        float sum1 = 0, sum2 = 0;
-        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
-            const uint8_t ql = q[l];
-            sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
-                  + y[l+16] * d[1] * ((ql >> 2) & 3)
-                  + y[l+32] * d[2] * ((ql >> 4) & 3)
-                  + y[l+48] * d[3] * ((ql >> 6) & 3);
-            sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
-        }
-        tmp += dall.x * sum1 - dall.y * sum2;
-    }
-#endif
-
-    // sum up partial sums and write back result
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
-    }
-
-    if (threadIdx.x == 0) {
-        dst[row] = tmp;
-    }
-}
-
-static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
-
-    const int row = blockIdx.y*blockDim.y + threadIdx.y;
-    if (row > nrows) return;
-
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
-
-    const block_q3_K * x = (const block_q3_K *)vx + ib0;
-
-    float tmp = 0; // partial sum for thread in warp
-
-#if QK_K == 256
-
-    const uint16_t kmask1 = 0x0303;
-    const uint16_t kmask2 = 0x0f0f;
-
-    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
-    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1
-
-    const int n  = K_QUANTS_PER_ITERATION;               // iterations in the inner loop
-    const int step = 16/K_QUANTS_PER_ITERATION;
-    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
-    const int in = tid - step*im;                        // 0....15 or 0...7
-
-    const uint8_t m = 1 << (4*im);
-
-    const int l0 = n*in;                                 // 0...15 or 0...14 in steps of 2
-    const int q_offset =  32*im + l0;
-    const int y_offset = 128*im + l0;
-
-    uint16_t utmp[4];
-    const int8_t * s = (const int8_t *)utmp;
-
-    const uint16_t s_shift = 4*im;
-
-    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
-
-        const float   * y  = yy + i * QK_K + y_offset;
-        const uint8_t * q = x[i].qs + q_offset;
-        const uint8_t * h = x[i].hmask + l0;
-
-        const uint16_t * a = (const uint16_t *)x[i].scales;
-        utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
-        utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
-        utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
-        utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
-
-        const float d = x[i].d;
-
-        float sum = 0;
-        for (int l = 0; l < n; ++l) {
-            sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
-                 + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
-                 + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
-                 + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
-            sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
-                 + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
-                 + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
-                + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
-        }
-        tmp += d * sum;
-
-    }
-#else
-
-    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15 or 0...7
-    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0....1 or 0...3
-    const int offset = tid * K_QUANTS_PER_ITERATION;         // 0...15 or 0...14
-    const int in = offset/8;                                 // 0 or 1
-    const int im = offset%8;                                 // 0...7
-
-    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
-
-        const float   * y = yy + i * QK_K + offset;
-        const uint8_t * q = x[i].qs + offset;
-        const uint8_t * s = x[i].scales;
-
-        const float dall = (float)x[i].d;
-
-        float sum = 0;
-        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
-            const uint8_t hl = x[i].hmask[im+l] >> in;
-            const uint8_t ql = q[l];
-            sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
-                 + y[l+16] * dall * ((s[0] >>  4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
-                 + y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
-                 + y[l+48] * dall * ((s[1] >>  4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
-        }
-        tmp += sum;
-    }
-#endif
-
-    // sum up partial sums and write back result
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
-    }
-
-    if (threadIdx.x == 0) {
-        dst[row] = tmp;
-    }
-}
-
-static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
-
-    const int row = blockIdx.y*blockDim.y + threadIdx.y;
-    if (row > nrows) return;
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
-
-    const block_q4_K * x = (const block_q4_K *)vx + ib0;
-
-#if QK_K == 256
-    const uint16_t kmask1 = 0x3f3f;
-    const uint16_t kmask2 = 0x0f0f;
-    const uint16_t kmask3 = 0xc0c0;
-
-    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
-    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0,1
-
-    const int step = 8/K_QUANTS_PER_ITERATION;           // 8 or 4
-
-    const int il  = tid/step;                            // 0...3
-    const int ir  = tid - step*il;                       // 0...7 or 0...3
-    const int n   = 2 * K_QUANTS_PER_ITERATION;          // 2 or 4
-
-    const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
-    const int in = il%2;
-
-    const int l0 = n*(2*ir + in);
-    const int q_offset = 32*im + l0;
-    const int y_offset = 64*im + l0;
-
-    uint16_t aux[4];
-    const uint8_t * sc = (const uint8_t *)aux;
-
-#if K_QUANTS_PER_ITERATION == 2
-    uint32_t q32[4];
-    const uint8_t * q4 = (const uint8_t *)q32;
-#else
-    uint16_t q16[4];
-    const uint8_t * q4 = (const uint8_t *)q16;
-#endif
-
-    float tmp = 0; // partial sum for thread in warp
-
-    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
-
-        const float   * y1 = yy + i*QK_K + y_offset;
-        const float   * y2 = y1 + 128;
-
-        const float dall = x[i].dm.x;
-        const float dmin = x[i].dm.y;
-
-        const uint16_t * a = (const uint16_t *)x[i].scales;
-        aux[0] = a[im+0] & kmask1;
-        aux[1] = a[im+2] & kmask1;
-        aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
-        aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
-
-#if K_QUANTS_PER_ITERATION == 2
-        const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
-        const uint32_t * q2 = q1 + 16;
-
-        q32[0] = q1[0] & 0x0f0f0f0f;
-        q32[1] = q1[0] & 0xf0f0f0f0;
-        q32[2] = q2[0] & 0x0f0f0f0f;
-        q32[3] = q2[0] & 0xf0f0f0f0;
-
-        float4 s = {0.f, 0.f, 0.f, 0.f};
-        float smin = 0;
-        for (int l = 0; l < 4; ++l) {
-            s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
-            s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
-            smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
-        }
-        tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
-#else
-        const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
-        const uint16_t * q2 = q1 + 32;
-
-        q16[0] = q1[0] & 0x0f0f;
-        q16[1] = q1[0] & 0xf0f0;
-        q16[2] = q2[0] & 0x0f0f;
-        q16[3] = q2[0] & 0xf0f0;
-
-        float4 s = {0.f, 0.f, 0.f, 0.f};
-        float smin = 0;
-        for (int l = 0; l < 2; ++l) {
-            s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
-            s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
-            smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
-        }
-        tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
-#endif
-
-    }
-#else
-    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
-    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
-
-    const int step = tid * K_QUANTS_PER_ITERATION;
-
-    uint16_t aux16[2];
-    const uint8_t * s = (const uint8_t *)aux16;
-
-    float tmp = 0;
-
-    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
-        const uint8_t * q = x[i].qs + step;
-        const float   * y = yy + i*QK_K + step;
-        const uint16_t * a = (const uint16_t *)x[i].scales;
-        aux16[0] = a[0] & 0x0f0f;
-        aux16[1] = (a[0] >> 4) & 0x0f0f;
-        const float d = (float)x[i].d[0];
-        const float m = (float)x[i].d[1];
-        float sum = 0.f;
-        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
-            sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
-                 + y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
-                 + y[j+32] * (d * s[1] * (q[j+ 0] >>  4) - m * s[3])
-                 + y[j+48] * (d * s[1] * (q[j+16] >>  4) - m * s[3]);
-        }
-        tmp += sum;
-    }
-
-#endif
-
-    // sum up partial sums and write back result
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
-    }
-
-    if (tid == 0) {
-        dst[row] = tmp;
-    }
-}
-
-static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
-
-    const int row = blockIdx.x;
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
-
-    const block_q5_K * x = (const block_q5_K *)vx + ib0;
-
-    float tmp = 0; // partial sum for thread in warp
-
-#if QK_K == 256
-    const uint16_t kmask1 = 0x3f3f;
-    const uint16_t kmask2 = 0x0f0f;
-    const uint16_t kmask3 = 0xc0c0;
-
-    const int tid = threadIdx.x/2;  // 0...15
-    const int ix  = threadIdx.x%2;
-
-    const int il  = tid/4;     // 0...3
-    const int ir  = tid - 4*il;// 0...3
-    const int n   = 2;
-
-    const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
-    const int in = il%2;
-
-    const int l0 = n*(2*ir + in);
-    const int q_offset = 32*im + l0;
-    const int y_offset = 64*im + l0;
-
-    const uint8_t hm1  = 1 << (2*im);
-    const uint8_t hm2  = hm1 << 4;
-
-    uint16_t aux[4];
-    const uint8_t * sc = (const uint8_t *)aux;
-
-    uint16_t q16[8];
-    const uint8_t * q4 = (const uint8_t *)q16;
-
-    for (int i = ix; i < num_blocks_per_row; i += 2) {
-
-        const uint8_t * ql1 = x[i].qs + q_offset;
-        const uint8_t * qh  = x[i].qh + l0;
-        const float   * y1  = yy + i*QK_K + y_offset;
-        const float   * y2  = y1 + 128;
-
-        const float dall = x[i].dm.x;
-        const float dmin = x[i].dm.y;
-
-        const uint16_t * a = (const uint16_t *)x[i].scales;
-        aux[0] = a[im+0] & kmask1;
-        aux[1] = a[im+2] & kmask1;
-        aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
-        aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
-
-        float4 sum = {0.f, 0.f, 0.f, 0.f};
-        float smin = 0;
-        const uint16_t * q1 = (const uint16_t *)ql1;
-        const uint16_t * q2 = q1 + 32;
-        q16[0] = q1[0] & 0x0f0f;
-        q16[1] = q1[8] & 0x0f0f;
-        q16[2] = (q1[0] >> 4) & 0x0f0f;
-        q16[3] = (q1[8] >> 4) & 0x0f0f;
-        q16[4] = q2[0] & 0x0f0f;
-        q16[5] = q2[8] & 0x0f0f;
-        q16[6] = (q2[0] >> 4) & 0x0f0f;
-        q16[7] = (q2[8] >> 4) & 0x0f0f;
-        for (int l = 0; l < n; ++l) {
-            sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
-                   + y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
-            sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
-                   + y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
-            sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
-                   + y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
-            sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
-                   + y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
-            smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
-                  + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
-        }
-        tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
-    }
-
-#else
-    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...15
-    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
-    const int step = tid * K_QUANTS_PER_ITERATION;
-    const int im = step/8;
-    const int in = step%8;
-
-    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
-        const uint8_t * q = x[i].qs + step;
-        const int8_t  * s = x[i].scales;
-        const float   * y = yy + i*QK_K + step;
-        const float     d = x[i].d;
-        float sum = 0.f;
-        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
-            const uint8_t h = x[i].qh[in+j] >> im;
-            sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
-                 + y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
-                 + y[j+32] * d * s[2] * ((q[j+ 0] >>  4) - ((h >> 4) & 1 ? 0 : 16))
-                 + y[j+48] * d * s[3] * ((q[j+16] >>  4) - ((h >> 6) & 1 ? 0 : 16));
-        }
-        tmp += sum;
-    }
-#endif
-
-    // sum up partial sums and write back result
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
-    }
-
-    if (threadIdx.x == 0) {
-        dst[row] = tmp;
-    }
-}
-
-static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
-
-    static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
-
-    const int row = blockIdx.y*blockDim.y + threadIdx.y;
-    if (row > nrows) return;
-
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
-
-    const block_q6_K * x = (const block_q6_K *)vx + ib0;
-
-#if QK_K == 256
-
-    const int tid = threadIdx.x/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
-    const int ix  = threadIdx.x%K_QUANTS_PER_ITERATION;  // 0 or 0, 1
-
-    const int step = 16/K_QUANTS_PER_ITERATION;          // 16 or 8
-
-    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
-    const int in = tid - step*im;                        // 0...15 or 0...7
-
-#if K_QUANTS_PER_ITERATION == 1
-    const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15
-    const int is = 0;
-#else
-    const int l0 = 4 * in;                               // 0, 4, 8, ..., 28
-    const int is = in / 4;
-#endif
-    const int ql_offset = 64*im + l0;
-    const int qh_offset = 32*im + l0;
-    const int s_offset  =  8*im + is;
-    const int y_offset = 128*im + l0;
-
-    float tmp = 0; // partial sum for thread in warp
-
-    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
-
-        const float   * y  = yy + i * QK_K + y_offset;
-        const uint8_t * ql = x[i].ql + ql_offset;
-        const uint8_t * qh = x[i].qh + qh_offset;
-        const int8_t  * s  = x[i].scales + s_offset;
-
-        const float d = x[i].d;
-
-#if K_QUANTS_PER_ITERATION == 1
-        float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
-                  + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
-                  + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
-                  + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
-                  + y[64] * s[4] * d * ((int8_t)((ql[ 0]  >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
-                  + y[80] * s[5] * d * ((int8_t)((ql[16]  >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
-                  + y[96] * s[6] * d * ((int8_t)((ql[32]  >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
-                  +y[112] * s[7] * d * ((int8_t)((ql[48]  >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
-        tmp += sum;
-#else
-        float sum = 0;
-        for (int l = 0; l < 4; ++l) {
-            sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
-                 + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
-                 + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
-                 + y[l+96] * s[6] * d * ((int8_t)((ql[l+32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
-        }
-        tmp += sum;
-#endif
-
-    }
-
-#else
-
-    const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION);  // 0...7
-    const int ix  = threadIdx.x%(2*K_QUANTS_PER_ITERATION);  // 0...3
-
-    const int step = tid * K_QUANTS_PER_ITERATION;
-
-    float tmp = 0; // partial sum for thread in warp
-
-    for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
-
-        const float   * y  = yy + i * QK_K + step;
-        const uint8_t * ql = x[i].ql + step;
-        const uint8_t * qh = x[i].qh + step;
-        const int8_t  * s  = x[i].scales;
-
-        const float d = x[i+0].d;
-
-        float sum = 0;
-        for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
-            sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
-                 + y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
-                 + y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >>  4) | ((qh[j] & 0x30) >> 0)) - 32)
-                 + y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >>  4) | ((qh[j] & 0xc0) >> 2)) - 32);
-        }
-        tmp += sum;
-
-    }
-
-#endif
-
-    // sum up partial sums and write back result
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
-    }
-
-    if (tid == 0) {
-        dst[row] = tmp;
-    }
-}
-
-static __device__ void convert_f16(const void * vx, const int ib, const int iqs, dfloat2 & v){
-    const half * x = (const half *) vx;
-
-    // automatic half -> float type cast if dfloat == float
-    v.x = x[ib + iqs + 0];
-    v.y = x[ib + iqs + 1];
-}
-
-static __global__ void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int kx, const int kx_padded) {
-    const int ix = blockDim.x*blockIdx.x + threadIdx.x;
-
-    if (ix >= kx_padded) {
-        return;
-    }
-
-    const int iy = blockDim.y*blockIdx.y + threadIdx.y;
-
-    const int i_padded = iy*kx_padded + ix;
-
-    block_q8_1 * y = (block_q8_1 *) vy;
-
-    const int ib = i_padded / QK8_1; // block index
-    const int iqs = i_padded % QK8_1; // quant index
-
-    const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
-    float amax = fabsf(xi);
-    float sum = xi;
-
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        amax = fmaxf(amax, __shfl_xor_sync(0xffffffff, amax, mask, 32));
-        sum += __shfl_xor_sync(0xffffffff, sum, mask, 32);
-    }
-
-    const float d = amax / 127;
-    const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
-
-    y[ib].qs[iqs] = q;
-
-    if (iqs > 0) {
-        return;
-    }
-
-    y[ib].ds.x = d;
-    y[ib].ds.y = sum;
-}
-
-template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
-static __global__ void dequantize_block(const void * __restrict__ vx, float * __restrict__ y, const int k) {
-    const int i = blockDim.x*blockIdx.x + 2*threadIdx.x;
-
-    if (i >= k) {
-        return;
-    }
-
-    const int ib = i/qk; // block index
-    const int iqs = (i%qk)/qr; // quant index
-    const int iybs = i - i%qk; // y block start index
-    const int y_offset = qr == 1 ? 1 : qk/2;
-
-    // dequantize
-    dfloat2 v;
-    dequantize_kernel(vx, ib, iqs, v);
-
-    y[iybs + iqs + 0]        = v.x;
-    y[iybs + iqs + y_offset] = v.y;
-}
-
-// VDR = vec dot ratio, how many contiguous integers each thread processes when the vec dot kernel is called
-// MMVQ = mul_mat_vec_q, MMQ = mul_mat_q
-
-#define VDR_Q4_0_Q8_1_MMVQ 2
-#define VDR_Q4_0_Q8_1_MMQ  4
-
-template <int vdr> static __device__ __forceinline__ float vec_dot_q4_0_q8_1_impl(
-    const int * v, const int * u, const float & d4, const half2 & ds8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi = 0;
-
-#pragma unroll
-    for (int i = 0; i < vdr; ++i) {
-        const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
-        const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
-
-        // SIMD dot product of quantized values
-        sumi = __dp4a(vi0, u[2*i+0], sumi);
-        sumi = __dp4a(vi1, u[2*i+1], sumi);
-    }
-
-    const float2 ds8f = __half22float2(ds8);
-
-    // second part effectively subtracts 8 from each quant value
-    return d4 * (sumi * ds8f.x - (8*vdr/QI4_0) * ds8f.y);
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-#define VDR_Q4_1_Q8_1_MMVQ 2
-#define VDR_Q4_1_Q8_1_MMQ  4
-
-template <int vdr> static __device__ __forceinline__ float vec_dot_q4_1_q8_1_impl(
-    const int * v, const int * u, const half2 & dm4, const half2 & ds8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi = 0;
-
-#pragma unroll
-    for (int i = 0; i < vdr; ++i) {
-        const int vi0 = (v[i] >> 0) & 0x0F0F0F0F;
-        const int vi1 = (v[i] >> 4) & 0x0F0F0F0F;
-
-        // SIMD dot product of quantized values
-        sumi = __dp4a(vi0, u[2*i+0], sumi);
-        sumi = __dp4a(vi1, u[2*i+1], sumi);
-    }
-
-#ifdef GGML_CUDA_F16
-    const float2 tmp = __half22float2(__hmul2(dm4, ds8));
-    const float d4d8 = tmp.x;
-    const float m4s8 = tmp.y;
-#else
-    const float2 dm4f = __half22float2(dm4);
-    const float2 ds8f = __half22float2(ds8);
-    const float d4d8 = dm4f.x * ds8f.x;
-    const float m4s8 = dm4f.y * ds8f.y;
-#endif // GGML_CUDA_F16
-
-    // scale second part of sum by QI8_1/(vdr * QR4_1) to compensate for multiple threads adding it
-    return sumi * d4d8 + m4s8 / (QI8_1 / (vdr * QR4_1));
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-#define VDR_Q5_0_Q8_1_MMVQ 2
-#define VDR_Q5_0_Q8_1_MMQ  4
-
-template <int vdr> static __device__ __forceinline__ float vec_dot_q5_0_q8_1_impl(
-    const int * vl, const int * vh, const int * u, const float & d5, const half2 & ds8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi = 0;
-
-#pragma unroll
-    for (int i = 0; i < vdr; ++i) {
-        int vi0 = (vl[i] >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
-        vi0    |= (vh[i] <<  4) & 0x00000010; // 0 ->  4
-        vi0    |= (vh[i] << 11) & 0x00001000; // 1 -> 12
-        vi0    |= (vh[i] << 18) & 0x00100000; // 2 -> 20
-        vi0    |= (vh[i] << 25) & 0x10000000; // 3 -> 28
-        sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
-
-        int vi1 = (vl[i] >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
-        vi1    |= (vh[i] >> 12) & 0x00000010; // 16 ->  4
-        vi1    |= (vh[i] >>  5) & 0x00001000; // 17 -> 12
-        vi1    |= (vh[i] <<  2) & 0x00100000; // 18 -> 20
-        vi1    |= (vh[i] <<  9) & 0x10000000; // 19 -> 28
-        sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
-    }
-
-    const float2 ds8f = __half22float2(ds8);
-
-    // second part effectively subtracts 16 from each quant value
-    return d5 * (sumi * ds8f.x - (16*vdr/QI5_0) * ds8f.y);
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-#define VDR_Q5_1_Q8_1_MMVQ 2
-#define VDR_Q5_1_Q8_1_MMQ  4
-
-template <int vdr> static __device__ __forceinline__ float vec_dot_q5_1_q8_1_impl(
-    const int * vl, const int * vh, const int * u, const half2 & dm5, const half2 & ds8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi = 0;
-
-#pragma unroll
-    for (int i = 0; i < vdr; ++i) {
-        int vi0 = (vl[i] >>  0) & 0x0F0F0F0F; // lower 4 qs bits, still need qh as 5th bits
-        vi0    |= (vh[i] <<  4) & 0x00000010; // 0 ->  4
-        vi0    |= (vh[i] << 11) & 0x00001000; // 1 -> 12
-        vi0    |= (vh[i] << 18) & 0x00100000; // 2 -> 20
-        vi0    |= (vh[i] << 25) & 0x10000000; // 3 -> 28
-        sumi = __dp4a(vi0, u[2*i+0], sumi); // SIMD dot product of quantized values
-
-        int vi1 = (vl[i] >>  4) & 0x0F0F0F0F; // upper 4 qs bits, still need qh as 5th bits
-        vi1    |= (vh[i] >> 12) & 0x00000010; // 16 ->  4
-        vi1    |= (vh[i] >>  5) & 0x00001000; // 17 -> 12
-        vi1    |= (vh[i] <<  2) & 0x00100000; // 18 -> 20
-        vi1    |= (vh[i] <<  9) & 0x10000000; // 19 -> 28
-        sumi = __dp4a(vi1, u[2*i+1], sumi); // SIMD dot product of quantized values
-    }
-
-#ifdef GGML_CUDA_F16
-    const float2 tmp = __half22float2(__hmul2(dm5, ds8));
-    const float d5d8 = tmp.x;
-    const float m5s8 = tmp.y;
-#else
-    const float2 dm5f = __half22float2(dm5);
-    const float2 ds8f = __half22float2(ds8);
-    const float d5d8 = dm5f.x * ds8f.x;
-    const float m5s8 = dm5f.y * ds8f.y;
-#endif // GGML_CUDA_F16
-
-    // scale second part of sum by QI5_1 / vdr to compensate for multiple threads adding it
-    return sumi*d5d8 + m5s8 / (QI5_1 / vdr);
-
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-#define VDR_Q8_0_Q8_1_MMVQ 2
-#define VDR_Q8_0_Q8_1_MMQ 8
-
-template <int vdr> static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
-    const int * v, const int * u, const float & d8_0, const float & d8_1) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi = 0;
-
-#pragma unroll
-    for (int i = 0; i < vdr; ++i) {
-        // SIMD dot product of quantized values
-        sumi = __dp4a(v[i], u[i], sumi);
-    }
-
-    return d8_0*d8_1 * sumi;
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-template <int vdr> static __device__ __forceinline__ float vec_dot_q8_1_q8_1_impl(
-    const int * v, const int * u, const half2 & dm8, const half2 & ds8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi = 0;
-
-#pragma unroll
-    for (int i = 0; i < vdr; ++i) {
-        // SIMD dot product of quantized values
-        sumi = __dp4a(v[i], u[i], sumi);
-    }
-
-#ifdef GGML_CUDA_F16
-    const float2 tmp = __half22float2(__hmul2(dm8, ds8));
-    const float d8d8 = tmp.x;
-    const float m8s8 = tmp.y;
-#else
-    const float2 dm8f = __half22float2(dm8);
-    const float2 ds8f = __half22float2(ds8);
-    const float d8d8 = dm8f.x * ds8f.x;
-    const float m8s8 = dm8f.y * ds8f.y;
-#endif // GGML_CUDA_F16
-
-    // scale second part of sum by QI8_1/ vdr to compensate for multiple threads adding it
-    return sumi*d8d8 + m8s8 / (QI8_1 / vdr);
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-#define VDR_Q2_K_Q8_1_MMVQ 1
-#define VDR_Q2_K_Q8_1_MMQ  2
-
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmvq(
-    const int & v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
-    const half2 & dm2, const float * __restrict__ d8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf_d = 0.0f;
-    float sumf_m = 0.0f;
-
-#pragma unroll
-    for (int i = 0; i < QR2_K; ++i) {
-        const int sc = scales[2*i];
-
-        const int vi = (v >> (2*i)) & 0x03030303;
-
-        sumf_d += d8[i] * (__dp4a(vi, u[i], 0) * (sc & 0xF)); // SIMD dot product
-
-        // fill int with 4x m
-        int m = sc >> 4;
-        m |= m <<  8;
-        m |= m << 16;
-        sumf_m += d8[i] * __dp4a(m, u[i], 0); // multiply constant q2_K part with sum of q8_1 values
-    }
-
-    const float2 dm2f = __half22float2(dm2);
-
-    return dm2f.x*sumf_d - dm2f.y*sumf_m;
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q2_K_q8_1_impl_mmq(
-    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ scales,
-    const half2 & dm2, const float & d8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi_d = 0;
-    int sumi_m = 0;
-
-#pragma unroll
-    for (int i0 = 0; i0 < QI8_1; i0 += QI8_1/2) {
-        int sumi_d_sc = 0;
-
-        const int sc = scales[i0 / (QI8_1/2)];
-
-        // fill int with 4x m
-        int m = sc >> 4;
-        m |= m <<  8;
-        m |= m << 16;
-
-#pragma unroll
-        for (int i = i0; i < i0 + QI8_1/2; ++i) {
-            sumi_d_sc = __dp4a(v[i], u[i], sumi_d_sc); // SIMD dot product
-            sumi_m    = __dp4a(m,    u[i], sumi_m); // multiply sum of q8_1 values with m
-        }
-
-        sumi_d += sumi_d_sc * (sc & 0xF);
-    }
-
-    const float2 dm2f = __half22float2(dm2);
-
-    return d8 * (dm2f.x*sumi_d - dm2f.y*sumi_m);
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-#define VDR_Q3_K_Q8_1_MMVQ 1
-#define VDR_Q3_K_Q8_1_MMQ  2
-
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmvq(
-    const int & vl, const int & vh, const int * __restrict__ u, const uint8_t * __restrict__ scales,
-    const int & scale_offset, const float & d3, const float * __restrict__ d8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf = 0.0f;
-
-#pragma unroll
-    for (int i = 0; i < QR3_K; ++i) {
-        const int isc = scale_offset + 2*i;
-
-        const int isc_low = isc % (QK_K/32);
-        const int sc_shift_low = 4 * (isc / (QK_K/32));
-        const int sc_low  = (scales[isc_low] >> sc_shift_low) & 0xF;
-
-        const int isc_high = isc % (QK_K/64);
-        const int sc_shift_high = 2 * (isc / (QK_K/64));
-        const int sc_high = ((scales[(QK_K/32) + isc_high] >> sc_shift_high) & 3) << 4;
-
-        const int sc = (sc_low | sc_high) - 32;
-
-        const int vil = (vl >> (2*i)) & 0x03030303;
-
-        const int vih = ((vh >> i) << 2) & 0x04040404;
-
-        const int vi = __vsubss4(vil, vih);
-
-        sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
-    }
-
-    return d3 * sumf;
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q3_K_q8_1_impl_mmq(
-    const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ scales,
-    const float & d3, const float & d8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    int sumi = 0;
-
-#pragma unroll
-    for (int i0 = 0; i0 < QR3_K*VDR_Q3_K_Q8_1_MMQ; i0 += QI8_1/2) {
-        int sumi_sc = 0;
-
-        for (int i = i0; i < i0 + QI8_1/2; ++i) {
-            sumi_sc = __dp4a(v[i], u[i], sumi_sc); // SIMD dot product
-        }
-
-        sumi += sumi_sc * scales[i0 / (QI8_1/2)];
-    }
-
-    return d3*d8 * sumi;
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-#define VDR_Q4_K_Q8_1_MMVQ 2
-#define VDR_Q4_K_Q8_1_MMQ  8
-
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_vmmq(
-    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
-    const uint8_t * __restrict__ m, const half2 & dm4, const float * __restrict__ d8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf_d = 0.0f;
-    float sumf_m = 0.0f;
-
-#pragma unroll
-    for (int i = 0; i < QR4_K; ++i) {
-        const int v0i = (v[0] >> (4*i)) & 0x0F0F0F0F;
-        const int v1i = (v[1] >> (4*i)) & 0x0F0F0F0F;
-
-        const int dot1 = __dp4a(v1i, u[2*i+1], __dp4a(v0i, u[2*i+0], 0)); // SIMD dot product
-        const int dot2 = __dp4a(0x01010101, u[2*i+1], __dp4a(0x01010101, u[2*i+0], 0)); // sum of u
-
-        sumf_d += d8[i] * (dot1 * sc[i]);
-        sumf_m += d8[i] * (dot2 * m[i]);  // multiply constant part of q4_K with sum of q8_1 values
-    }
-
-    const float2 dm4f = __half22float2(dm4);
-
-    return dm4f.x*sumf_d - dm4f.y*sumf_m;
-
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q4_K_q8_1_impl_mmq(
-    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
-    const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf_d = 0.0f;
-    float sumf_m = 0.0f;
-
-#pragma unroll
-    for (int i = 0; i < QR4_K*VDR_Q4_K_Q8_1_MMQ/QI8_1; ++i) {
-        int sumi_d = 0;
-
-#pragma unroll
-        for (int j = 0; j < QI8_1; ++j) {
-            sumi_d = __dp4a((v[j] >> (4*i)) & 0x0F0F0F0F, u[i*QI8_1 + j], sumi_d); // SIMD dot product
-        }
-
-        const float2 ds8f = __half22float2(ds8[i]);
-
-        sumf_d += ds8f.x * (sc[i] * sumi_d);
-        sumf_m += ds8f.y *   m[i]; // sum of q8_1 block * q4_K min val
-    }
-
-    const float2 dm4f = __half22float2(dm4);
-
-    return dm4f.x*sumf_d - dm4f.y*sumf_m;
-
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-#define VDR_Q5_K_Q8_1_MMVQ 2
-#define VDR_Q5_K_Q8_1_MMQ  8
-
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_vmmq(
-    const int * __restrict__ vl, const int * __restrict__ vh, const int * __restrict__ u, const uint8_t * __restrict__ sc,
-    const uint8_t * __restrict__ m, const half2 & dm5, const float * __restrict__ d8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf_d = 0.0f;
-    float sumf_m = 0.0f;
-
-#pragma unroll
-    for (int i = 0; i < QR5_K; ++i) {
-        const int vl0i = (vl[0] >> (4*i)) & 0x0F0F0F0F;
-        const int vl1i = (vl[1] >> (4*i)) & 0x0F0F0F0F;
-
-        const int vh0i = ((vh[0] >> i) << 4) & 0x10101010;
-        const int vh1i = ((vh[1] >> i) << 4) & 0x10101010;
-
-        const int v0i = vl0i | vh0i;
-        const int v1i = vl1i | vh1i;
-
-        const int dot1 = __dp4a(v0i, u[2*i+0], __dp4a(v1i, u[2*i+1], 0)); // SIMD dot product
-        const int dot2 = __dp4a(0x01010101, u[2*i+0], __dp4a(0x01010101, u[2*i+1], 0)); // sum of u
-
-        sumf_d += d8[i] * (dot1 * sc[i]);
-        sumf_m += d8[i] * (dot2 * m[i]);
-
-    }
-
-    const float2 dm5f = __half22float2(dm5);
-
-    return dm5f.x*sumf_d - dm5f.y*sumf_m;
-
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q5_K_q8_1_impl_mmq(
-    const int * __restrict__ v, const int * __restrict__ u, const uint8_t * __restrict__ sc,
-    const uint8_t * __restrict__ m, const half2 & dm4, const half2 * __restrict__ ds8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf_d = 0.0f;
-    float sumf_m = 0.0f;
-
-#pragma unroll
-    for (int i = 0; i < QR5_K*VDR_Q5_K_Q8_1_MMQ/QI8_1; ++i) {
-        int sumi_d = 0;
-
-#pragma unroll
-        for (int j = 0; j < QI8_1; ++j) {
-            sumi_d = __dp4a(v[i*QI8_1 + j], u[i*QI8_1 + j], sumi_d); // SIMD dot product
-        }
-
-        const float2 ds8f = __half22float2(ds8[i]);
-
-        sumf_d += ds8f.x * (sc[i] * sumi_d);
-        sumf_m += ds8f.y *   m[i]; // sum of q8_1 block * q4_K min val
-    }
-
-    const float2 dm4f = __half22float2(dm4);
-
-    return dm4f.x*sumf_d - dm4f.y*sumf_m;
-
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-#define VDR_Q6_K_Q8_1_MMVQ 1
-#define VDR_Q6_K_Q8_1_MMQ  8
-
-// contiguous v/x values
-static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmvq(
-    const int & vl, const int & vh, const int * __restrict__ u, const int8_t * __restrict__ scales,
-    const float & d, const float * __restrict__ d8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf = 0.0f;
-
-#pragma unroll
-    for (int i = 0; i < QR6_K; ++i) {
-        const int sc = scales[4*i];
-
-        const int vil = (vl >> (4*i)) & 0x0F0F0F0F;
-
-        const int vih = ((vh >> (4*i)) << 4) & 0x30303030;
-
-        const int vi = __vsubss4((vil | vih), 0x20202020); // vi = (vil | vih) - 32
-
-        sumf += d8[i] * (__dp4a(vi, u[i], 0) * sc); // SIMD dot product
-    }
-
-    return d*sumf;
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-// contiguous u/y values
-static __device__ __forceinline__ float vec_dot_q6_K_q8_1_impl_mmq(
-    const int * __restrict__ v, const int * __restrict__ u, const int8_t * __restrict__ sc,
-    const float & d6, const float * __restrict__ d8) {
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    float sumf_d = 0.0f;
-
-#pragma unroll
-    for (int i0 = 0; i0 < VDR_Q6_K_Q8_1_MMQ; i0 += 4) {
-        int2 sumi_d = {0, 0}; // 2 q6_K scales per q8_1 scale
-
-#pragma unroll
-        for (int i = i0; i < i0 + 2; ++i) {
-            sumi_d.x = __dp4a(v[2*i+0], u[2*i+0], sumi_d.x); // SIMD dot product
-            sumi_d.x = __dp4a(v[2*i+1], u[2*i+1], sumi_d.x); // SIMD dot product
-
-            sumi_d.y = __dp4a(v[2*i+4], u[2*i+4], sumi_d.y); // SIMD dot product
-            sumi_d.y = __dp4a(v[2*i+5], u[2*i+5], sumi_d.y); // SIMD dot product
-        }
-
-        sumf_d += d8[i0/4] * (sc[i0/2+0]*sumi_d.x + sc[i0/2+1]*sumi_d.y);
-    }
-
-    return d6 * sumf_d;
-
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-}
-
-static __device__ __forceinline__ float vec_dot_q4_0_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q4_0 * bq4_0 = (const block_q4_0 *) vbq;
-
-    int v[VDR_Q4_0_Q8_1_MMVQ];
-    int u[2*VDR_Q4_0_Q8_1_MMVQ];
-
-#pragma unroll
-    for (int i = 0; i < VDR_Q4_0_Q8_1_MMVQ; ++i) {
-        v[i]     = get_int_from_uint8(bq4_0->qs, iqs + i);
-        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
-        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_0);
-    }
-
-    return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMVQ>(v, u, bq4_0->d, bq8_1->ds);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-
-    __shared__ int  tile_x_qs[mmq_y * (WARP_SIZE)       + mmq_y];
-    __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
-
-    *x_ql = tile_x_qs;
-    *x_dm = (half2 *) tile_x_d;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-
-    __builtin_assume(i_offset >= 0);
-    __builtin_assume(i_offset <  nwarps);
-    __builtin_assume(k >= 0);
-    __builtin_assume(k <  WARP_SIZE);
-
-    const int kbx  = k / QI4_0;
-    const int kqsx = k % QI4_0;
-
-    const block_q4_0 * bx0 = (block_q4_0 *) vx;
-
-    float * x_dmf = (float *) x_dm;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
-
-        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
-        // x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
-    const int kbxd = k % blocks_per_tile_x_row;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
-        int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-
-    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
-    const float * x_dmf = (float *) x_dm;
-
-    int u[2*VDR_Q4_0_Q8_1_MMQ];
-
-#pragma unroll
-    for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
-        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
-        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
-    }
-
-    return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
-        (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
-         y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
-
-static __device__ __forceinline__ float vec_dot_q4_1_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q4_1 * bq4_1 = (const block_q4_1 *) vbq;
-
-    int v[VDR_Q4_1_Q8_1_MMVQ];
-    int u[2*VDR_Q4_1_Q8_1_MMVQ];
-
-#pragma unroll
-    for (int i = 0; i < VDR_Q4_1_Q8_1_MMVQ; ++i) {
-        v[i]    = get_int_from_uint8_aligned(bq4_1->qs, iqs + i);
-        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
-        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI4_1);
-    }
-
-    return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMVQ>(v, u, bq4_1->dm, bq8_1->ds);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-
-    __shared__ int   tile_x_qs[mmq_y * (WARP_SIZE) +     + mmq_y];
-    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
-
-    *x_ql = tile_x_qs;
-    *x_dm = tile_x_dm;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-
-    __builtin_assume(i_offset >= 0);
-    __builtin_assume(i_offset <  nwarps);
-    __builtin_assume(k >= 0);
-    __builtin_assume(k <  WARP_SIZE);
-
-    const int kbx  = k / QI4_1;
-    const int kqsx = k % QI4_1;
-
-    const block_q4_1 * bx0 = (block_q4_1 *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
-
-        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
-    const int kbxd = k % blocks_per_tile_x_row;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
-        int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-
-    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
-
-    int u[2*VDR_Q4_1_Q8_1_MMQ];
-
-#pragma unroll
-    for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
-        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
-        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
-    }
-
-    return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
-        (&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
-         y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
-
-static __device__ __forceinline__ float vec_dot_q5_0_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q5_0 * bq5_0 = (const block_q5_0 *) vbq;
-
-    int vl[VDR_Q5_0_Q8_1_MMVQ];
-    int vh[VDR_Q5_0_Q8_1_MMVQ];
-    int  u[2*VDR_Q5_0_Q8_1_MMVQ];
-
-#pragma unroll
-    for (int i = 0; i < VDR_Q5_0_Q8_1_MMVQ; ++i) {
-        vl[i]    = get_int_from_uint8(bq5_0->qs, iqs + i);
-        vh[i]    = get_int_from_uint8(bq5_0->qh, 0) >> (4 * (iqs + i));
-        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
-        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_0);
-    }
-
-    return vec_dot_q5_0_q8_1_impl<VDR_Q5_0_Q8_1_MMVQ>(vl, vh, u, bq5_0->d, bq8_1->ds);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-
-    __shared__ int  tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
-    __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
-
-    *x_ql = tile_x_ql;
-    *x_dm = (half2 *) tile_x_d;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-
-    __builtin_assume(i_offset >= 0);
-    __builtin_assume(i_offset <  nwarps);
-    __builtin_assume(k >= 0);
-    __builtin_assume(k <  WARP_SIZE);
-
-    const int kbx  = k / QI5_0;
-    const int kqsx = k % QI5_0;
-
-    const block_q5_0 * bx0 = (block_q5_0 *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
-
-        const int ql = get_int_from_uint8(bxi->qs, kqsx);
-        const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
-
-        int qs0 = (ql >>  0)   & 0x0F0F0F0F;
-        qs0    |= (qh <<  4)   & 0x00000010;  // 0 ->  4
-        qs0    |= (qh << 11)   & 0x00001000;  // 1 -> 12
-        qs0    |= (qh << 18)   & 0x00100000;  // 2 -> 20
-        qs0    |= (qh << 25)   & 0x10000000;  // 3 -> 28
-        qs0     = __vsubss4(qs0, 0x10101010); // subtract 16
-
-        x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
-
-        int qs1 = (ql >>  4)   & 0x0F0F0F0F;
-        qs1    |= (qh >> 12)   & 0x00000010;  // 16 ->  4
-        qs1    |= (qh >>  5)   & 0x00001000;  // 17 -> 12
-        qs1    |= (qh <<  2)   & 0x00100000;  // 18 -> 20
-        qs1    |= (qh <<  9)   & 0x10000000;  // 19 -> 28
-        qs1     = __vsubss4(qs1, 0x10101010); // subtract 16
-
-        x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
-    const int kbxd = k % blocks_per_tile_x_row;
-    float * x_dmf = (float *) x_dm;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
-        int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-
-    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
-    const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
-    const float * x_dmf = (const float *) x_dm;
-    const float * y_df  = (const float *) y_ds;
-
-    int u[2*VDR_Q5_0_Q8_1_MMQ];
-
-#pragma unroll
-    for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
-        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
-        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
-    }
-
-    return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
-        (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
-
-static __device__ __forceinline__ float vec_dot_q5_1_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q5_1 * bq5_1 = (const block_q5_1 *) vbq;
-
-    int vl[VDR_Q5_1_Q8_1_MMVQ];
-    int vh[VDR_Q5_1_Q8_1_MMVQ];
-    int  u[2*VDR_Q5_1_Q8_1_MMVQ];
-
-#pragma unroll
-    for (int i = 0; i < VDR_Q5_1_Q8_1_MMVQ; ++i) {
-        vl[i]   = get_int_from_uint8_aligned(bq5_1->qs, iqs + i);
-        vh[i]   = get_int_from_uint8_aligned(bq5_1->qh, 0) >> (4 * (iqs + i));
-        u[2*i+0] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
-        u[2*i+1] = get_int_from_int8_aligned(bq8_1->qs, iqs + i + QI5_1);
-    }
-
-    return vec_dot_q5_1_q8_1_impl<VDR_Q5_1_Q8_1_MMVQ>(vl, vh, u, bq5_1->dm, bq8_1->ds);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-
-    __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
-    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
-
-    *x_ql = tile_x_ql;
-    *x_dm = tile_x_dm;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-
-    __builtin_assume(i_offset >= 0);
-    __builtin_assume(i_offset < nwarps);
-    __builtin_assume(k >= 0);
-    __builtin_assume(k <  WARP_SIZE);
-
-    const int kbx  = k / QI5_1;
-    const int kqsx = k % QI5_1;
-
-    const block_q5_1 * bx0 = (block_q5_1 *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
-
-        const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
-        const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
-
-        int qs0 = (ql >>  0) & 0x0F0F0F0F;
-        qs0    |= (qh <<  4) & 0x00000010; // 0 ->  4
-        qs0    |= (qh << 11) & 0x00001000; // 1 -> 12
-        qs0    |= (qh << 18) & 0x00100000; // 2 -> 20
-        qs0    |= (qh << 25) & 0x10000000; // 3 -> 28
-
-        x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
-
-        int qs1 = (ql >>  4) & 0x0F0F0F0F;
-        qs1    |= (qh >> 12) & 0x00000010; // 16 ->  4
-        qs1    |= (qh >>  5) & 0x00001000; // 17 -> 12
-        qs1    |= (qh <<  2) & 0x00100000; // 18 -> 20
-        qs1    |= (qh <<  9) & 0x10000000; // 19 -> 28
-
-        x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
-    const int kbxd = k % blocks_per_tile_x_row;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
-        int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-
-    const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
-    const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
-
-    int u[2*VDR_Q5_1_Q8_1_MMQ];
-
-#pragma unroll
-    for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
-        u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l)         % WARP_SIZE];
-        u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
-    }
-
-    return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
-        (&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
-}
-
-static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q8_0 * bq8_0 = (const block_q8_0 *) vbq;
-
-    int v[VDR_Q8_0_Q8_1_MMVQ];
-    int u[VDR_Q8_0_Q8_1_MMVQ];
-
-#pragma unroll
-    for (int i = 0; i < VDR_Q8_0_Q8_1_MMVQ; ++i) {
-        v[i] = get_int_from_int8(bq8_0->qs, iqs + i);
-        u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
-    }
-
-    return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMVQ>(v, u, bq8_0->d, bq8_1->ds.x);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-
-    __shared__ int  tile_x_qs[mmq_y * (WARP_SIZE)       + mmq_y];
-    __shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
-
-    *x_ql = tile_x_qs;
-    *x_dm = (half2 *) tile_x_d;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-
-    __builtin_assume(i_offset >= 0);
-    __builtin_assume(i_offset <  nwarps);
-    __builtin_assume(k >= 0);
-    __builtin_assume(k <  WARP_SIZE);
-
-    const int kbx  = k / QI8_0;
-    const int kqsx = k % QI8_0;
-    float * x_dmf = (float *) x_dm;
-
-    const block_q8_0 * bx0 = (block_q8_0 *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
-
-        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
-    const int kbxd = k % blocks_per_tile_x_row;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
-        int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-
-    const float * x_dmf = (const float *) x_dm;
-    const float * y_df  = (const float *) y_ds;
-
-    return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
-        (&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
-         y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
-}
-
-static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q2_K * bq2_K = (const block_q2_K *) vbq;
-
-    const int bq8_offset = QR2_K * (iqs / QI8_1);
-    const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
-
-    const uint8_t * scales = bq2_K->scales + scale_offset;
-
-    const int v = get_int_from_uint8_aligned(bq2_K->qs, iqs);
-    int    u[QR2_K];
-    float d8[QR2_K];
-
-#pragma unroll
-    for (int i = 0; i < QR2_K; ++ i) {
-        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
-        d8[i] = bq8_1[bq8_offset + i].ds.x;
-    }
-
-    return vec_dot_q2_K_q8_1_impl_mmvq(v, u, scales, bq2_K->dm, d8);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-
-    __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
-    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
-    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/4)     + mmq_y/4];
-
-    *x_ql = tile_x_ql;
-    *x_dm = tile_x_dm;
-    *x_sc = tile_x_sc;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-
-    __builtin_assume(i_offset >= 0);
-    __builtin_assume(i_offset <  nwarps);
-    __builtin_assume(k >= 0);
-    __builtin_assume(k <  WARP_SIZE);
-
-    const int kbx  = k / QI2_K;
-    const int kqsx = k % QI2_K;
-
-    const block_q2_K * bx0 = (block_q2_K *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
-
-        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
-    const int kbxd = k % blocks_per_tile_x_row;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
-        int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
-    }
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
-        int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
-
-        x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-
-    const int kbx = k / QI2_K;
-    const int ky  = (k % QI2_K) * QR2_K;
-    const float * y_df = (const float *) y_ds;
-
-    int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
-
-    const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
-    const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
-
-#pragma unroll
-    for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
-        v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
-    }
-
-    const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
-
-    const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
-    return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
-}
-
-static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q3_K * bq3_K = (const block_q3_K *) vbq;
-
-    const int bq8_offset = QR3_K * (iqs / (QI3_K/2));
-    const int scale_offset = iqs - iqs % QI8_1 + (iqs % QI8_1) / (QI8_1/2);
-
-    const float d = bq3_K->d;
-
-    const int vl = get_int_from_uint8(bq3_K->qs, iqs);
-
-    // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
-    const int vh = ~get_int_from_uint8(bq3_K->hmask, iqs % (QI3_K/2)) >> bq8_offset;
-
-    int    u[QR3_K];
-    float d8[QR3_K];
-
-#pragma unroll
-    for (int i = 0; i < QR3_K; ++i) {
-        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + i].qs, iqs % QI8_1);
-        d8[i] = bq8_1[bq8_offset + i].ds.x;
-    }
-
-    return vec_dot_q3_K_q8_1_impl_mmvq(vl, vh, u, bq3_K->scales, scale_offset, d, d8);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-
-    __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
-    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
-    __shared__ int   tile_x_qh[mmq_y * (WARP_SIZE/2)     + mmq_y/2];
-    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/4)     + mmq_y/4];
-
-    *x_ql = tile_x_ql;
-    *x_dm = tile_x_dm;
-    *x_qh = tile_x_qh;
-    *x_sc = tile_x_sc;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-
-    __builtin_assume(i_offset >= 0);
-    __builtin_assume(i_offset <  nwarps);
-    __builtin_assume(k >= 0);
-    __builtin_assume(k <  WARP_SIZE);
-
-    const int kbx  = k / QI3_K;
-    const int kqsx = k % QI3_K;
-
-    const block_q3_K * bx0 = (block_q3_K *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
-
-        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
-    const int kbxd = k % blocks_per_tile_x_row;
-    float * x_dmf = (float *) x_dm;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
-        int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
-    }
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
-        int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
-
-        // invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
-        x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
-    }
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
-        int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
-
-        const int ksc = k % (QI3_K/4);
-
-        const int ksc_low = ksc % (QI3_K/8);
-        const int shift_low = 4 * (ksc / (QI3_K/8));
-        const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
-
-        const int ksc_high = QI3_K/8;
-        const int shift_high = 2 * ksc;
-        const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
-
-        const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
-
-        x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-
-    const int kbx  = k / QI3_K;
-    const int ky  = (k % QI3_K) * QR3_K;
-    const float * x_dmf = (const float *) x_dm;
-    const float * y_df  = (const float *) y_ds;
-
-    const int8_t * scales = ((int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
-
-    int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
-
-#pragma unroll
-    for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
-        const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
-        const int shift = 2 * ((ky % 32) / 8);
-        const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
-
-        const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
-        const int vlh = (vh << 2) & 0x04040404;
-
-        v[l] = __vsubss4(vll, vlh);
-    }
-
-    const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
-    return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
-}
-
-static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-#ifndef GGML_QKK_64
-    const block_q4_K * bq4_K = (const block_q4_K *) vbq;
-
-    int    v[2];
-    int    u[2*QR4_K];
-    float d8[QR4_K];
-
-    // iqs is in 0,2..30. bq8_offset = iqs/4 -> bq8_offset = 0, 2, 4, 6
-    const int bq8_offset = QR4_K * ((iqs/2) / (QI8_1/2));
-
-    // iqs = 0....3 -> bq8_offset = 0, want q4_offset = 0, 4, 8, 12
-    // iqs = 4....7 -> bq8_offset = 2, want q4_offset = 32, 36, 40, 44
-    // iqs = 8...11 -> bq8_offset = 4, want q4_offset = 64, 68, 72, 76
-    // iqs = 12..15 -> bq8_offset = 6, want q4_offset = 96, 100, 104, 108
-
-    const int * q4 = (const int *)(bq4_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
-    v[0] = q4[0];
-    v[1] = q4[4];
-
-    const uint16_t * scales = (const uint16_t *)bq4_K->scales;
-    uint16_t aux[2];
-    const int j = bq8_offset/2;
-    if (j < 2) {
-        aux[0] = scales[j+0] & 0x3f3f;
-        aux[1] = scales[j+2] & 0x3f3f;
-    } else {
-        aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
-        aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
-    }
-    const uint8_t * sc = (const uint8_t *)aux;
-    const uint8_t * m  = sc + 2;
-
-    for (int i = 0; i < QR4_K; ++i) {
-        const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
-        d8[i] = bq8i->ds.x;
-
-        const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
-        u[2*i+0] = q8[0];
-        u[2*i+1] = q8[4];
-    }
-
-    return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
-
-#else
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    const block_q4_K * bq4_K = (const block_q4_K *) vbq;
-
-    float sumf_d = 0.0f;
-    float sumf_m = 0.0f;
-
-    uint16_t aux16[2];
-    const uint8_t * s = (const uint8_t *)aux16;
-
-    const uint16_t * a = (const uint16_t *)bq4_K->scales;
-    aux16[0] = a[0] & 0x0f0f;
-    aux16[1] = (a[0] >> 4) & 0x0f0f;
-
-    const float dall = bq4_K->d[0];
-    const float dmin = bq4_K->d[1];
-
-    const float d8_1 = bq8_1[0].ds.x;
-    const float d8_2 = bq8_1[1].ds.x;
-
-    const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
-    const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
-    const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
-    const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
-
-    const int * q4 = (const int *)bq4_K->qs + (iqs/2);
-    const int v1 = q4[0];
-    const int v2 = q4[4];
-
-    const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
-    const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
-    const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
-    const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
-
-    sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
-    sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
-
-    return dall * sumf_d - dmin * sumf_m;
-
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-
-#endif
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-
-    __shared__ int   tile_x_ql[mmq_y * (WARP_SIZE)       + mmq_y];
-    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
-    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
-
-    *x_ql = tile_x_ql;
-    *x_dm = tile_x_dm;
-    *x_sc = tile_x_sc;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-
-    __builtin_assume(i_offset >= 0);
-    __builtin_assume(i_offset <  nwarps);
-    __builtin_assume(k >= 0);
-    __builtin_assume(k <  WARP_SIZE);
-
-    const int kbx  = k / QI4_K; // == 0 if QK_K == 256
-    const int kqsx = k % QI4_K; // == k if QK_K == 256
-
-    const block_q4_K * bx0 = (block_q4_K *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
-
-        x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
-    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
-        int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
-    }
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
-        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
-
-        const int * scales = (int *) bxi->scales;
-
-        const int ksc = k % (WARP_SIZE/8);
-
-        // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
-        int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
-        scales8    |= (scales[ksc/2]              >> (2 * (ksc % 2)))       & 0x30303030; // upper 2 bits
-
-        x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-
-    const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
-
-    const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
-    return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
-                                      x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
-}
-
-static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-#ifndef GGML_QKK_64
-    const block_q5_K * bq5_K = (const block_q5_K *) vbq;
-
-    int   vl[2];
-    int   vh[2];
-    int    u[2*QR5_K];
-    float d8[QR5_K];
-
-    const int bq8_offset = QR5_K * ((iqs/2) / (QI8_1/2));
-    const int * ql = (const int *)(bq5_K->qs + 16 * bq8_offset + 4 * ((iqs/2)%4));
-    const int * qh = (const int *)(bq5_K->qh + 4 * ((iqs/2)%4));
-
-    vl[0] = ql[0];
-    vl[1] = ql[4];
-
-    vh[0] = qh[0] >> bq8_offset;
-    vh[1] = qh[4] >> bq8_offset;
-
-    const uint16_t * scales = (const uint16_t *)bq5_K->scales;
-    uint16_t aux[2];
-    const int j = bq8_offset/2;
-    if (j < 2) {
-        aux[0] = scales[j+0] & 0x3f3f;
-        aux[1] = scales[j+2] & 0x3f3f;
-    } else {
-        aux[0] = ((scales[j+2] >> 0) & 0x0f0f) | ((scales[j-2] & 0xc0c0) >> 2);
-        aux[1] = ((scales[j+2] >> 4) & 0x0f0f) | ((scales[j-0] & 0xc0c0) >> 2);
-    }
-    const uint8_t * sc = (const uint8_t *)aux;
-    const uint8_t * m  = sc + 2;
-
-#pragma unroll
-    for (int i = 0; i < QR5_K; ++i) {
-        const block_q8_1 * bq8i = bq8_1 + bq8_offset + i;
-        d8[i] = bq8i->ds.x;
-
-        const int * q8 = (const int *)bq8i->qs + ((iqs/2)%4);
-        u[2*i+0] = q8[0];
-        u[2*i+1] = q8[4];
-    }
-
-    return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
-
-#else
-
-#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
-    const block_q5_K * bq5_K = (const block_q5_K *) vbq;
-
-    const int8_t * s = bq5_K->scales;
-
-    const float d = bq5_K->d;
-
-    const float d8_1 = bq8_1[0].ds.x;
-    const float d8_2 = bq8_1[1].ds.x;
-
-    const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
-    const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
-    const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
-    const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
-
-    const int * ql = (const int *)bq5_K->qs + (iqs/2);
-    const int vl1 = ql[0];
-    const int vl2 = ql[4];
-
-    const int step = 4 * (iqs/2); // 0, 4, 8, 12
-    const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
-    const int in = step%8; // 0, 4, 0, 4
-    const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
-
-    const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
-    const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
-    const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
-    const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
-
-    const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
-                       + d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
-
-    return d * sumf_d;
-
-#else
-    assert(false);
-    return 0.0f; // only to satisfy the compiler
-#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
-
-#endif
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-
-    __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
-    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
-    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
-
-    *x_ql = tile_x_ql;
-    *x_dm = tile_x_dm;
-    *x_sc = tile_x_sc;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-
-    __builtin_assume(i_offset >= 0);
-    __builtin_assume(i_offset <  nwarps);
-    __builtin_assume(k >= 0);
-    __builtin_assume(k <  WARP_SIZE);
-
-    const int kbx  = k / QI5_K; // == 0 if QK_K == 256
-    const int kqsx = k % QI5_K; // == k if QK_K == 256
-
-    const block_q5_K * bx0 = (block_q5_K *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
-        const int ky = QR5_K*kqsx;
-
-        const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
-        const int ql0 = (ql >> 0) & 0x0F0F0F0F;
-        const int ql1 = (ql >> 4) & 0x0F0F0F0F;
-
-        const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
-        const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
-        const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
-
-        const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
-        const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
-
-        x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
-        x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
-    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
-        int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
-    }
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
-        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
-
-        const int * scales = (int *) bxi->scales;
-
-        const int ksc = k % (WARP_SIZE/8);
-
-        // scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
-        int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
-        scales8    |= (scales[ksc/2]              >> (2 * (ksc % 2)))       & 0x30303030; // upper 2 bits
-
-        x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-
-    const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
-
-    const int index_x = i * (QR5_K*WARP_SIZE + 1) +  QR5_K*k;
-    const int index_y = j * WARP_SIZE             + (QR5_K*k) % WARP_SIZE;
-    return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
-                                      x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
-}
-
-static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
-    const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
-
-    const block_q6_K * bq6_K = (const block_q6_K *) vbq;
-
-    const int bq8_offset = 2 * QR6_K * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/4);
-    const int scale_offset = (QI6_K/4) * (iqs / (QI6_K/2)) + (iqs % (QI6_K/2)) / (QI6_K/8);
-    const int vh_shift = 2 * ((iqs % (QI6_K/2)) / (QI6_K/4));
-
-    const int vl = get_int_from_uint8(bq6_K->ql, iqs);
-    const int vh = get_int_from_uint8(bq6_K->qh, (QI6_K/4) * (iqs / (QI6_K/2)) + iqs % (QI6_K/4)) >> vh_shift;
-
-    const int8_t * scales = bq6_K->scales + scale_offset;
-
-    int    u[QR6_K];
-    float d8[QR6_K];
-
-#pragma unroll
-    for (int i = 0; i < QR6_K; ++i) {
-        u[i]  = get_int_from_int8_aligned(bq8_1[bq8_offset + 2*i].qs, iqs % QI8_1);
-        d8[i] = bq8_1[bq8_offset + 2*i].ds.x;
-    }
-
-    return vec_dot_q6_K_q8_1_impl_mmvq(vl, vh, u, scales, bq6_K->d, d8);
-}
-
-template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
-
-    __shared__ int   tile_x_ql[mmq_y * (2*WARP_SIZE)     + mmq_y];
-    __shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
-    __shared__ int   tile_x_sc[mmq_y * (WARP_SIZE/8)     + mmq_y/8];
-
-    *x_ql = tile_x_ql;
-    *x_dm = tile_x_dm;
-    *x_sc = tile_x_sc;
-}
-
-template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
-    const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
-    int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
-
-    __builtin_assume(i_offset >= 0);
-    __builtin_assume(i_offset <  nwarps);
-    __builtin_assume(k >= 0);
-    __builtin_assume(k <  WARP_SIZE);
-
-    const int kbx  = k / QI6_K; // == 0 if QK_K == 256
-    const int kqsx = k % QI6_K; // == k if QK_K == 256
-
-    const block_q6_K * bx0 = (block_q6_K *) vx;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
-        int i = i0 + i_offset;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
-        const int ky = QR6_K*kqsx;
-
-        const int ql = get_int_from_uint8(bxi->ql, kqsx);
-        const int ql0 = (ql >> 0) & 0x0F0F0F0F;
-        const int ql1 = (ql >> 4) & 0x0F0F0F0F;
-
-        const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
-        const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
-        const int qh1 =  (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4))))       & 0x30303030;
-
-        const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
-        const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
-
-        x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
-        x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
-    }
-
-    const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
-    const int kbxd = k % blocks_per_tile_x_row;          // == 0 if QK_K == 256
-    float * x_dmf = (float *) x_dm;
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
-        int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
-
-        x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
-    }
-
-#pragma unroll
-    for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
-        int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
-
-        if (need_check) {
-            i = min(i, i_max);
-        }
-
-        const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
-
-        x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
-    }
-}
-
-static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
-    const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
-    const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
-
-    const float * x_dmf = (const float *) x_dm;
-    const float * y_df  = (const float *) y_ds;
-
-    const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
-
-    const int index_x = i * (QR6_K*WARP_SIZE + 1) +  QR6_K*k;
-    const int index_y = j * WARP_SIZE             + (QR6_K*k) % WARP_SIZE;
-    return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
-}
-
-template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
-              allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
-static __device__ __forceinline__ void mul_mat_q(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-    const block_q_t  * x = (const block_q_t  *) vx;
-    const block_q8_1 * y = (const block_q8_1 *) vy;
-
-    const int blocks_per_row_x = ncols_x / qk;
-    const int blocks_per_col_y = nrows_y / QK8_1;
-    const int blocks_per_warp = WARP_SIZE / qi;
-
-    const int & ncols_dst = ncols_y;
-
-    const int row_dst_0 = blockIdx.x*mmq_y;
-    const int & row_x_0 = row_dst_0;
-
-    const int col_dst_0 = blockIdx.y*mmq_x;
-    const int & col_y_0 = col_dst_0;
-
-    int   * tile_x_ql = nullptr;
-    half2 * tile_x_dm = nullptr;
-    int   * tile_x_qh = nullptr;
-    int   * tile_x_sc = nullptr;
-
-    allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
-
-    __shared__ int    tile_y_qs[mmq_x * WARP_SIZE];
-    __shared__ half2  tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
-
-    float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {0.0f};
-
-    for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
-
-        load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
-                   threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
-
-#pragma unroll
-        for (int ir = 0; ir < qr; ++ir) {
-            const int kqs = ir*WARP_SIZE + threadIdx.x;
-            const int kbxd = kqs / QI8_1;
-
-#pragma unroll
-            for (int i = 0; i < mmq_x; i += nwarps) {
-                const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
-
-                const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
-
-                const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
-                tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
-            }
-
-#pragma unroll
-            for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
-                const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
-                const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
-                const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
-
-                // if the sum is not needed it's faster to transform the scale to f32 ahead of time
-                const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
-                half2       * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
-                if (need_sum) {
-                    *dsi_dst = *dsi_src;
-                } else {
-                    float * dfi_dst = (float *) dsi_dst;
-                    *dfi_dst = (*dsi_src).x;
-                }
-            }
-
-            __syncthreads();
-
-// #pragma unroll // unrolling this loop causes too much register pressure
-            for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
-#pragma unroll
-                for (int j = 0; j < mmq_x; j += nwarps) {
-#pragma unroll
-                    for (int i = 0; i < mmq_y; i += WARP_SIZE) {
-                        sum[i/WARP_SIZE][j/nwarps] += vec_dot(
-                            tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
-                            threadIdx.x + i, threadIdx.y + j, k);
-                    }
-                }
-            }
-
-            __syncthreads();
-        }
-    }
-
-#pragma unroll
-    for (int j = 0; j < mmq_x; j += nwarps) {
-        const int col_dst = col_dst_0 + j + threadIdx.y;
-
-        if (col_dst >= ncols_dst) {
-            return;
-        }
-
-#pragma unroll
-        for (int i = 0; i < mmq_y; i += WARP_SIZE) {
-            const int row_dst = row_dst_0 + threadIdx.x + i;
-
-            if (row_dst >= nrows_dst) {
-                continue;
-            }
-
-            dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
-        }
-    }
-}
-
-#define  MMQ_X_Q4_0_AMPERE 64
-#define  MMQ_Y_Q4_0_AMPERE 128
-#define NWARPS_Q4_0_AMPERE 4
-#define  MMQ_X_Q4_0_PASCAL 64
-#define  MMQ_Y_Q4_0_PASCAL 64
-#define NWARPS_Q4_0_PASCAL 8
-
-template <bool need_check> static __global__ void mul_mat_q4_0(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if __CUDA_ARCH__ >= CC_TURING
-    const int mmq_x  =  MMQ_X_Q4_0_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q4_0_AMPERE;
-    const int nwarps = NWARPS_Q4_0_AMPERE;
-
-    mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
-        load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q4_0_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q4_0_PASCAL;
-    const int nwarps = NWARPS_Q4_0_PASCAL;
-
-    mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, mmq_x, mmq_y, nwarps, allocate_tiles_q4_0<mmq_y>,
-        load_tiles_q4_0<mmq_y, nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q4_0_q8_1_mul_mat;
-    assert(false);
-#endif // __CUDA_ARCH__ >= CC_TURING
-}
-
-#define  MMQ_X_Q4_1_AMPERE 64
-#define  MMQ_Y_Q4_1_AMPERE 128
-#define NWARPS_Q4_1_AMPERE 4
-#define  MMQ_X_Q4_1_PASCAL 64
-#define  MMQ_Y_Q4_1_PASCAL 64
-#define NWARPS_Q4_1_PASCAL 8
-
-template <bool need_check> static __global__ void
-#if __CUDA_ARCH__ < CC_TURING
-    __launch_bounds__(WARP_SIZE*NWARPS_Q4_1_PASCAL, 2)
-#endif // __CUDA_ARCH__ < CC_TURING
-    mul_mat_q4_1(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if __CUDA_ARCH__ >= CC_TURING
-    const int mmq_x  =  MMQ_X_Q4_1_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q4_1_AMPERE;
-    const int nwarps = NWARPS_Q4_1_AMPERE;
-
-    mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
-        load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q4_1_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q4_1_PASCAL;
-    const int nwarps = NWARPS_Q4_1_PASCAL;
-
-    mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, mmq_x, mmq_y, nwarps, allocate_tiles_q4_1<mmq_y>,
-        load_tiles_q4_1<mmq_y, nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q4_1_q8_1_mul_mat;
-    assert(false);
-#endif // __CUDA_ARCH__ >= CC_TURING
-}
-
-#define  MMQ_X_Q5_0_AMPERE 128
-#define  MMQ_Y_Q5_0_AMPERE 64
-#define NWARPS_Q5_0_AMPERE 4
-#define  MMQ_X_Q5_0_PASCAL 64
-#define  MMQ_Y_Q5_0_PASCAL 64
-#define NWARPS_Q5_0_PASCAL 8
-
-template <bool need_check> static __global__ void mul_mat_q5_0(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if __CUDA_ARCH__ >= CC_TURING
-    const int mmq_x  =  MMQ_X_Q5_0_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q5_0_AMPERE;
-    const int nwarps = NWARPS_Q5_0_AMPERE;
-
-    mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
-        load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q5_0_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q5_0_PASCAL;
-    const int nwarps = NWARPS_Q5_0_PASCAL;
-
-    mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, mmq_x, mmq_y, nwarps, allocate_tiles_q5_0<mmq_y>,
-        load_tiles_q5_0<mmq_y, nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q5_0_q8_1_mul_mat;
-    assert(false);
-#endif // __CUDA_ARCH__ >= CC_TURING
-}
-
-#define  MMQ_X_Q5_1_AMPERE 128
-#define  MMQ_Y_Q5_1_AMPERE 64
-#define NWARPS_Q5_1_AMPERE 4
-#define  MMQ_X_Q5_1_PASCAL 64
-#define  MMQ_Y_Q5_1_PASCAL 64
-#define NWARPS_Q5_1_PASCAL 8
-
-template <bool need_check> static __global__ void mul_mat_q5_1(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if __CUDA_ARCH__ >= CC_TURING
-    const int mmq_x  =  MMQ_X_Q5_1_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q5_1_AMPERE;
-    const int nwarps = NWARPS_Q5_1_AMPERE;
-
-    mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
-        load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q5_1_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q5_1_PASCAL;
-    const int nwarps = NWARPS_Q5_1_PASCAL;
-
-    mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, mmq_x, mmq_y, nwarps, allocate_tiles_q5_1<mmq_y>,
-        load_tiles_q5_1<mmq_y, nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q5_1_q8_1_mul_mat;
-    assert(false);
-#endif // __CUDA_ARCH__ >= CC_TURING
-}
-
-#define  MMQ_X_Q8_0_AMPERE 128
-#define  MMQ_Y_Q8_0_AMPERE 64
-#define NWARPS_Q8_0_AMPERE 4
-#define  MMQ_X_Q8_0_PASCAL 64
-#define  MMQ_Y_Q8_0_PASCAL 64
-#define NWARPS_Q8_0_PASCAL 8
-
-template <bool need_check> static __global__ void mul_mat_q8_0(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if __CUDA_ARCH__ >= CC_TURING
-    const int mmq_x  =  MMQ_X_Q8_0_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q8_0_AMPERE;
-    const int nwarps = NWARPS_Q8_0_AMPERE;
-
-    mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
-        load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q8_0_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q8_0_PASCAL;
-    const int nwarps = NWARPS_Q8_0_PASCAL;
-
-    mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, mmq_x, mmq_y, nwarps, allocate_tiles_q8_0<mmq_y>,
-        load_tiles_q8_0<mmq_y, nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q8_0_q8_1_mul_mat;
-    assert(false);
-#endif // __CUDA_ARCH__ >= CC_TURING
-}
-
-#define  MMQ_X_Q2_K_AMPERE 64
-#define  MMQ_Y_Q2_K_AMPERE 128
-#define NWARPS_Q2_K_AMPERE 4
-#define  MMQ_X_Q2_K_PASCAL 64
-#define  MMQ_Y_Q2_K_PASCAL 64
-#define NWARPS_Q2_K_PASCAL 8
-
-template <bool need_check> static __global__ void mul_mat_q2_K(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if __CUDA_ARCH__ >= CC_TURING
-    const int mmq_x  =  MMQ_X_Q2_K_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q2_K_AMPERE;
-    const int nwarps = NWARPS_Q2_K_AMPERE;
-
-    mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
-        load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q2_K_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q2_K_PASCAL;
-    const int nwarps = NWARPS_Q2_K_PASCAL;
-
-    mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, mmq_x, mmq_y, nwarps, allocate_tiles_q2_K<mmq_y>,
-        load_tiles_q2_K<mmq_y, nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q2_K_q8_1_mul_mat;
-    assert(false);
-#endif // __CUDA_ARCH__ >= CC_TURING
-}
-
-#define  MMQ_X_Q3_K_AMPERE 128
-#define  MMQ_Y_Q3_K_AMPERE 128
-#define NWARPS_Q3_K_AMPERE 4
-#define  MMQ_X_Q3_K_PASCAL 64
-#define  MMQ_Y_Q3_K_PASCAL 64
-#define NWARPS_Q3_K_PASCAL 8
-
-template <bool need_check> static __global__ void
-#if __CUDA_ARCH__ < CC_TURING
-    __launch_bounds__(WARP_SIZE*NWARPS_Q3_K_PASCAL, 2)
-#endif // __CUDA_ARCH__ < CC_TURING
-    mul_mat_q3_K(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if __CUDA_ARCH__ >= CC_TURING
-    const int mmq_x  =  MMQ_X_Q3_K_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q3_K_AMPERE;
-    const int nwarps = NWARPS_Q3_K_AMPERE;
-
-    mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
-        load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q3_K_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q3_K_PASCAL;
-    const int nwarps = NWARPS_Q3_K_PASCAL;
-
-    mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, mmq_x, mmq_y, nwarps, allocate_tiles_q3_K<mmq_y>,
-        load_tiles_q3_K<mmq_y, nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q3_K_q8_1_mul_mat;
-    assert(false);
-#endif // __CUDA_ARCH__ >= CC_TURING
-}
-
-#define  MMQ_X_Q4_K_AMPERE 64
-#define  MMQ_Y_Q4_K_AMPERE 128
-#define NWARPS_Q4_K_AMPERE 4
-#define  MMQ_X_Q4_K_PASCAL 64
-#define  MMQ_Y_Q4_K_PASCAL 64
-#define NWARPS_Q4_K_PASCAL 8
-
-template <bool need_check> static __global__ void
-#if __CUDA_ARCH__ < CC_TURING
-    __launch_bounds__(WARP_SIZE*NWARPS_Q4_K_PASCAL, 2)
-#endif // __CUDA_ARCH__ < CC_TURING
-    mul_mat_q4_K(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if __CUDA_ARCH__ >= CC_TURING
-    const int mmq_x  =  MMQ_X_Q4_K_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q4_K_AMPERE;
-    const int nwarps = NWARPS_Q4_K_AMPERE;
-
-    mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
-        load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q4_K_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q4_K_PASCAL;
-    const int nwarps = NWARPS_Q4_K_PASCAL;
-
-    mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, mmq_x, mmq_y, nwarps, allocate_tiles_q4_K<mmq_y>,
-        load_tiles_q4_K<mmq_y, nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q4_K_q8_1_mul_mat;
-    assert(false);
-#endif // __CUDA_ARCH__ >= CC_TURING
-}
-
-#define  MMQ_X_Q5_K_AMPERE 64
-#define  MMQ_Y_Q5_K_AMPERE 128
-#define NWARPS_Q5_K_AMPERE 4
-#define  MMQ_X_Q5_K_PASCAL 64
-#define  MMQ_Y_Q5_K_PASCAL 64
-#define NWARPS_Q5_K_PASCAL 8
-
-template <bool need_check> static __global__ void mul_mat_q5_K(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if __CUDA_ARCH__ >= CC_TURING
-    const int mmq_x  =  MMQ_X_Q5_K_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q5_K_AMPERE;
-    const int nwarps = NWARPS_Q5_K_AMPERE;
-
-    mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
-        load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q5_K_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q5_K_PASCAL;
-    const int nwarps = NWARPS_Q5_K_PASCAL;
-
-    mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, mmq_x, mmq_y, nwarps, allocate_tiles_q5_K<mmq_y>,
-        load_tiles_q5_K<mmq_y, nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q5_K_q8_1_mul_mat;
-    assert(false);
-#endif // __CUDA_ARCH__ >= CC_TURING
-}
-
-#define  MMQ_X_Q6_K_AMPERE 64
-#define  MMQ_Y_Q6_K_AMPERE 64
-#define NWARPS_Q6_K_AMPERE 4
-#define  MMQ_X_Q6_K_PASCAL 64
-#define  MMQ_Y_Q6_K_PASCAL 64
-#define NWARPS_Q6_K_PASCAL 8
-
-template <bool need_check> static __global__ void
-#if __CUDA_ARCH__ < CC_TURING
-    __launch_bounds__(WARP_SIZE*NWARPS_Q6_K_PASCAL, 2)
-#endif // __CUDA_ARCH__ < CC_TURING
-    mul_mat_q6_K(
-    const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
-
-#if __CUDA_ARCH__ >= CC_TURING
-    const int mmq_x  =  MMQ_X_Q6_K_AMPERE;
-    const int mmq_y  =  MMQ_Y_Q6_K_AMPERE;
-    const int nwarps = NWARPS_Q6_K_AMPERE;
-
-    mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
-        load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-
-#elif __CUDA_ARCH__ >= MIN_CC_DP4A
-    const int mmq_x  =  MMQ_X_Q6_K_PASCAL;
-    const int mmq_y  =  MMQ_Y_Q6_K_PASCAL;
-    const int nwarps = NWARPS_Q6_K_PASCAL;
-
-    mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, mmq_x, mmq_y, nwarps, allocate_tiles_q6_K<mmq_y>,
-        load_tiles_q6_K<mmq_y, nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
-        (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-#else
-    (void) vec_dot_q6_K_q8_1_mul_mat;
-    assert(false);
-#endif // __CUDA_ARCH__ >= CC_TURING
-}
-
-template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
-static __global__ void mul_mat_vec_q(const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols, const int nrows) {
-    const int row = blockIdx.y*blockDim.y + threadIdx.y;
-
-    if (row >= nrows) {
-        return;
-    }
-
-    const int blocks_per_row = ncols / qk;
-    const int blocks_per_warp = vdr * WARP_SIZE / qi;
-
-// partial sum for each thread
-    float tmp = 0.0f;
-
-    const block_q_t  * x = (const block_q_t  *) vx;
-    const block_q8_1 * y = (const block_q8_1 *) vy;
-
-    for (int i = 0; i < blocks_per_row; i += blocks_per_warp) {
-        const int ibx = row*blocks_per_row + i + threadIdx.x / (qi/vdr); // x block index
-
-        const int iby = (i + threadIdx.x / (qi/vdr)) * (qk/QK8_1); // y block index that aligns with ibx
-
-        const int iqs  = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int
-
-        tmp += vec_dot_q_cuda(&x[ibx], &y[iby], iqs);
-    }
-
-    // sum up partial sums and write back result
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
-    }
-
-    if (threadIdx.x == 0) {
-        dst[row] = tmp;
-    }
-}
-
-template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
-static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
-    // qk = quantized weights per x block
-    // qr = number of quantized weights per data value in x block
-    const int row = blockIdx.y*blockDim.y + threadIdx.y;
-
-    if (row >= nrows) {
-        return;
-    }
-
-    const int tid = threadIdx.x;
-
-    const int iter_stride = 2*GGML_CUDA_DMMV_X;
-    const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
-    const int y_offset = qr == 1 ? 1 : qk/2;
-
-// partial sum for each thread
-#ifdef GGML_CUDA_F16
-    half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
-#else
-    float tmp = 0.0f;
-#endif // GGML_CUDA_F16
-
-    for (int i = 0; i < ncols; i += iter_stride) {
-        const int col = i + vals_per_iter*tid;
-        const int ib = (row*ncols + col)/qk; // x block index
-        const int iqs = (col%qk)/qr; // x quant index
-        const int iybs = col - col%qk; // y block start index
-
-// processing >2 values per i iter is faster for fast GPUs
-#pragma unroll
-        for (int j = 0; j < vals_per_iter; j += 2) {
-            // process 2 vals per j iter
-
-            // dequantize
-            // for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
-            dfloat2 v;
-            dequantize_kernel(vx, ib, iqs + j/qr, v);
-
-            // matrix multiplication
-            // for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
-#ifdef GGML_CUDA_F16
-            tmp += __hmul2(v, {
-                y[iybs + iqs + j/qr + 0],
-                y[iybs + iqs + j/qr + y_offset]
-            });
-#else
-            tmp += v.x * y[iybs + iqs + j/qr + 0];
-            tmp += v.y * y[iybs + iqs + j/qr + y_offset];
-#endif // GGML_CUDA_F16
-        }
-    }
-
-    // sum up partial sums and write back result
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
-    }
-
-    if (tid == 0) {
-#ifdef GGML_CUDA_F16
-        dst[row] = tmp.x + tmp.y;
-#else
-        dst[row] = tmp;
-#endif // GGML_CUDA_F16
-    }
-}
-
-static __global__ void mul_mat_p021_f16_f32(
-    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
-    const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
-
-    const half * x = (const half *) vx;
-
-    const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
-    const int channel = blockDim.z*blockIdx.z + threadIdx.z;
-    const int channel_x = channel / (nchannels_y / nchannels_x);
-
-    const int nrows_y = ncols_x;
-    const int nrows_dst = nrows_x;
-    const int row_dst = row_x;
-
-    float tmp = 0.0f;
-
-    for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
-        const int col_x = col_x0 + threadIdx.x;
-
-        if (col_x >= ncols_x) {
-            break;
-        }
-
-        // x is transposed and permuted
-        const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
-        const float xi = __half2float(x[ix]);
-
-        const int row_y = col_x;
-
-
-        // y is not transposed but permuted
-        const int iy = channel*nrows_y + row_y;
-
-        tmp += xi * y[iy];
-    }
-
-    // dst is not transposed and not permuted
-    const int idst = channel*nrows_dst + row_dst;
-
-    // sum up partial sums and write back result
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
-    }
-
-    if (threadIdx.x == 0) {
-        dst[idst] = tmp;
-    }
-}
-
-static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
-    const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
-    const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
-
-    const half * x = (const half *) vx;
-
-    const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
-    const int channel = blockDim.z*blockIdx.z + threadIdx.z;
-    const int channel_x = channel / channel_x_divisor;
-
-    const int nrows_y = ncols_x;
-    const int nrows_dst = nrows_x;
-    const int row_dst = row_x;
-
-    const int idst = channel*nrows_dst + row_dst;
-
-    float tmp = 0.0f;
-
-    for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
-        const int col_x = col_x0 + threadIdx.x;
-
-        if (col_x >= ncols_x) {
-            break;
-        }
-
-        const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
-        const float xi = __half2float(x[ix]);
-
-        const int row_y = col_x;
-
-        const int iy = channel*nrows_y + row_y;
-
-        tmp += xi * y[iy];
-    }
-
-    // sum up partial sums and write back result
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
-    }
-
-    if (threadIdx.x == 0) {
-        dst[idst] = tmp;
-    }
-}
-
-static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
-    const float * xi = (const float *) cxi;
-    float * dsti = (float *) cdsti;
-
-    *dsti = *xi;
-}
-
-static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
-    const float * xi = (const float *) cxi;
-    half * dsti = (half *) cdsti;
-
-    *dsti = __float2half(*xi);
-}
-
-template <cpy_kernel_t cpy_1>
-static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
-                                   const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
-                                   const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
-    if (i >= ne) {
-        return;
-    }
-
-    // determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
-    // then combine those indices with the corresponding byte offsets to get the total offsets
-    const int i02 = i / (ne00*ne01);
-    const int i01 = (i - i02*ne01*ne00) / ne00;
-    const int i00 = i - i02*ne01*ne00 - i01*ne00;
-    const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
-
-    const int i12 = i / (ne10*ne11);
-    const int i11 = (i - i12*ne10*ne11) / ne10;
-    const int i10 = i - i12*ne10*ne11 - i11*ne10;
-    const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
-
-    cpy_1(cx + x_offset, cdst + dst_offset);
-}
-
-// rope == RoPE == rotary positional embedding
-static __global__ void rope_f32(const float * x, float * dst, const int ncols, const float p0,
-                                const float p_delta, const int p_delta_rows, const float theta_scale) {
-    const int col = 2*(blockDim.x*blockIdx.x + threadIdx.x);
-
-    if (col >= ncols) {
-        return;
-    }
-
-    const int row = blockDim.y*blockIdx.y + threadIdx.y;
-    const int i = row*ncols + col;
-
-    const float theta = (p0 + p_delta * (row/p_delta_rows))*powf(theta_scale, col/2);
-    const float sin_theta = sinf(theta);
-    const float cos_theta = cosf(theta);
-
-    const float x0 = x[i + 0];
-    const float x1 = x[i + 1];
-
-    dst[i + 0] = x0*cos_theta - x1*sin_theta;
-    dst[i + 1] = x0*sin_theta + x1*cos_theta;
-}
-
-static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) {
-    const int col = blockDim.x*blockIdx.x + threadIdx.x;
-    const int half_n_dims = ncols/4;
-
-    if (col >= half_n_dims) {
-        return;
-    }
-
-    const int row = blockDim.y*blockIdx.y + threadIdx.y;
-    const int i = row*ncols + col;
-
-    const float col_theta_scale = powf(theta_scale, col);
-
-    const float theta = p*col_theta_scale;
-    const float sin_theta = sinf(theta);
-    const float cos_theta = cosf(theta);
-
-    const float x0 = x[i + 0];
-    const float x1 = x[i + half_n_dims];
-
-    dst[i + 0]           = x0*cos_theta - x1*sin_theta;
-    dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
-
-    const float block_theta = block_p*col_theta_scale;
-    const float sin_block_theta = sinf(block_theta);
-    const float cos_block_theta = cosf(block_theta);
-
-    const float x2 = x[i + half_n_dims * 2];
-    const float x3 = x[i + half_n_dims * 3];
-
-    dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
-    dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
-}
-
-static __global__ void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
-    const int col = blockDim.x*blockIdx.x + threadIdx.x;
-    const int row = blockDim.y*blockIdx.y + threadIdx.y;
-
-    if (col >= ncols) {
-        return;
-    }
-
-    const int i = row*ncols + col;
-    // dst[i] = col > n_past + row ? -INFINITY : x[i];
-    dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
-}
-
-// the CUDA soft max implementation differs from the CPU implementation
-// instead of doubles floats are used
-// values are also not normalized to the maximum value by subtracting it in the exponential function
-// theoretically these changes could cause problems with rounding error and arithmetic overflow but for LLaMa it seems to be fine
-static __global__ void soft_max_f32(const float * x, float * dst, const int ncols) {
-    const int row = blockDim.y*blockIdx.y + threadIdx.y;
-    const int block_size = blockDim.x;
-    const int tid = threadIdx.x;
-
-    float tmp = 0.0;
-
-    for (int block_start = 0; block_start < ncols; block_start += block_size) {
-        const int col = block_start + tid;
-
-        if (col >= ncols) {
-            break;
-        }
-
-        const int i = row*ncols + col;
-        const float val = expf(x[i]);
-        tmp += val;
-        dst[i] = val;
-    }
-
-    // sum up partial sums
-#pragma unroll
-    for (int mask = 16; mask > 0; mask >>= 1) {
-        tmp += __shfl_xor_sync(0xffffffff, tmp, mask, 32);
-    }
-
-    for (int block_start = 0; block_start < ncols; block_start += block_size) {
-        const int col = block_start + tid;
-
-        if (col >= ncols) {
-            break;
-        }
-
-        const int i = row*ncols + col;
-        dst[i] /= tmp;
-    }
-}
-
-static __global__ void scale_f32(const float * x, float * dst, const float scale, const int k) {
-    const int i = blockDim.x*blockIdx.x + threadIdx.x;
-
-    if (i >= k) {
-        return;
-    }
-
-    dst[i] = scale * x[i];
-}
-
-static void add_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
-    const int num_blocks = (kx + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
-    add_f32<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
-}
-
-static void add_f16_f32_f16_cuda(const half * x, const float * y, half * dst, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
-    add_f16_f32_f16<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
-}
-
-static void mul_f32_cuda(const float * x, const float * y, float * dst, const int kx, const int ky, cudaStream_t stream) {
-    const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
-    mul_f32<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
-}
-
-static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE;
-    gelu_f32<<<num_blocks, CUDA_GELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
-
-static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
-    silu_f32<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
-}
-
-static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % WARP_SIZE == 0);
-    const dim3 block_dims(WARP_SIZE, 1, 1);
-    norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
-}
-
-static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
-    GGML_ASSERT(ncols % WARP_SIZE == 0);
-    const dim3 block_dims(WARP_SIZE, 1, 1);
-    rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
-}
-
-static void quantize_row_q8_1_cuda(const float * x, void * vy, const int kx, const int ky, const int kx_padded, cudaStream_t stream) {
-    const int block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
-    const dim3 num_blocks(block_num_x, ky, 1);
-    const dim3 block_size(CUDA_DEQUANTIZE_BLOCK_SIZE, 1, 1);
-    quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
-}
-
-static void dequantize_row_q4_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
-    dequantize_block<QK4_0, QR4_0, dequantize_q4_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
-}
-
-static void dequantize_row_q4_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
-    dequantize_block<QK4_1, QR4_1, dequantize_q4_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
-}
-
-static void dequantize_row_q5_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
-    dequantize_block<QK5_0, QR5_0, dequantize_q5_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
-}
-
-static void dequantize_row_q5_1_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
-    dequantize_block<QK5_1, QR5_1, dequantize_q5_1><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
-}
-
-static void dequantize_row_q8_0_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
-    dequantize_block<QK8_0, QR8_0, dequantize_q8_0><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
-}
-
-static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-#if QK_K == 256
-    dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
-#else
-    dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
-#endif
-}
-
-static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-#if QK_K == 256
-    dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
-#else
-    dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
-#endif
-}
-
-static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-    dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
-}
-
-static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-#if QK_K == 256
-    dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
-#else
-    dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
-#endif
-}
-
-static void dequantize_row_q6_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
-    const int nb = k / QK_K;
-#if QK_K == 256
-    dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
-#else
-    dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
-#endif
-}
-
-static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
-        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
-        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
-        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
-        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
-        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
-    const int block_num_y = (nrows + ny - 1) / ny;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(32, ny, 1);
-    dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const int ny = 2 / K_QUANTS_PER_ITERATION;
-    const int block_num_y = (nrows + ny - 1) / ny;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(32, ny, 1);
-    dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const int ny = 2 / K_QUANTS_PER_ITERATION;
-    const int block_num_y = (nrows + ny - 1) / ny;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(32, ny, 1);
-    dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const dim3 block_dims(32, 1, 1);
-    dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
-}
-
-static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const int ny = 2 / K_QUANTS_PER_ITERATION;
-    const int block_num_y = (nrows + ny - 1) / ny;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(32, ny, 1);
-    dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK4_0 == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    mul_mat_vec_q<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
-        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
-}
-
-static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK4_1 == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    mul_mat_vec_q<QK4_0, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
-        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
-}
-
-static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK5_0 == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    mul_mat_vec_q<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
-        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
-}
-
-static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK5_1 == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    mul_mat_vec_q<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
-        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
-}
-
-static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK8_0 == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    mul_mat_vec_q<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
-        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
-}
-
-static void mul_mat_vec_q2_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    mul_mat_vec_q<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
-        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
-}
-
-static void mul_mat_vec_q3_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    mul_mat_vec_q<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
-        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
-}
-
-static void mul_mat_vec_q4_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    mul_mat_vec_q<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
-        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
-}
-
-static void mul_mat_vec_q5_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    mul_mat_vec_q<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
-        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
-}
-
-static void mul_mat_vec_q6_K_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % QK_K == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    mul_mat_vec_q<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
-        <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
-}
-
-static void convert_fp16_to_fp32_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
-    dequantize_block<1, 1, convert_f16><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
-}
-
-static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
-    GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
-    const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
-    const dim3 block_nums(1, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
-    dequantize_mul_mat_vec<1, 1, convert_f16>
-        <<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
-}
-
-static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
-    switch (type) {
-        case GGML_TYPE_Q4_0:
-            return dequantize_row_q4_0_cuda;
-        case GGML_TYPE_Q4_1:
-            return dequantize_row_q4_1_cuda;
-        case GGML_TYPE_Q5_0:
-            return dequantize_row_q5_0_cuda;
-        case GGML_TYPE_Q5_1:
-            return dequantize_row_q5_1_cuda;
-        case GGML_TYPE_Q8_0:
-            return dequantize_row_q8_0_cuda;
-        case GGML_TYPE_Q2_K:
-            return dequantize_row_q2_K_cuda;
-        case GGML_TYPE_Q3_K:
-            return dequantize_row_q3_K_cuda;
-        case GGML_TYPE_Q4_K:
-            return dequantize_row_q4_K_cuda;
-        case GGML_TYPE_Q5_K:
-            return dequantize_row_q5_K_cuda;
-        case GGML_TYPE_Q6_K:
-            return dequantize_row_q6_K_cuda;
-        case GGML_TYPE_F16:
-            return convert_fp16_to_fp32_cuda;
-        default:
-            return nullptr;
-    }
-}
-
-static void ggml_mul_mat_q4_0_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_compute_capabilities[id];
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_TURING) {
-        mmq_x  =  MMQ_X_Q4_0_AMPERE;
-        mmq_y  =  MMQ_Y_Q4_0_AMPERE;
-        nwarps = NWARPS_Q4_0_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q4_0_PASCAL;
-        mmq_y  =  MMQ_Y_Q4_0_PASCAL;
-        nwarps = NWARPS_Q4_0_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q4_0<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q4_1_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_compute_capabilities[id];
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_TURING) {
-        mmq_x  =  MMQ_X_Q4_1_AMPERE;
-        mmq_y  =  MMQ_Y_Q4_1_AMPERE;
-        nwarps = NWARPS_Q4_1_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q4_1_PASCAL;
-        mmq_y  =  MMQ_Y_Q4_1_PASCAL;
-        nwarps = NWARPS_Q4_1_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q4_1<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q5_0_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_compute_capabilities[id];
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_TURING) {
-        mmq_x  =  MMQ_X_Q5_0_AMPERE;
-        mmq_y  =  MMQ_Y_Q5_0_AMPERE;
-        nwarps = NWARPS_Q5_0_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q5_0_PASCAL;
-        mmq_y  =  MMQ_Y_Q5_0_PASCAL;
-        nwarps = NWARPS_Q5_0_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q5_0<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q5_1_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_compute_capabilities[id];
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_TURING) {
-        mmq_x  =  MMQ_X_Q5_1_AMPERE;
-        mmq_y  =  MMQ_Y_Q5_1_AMPERE;
-        nwarps = NWARPS_Q5_1_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q5_1_PASCAL;
-        mmq_y  =  MMQ_Y_Q5_1_PASCAL;
-        nwarps = NWARPS_Q5_1_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q5_1<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q8_0_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_compute_capabilities[id];
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_TURING) {
-        mmq_x  =  MMQ_X_Q8_0_AMPERE;
-        mmq_y  =  MMQ_Y_Q8_0_AMPERE;
-        nwarps = NWARPS_Q8_0_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q8_0_PASCAL;
-        mmq_y  =  MMQ_Y_Q8_0_PASCAL;
-        nwarps = NWARPS_Q8_0_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q8_0<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q2_K_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_compute_capabilities[id];
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_TURING) {
-        mmq_x  =  MMQ_X_Q2_K_AMPERE;
-        mmq_y  =  MMQ_Y_Q2_K_AMPERE;
-        nwarps = NWARPS_Q2_K_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q2_K_PASCAL;
-        mmq_y  =  MMQ_Y_Q2_K_PASCAL;
-        nwarps = NWARPS_Q2_K_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q2_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q3_K_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_compute_capabilities[id];
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_TURING) {
-        mmq_x  =  MMQ_X_Q3_K_AMPERE;
-        mmq_y  =  MMQ_Y_Q3_K_AMPERE;
-        nwarps = NWARPS_Q3_K_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q3_K_PASCAL;
-        mmq_y  =  MMQ_Y_Q3_K_PASCAL;
-        nwarps = NWARPS_Q3_K_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q3_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q4_K_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_compute_capabilities[id];
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_TURING) {
-        mmq_x  =  MMQ_X_Q4_K_AMPERE;
-        mmq_y  =  MMQ_Y_Q4_K_AMPERE;
-        nwarps = NWARPS_Q4_K_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q4_K_PASCAL;
-        mmq_y  =  MMQ_Y_Q4_K_PASCAL;
-        nwarps = NWARPS_Q4_K_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q4_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q5_K_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_compute_capabilities[id];
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_TURING) {
-        mmq_x  =  MMQ_X_Q5_K_AMPERE;
-        mmq_y  =  MMQ_Y_Q5_K_AMPERE;
-        nwarps = NWARPS_Q5_K_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q5_K_PASCAL;
-        mmq_y  =  MMQ_Y_Q5_K_PASCAL;
-        nwarps = NWARPS_Q5_K_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q5_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_q6_K_q8_1_cuda(
-    const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
-    const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-    const int compute_capability = g_compute_capabilities[id];
-
-    int mmq_x, mmq_y, nwarps;
-    if (compute_capability >= CC_TURING) {
-        mmq_x  =  MMQ_X_Q6_K_AMPERE;
-        mmq_y  =  MMQ_Y_Q6_K_AMPERE;
-        nwarps = NWARPS_Q6_K_AMPERE;
-    } else if (compute_capability >= MIN_CC_DP4A) {
-        mmq_x  =  MMQ_X_Q6_K_PASCAL;
-        mmq_y  =  MMQ_Y_Q6_K_PASCAL;
-        nwarps = NWARPS_Q6_K_PASCAL;
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    const int block_num_x = (nrows_x + mmq_y - 1) / mmq_y;
-    const int block_num_y = (ncols_y + mmq_x - 1) / mmq_x;
-    const dim3 block_nums(block_num_x, block_num_y, 1);
-    const dim3 block_dims(WARP_SIZE, nwarps, 1);
-
-    if (nrows_x % mmq_y == 0) {
-        const bool need_check = false;
-        mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    } else {
-        const bool need_check = true;
-        mul_mat_q6_K<need_check><<<block_nums, block_dims, 0, stream>>>
-            (vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
-    }
-}
-
-static void ggml_mul_mat_p021_f16_f32_cuda(
-    const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
-    const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
-
-    const dim3 block_nums(1, nrows_x, nchannels_y);
-    const dim3 block_dims(WARP_SIZE, 1, 1);
-    mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
-}
-
-static void ggml_mul_mat_vec_nc_f16_f32_cuda(
-    const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
-    const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
-
-    const dim3 block_nums(1, nrows_x, nchannels_y);
-    const dim3 block_dims(WARP_SIZE, 1, 1);
-    mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
-        (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
-}
-
-static void ggml_cpy_f32_f32_cuda(
-    const char * cx, char * cdst, const int ne,
-    const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
-    const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
-
-    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
-    cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
-        (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
-}
-
-static void ggml_cpy_f32_f16_cuda(
-    const char * cx, char * cdst, const int ne,
-    const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
-    const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
-
-    const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
-    cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
-        (cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
-}
-
-static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
-    const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
-    scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
-}
-
-static void rope_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
-                          const float p_delta, const int p_delta_rows, const float theta_scale, cudaStream_t stream) {
-    GGML_ASSERT(nrows % 2 == 0);
-    const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
-    const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
-    const dim3 block_nums(num_blocks_x, nrows, 1);
-    rope_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
-}
-
-static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
-    GGML_ASSERT(nrows % 4 == 0);
-    const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1);
-    const int num_blocks_x = (ncols + 4*CUDA_ROPE_BLOCK_SIZE - 1) / (4*CUDA_ROPE_BLOCK_SIZE);
-    const dim3 block_nums(num_blocks_x, nrows, 1);
-    rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, block_p, theta_scale);
-}
-
-static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
-    const dim3 block_dims(CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1, 1);
-    const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
-    const dim3 block_nums(block_num_x, nrows_x, 1);
-    diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
-}
-
-static void soft_max_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, cudaStream_t stream) {
-    const dim3 block_dims(WARP_SIZE, 1, 1);
-    const dim3 block_nums(1, nrows_x, 1);
-    soft_max_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x);
-}
-
-// buffer pool for cuda
-#define MAX_CUDA_BUFFERS 256
-
-struct scoped_spin_lock {
-    std::atomic_flag& lock;
-    scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
-        while (lock.test_and_set(std::memory_order_acquire)) {
-            ; // spin
-        }
-    }
-    ~scoped_spin_lock() {
-        lock.clear(std::memory_order_release);
-    }
-    scoped_spin_lock(const scoped_spin_lock&) = delete;
-    scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
-};
-
-struct cuda_buffer {
-    void * ptr = nullptr;
-    size_t size = 0;
-};
-
-static cuda_buffer g_cuda_buffer_pool[GGML_CUDA_MAX_DEVICES][MAX_CUDA_BUFFERS];
-static std::atomic_flag g_cuda_pool_lock = ATOMIC_FLAG_INIT;
-
-static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size) {
-    scoped_spin_lock lock(g_cuda_pool_lock);
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-#ifdef DEBUG_CUDA_MALLOC
-    int nnz = 0;
-    size_t max_size = 0, tot_size = 0;
-#endif
-    size_t best_diff = 1ull << 36;
-    int ibest = -1;
-    for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
-        cuda_buffer& b = g_cuda_buffer_pool[id][i];
-        if (b.ptr != nullptr) {
-#ifdef DEBUG_CUDA_MALLOC
-            ++nnz;
-            tot_size += b.size;
-            if (b.size > max_size) max_size = b.size;
-#endif
-            if (b.size >= size) {
-                size_t diff = b.size - size;
-                if (diff < best_diff) {
-                    best_diff = diff;
-                    ibest = i;
-                    if (!best_diff) {
-                        void * ptr = b.ptr;
-                        *actual_size = b.size;
-                        b.ptr = nullptr;
-                        b.size = 0;
-                        return ptr;
-                    }
-                }
-            }
-        }
-    }
-    if (ibest >= 0) {
-        cuda_buffer& b = g_cuda_buffer_pool[id][ibest];
-        void * ptr = b.ptr;
-        *actual_size = b.size;
-        b.ptr = nullptr;
-        b.size = 0;
-        return ptr;
-    }
-#ifdef DEBUG_CUDA_MALLOC
-    fprintf(stderr, "%s: %d buffers, max_size = %u MB, tot_size = %u MB, requested %u MB\n", __func__, nnz,
-            (uint32_t)(max_size/1024/1024), (uint32_t)(tot_size/1024/1024), (uint32_t)(size/1024/1024));
-#endif
-    void * ptr;
-    size_t look_ahead_size = (size_t) (1.05 * size);
-    look_ahead_size = 256 * ((look_ahead_size + 255)/256);
-    CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
-    *actual_size = look_ahead_size;
-    return ptr;
-}
-
-static void ggml_cuda_pool_free(void * ptr, size_t size) {
-    scoped_spin_lock lock(g_cuda_pool_lock);
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-
-    for (int i = 0; i < MAX_CUDA_BUFFERS; ++i) {
-        cuda_buffer& b = g_cuda_buffer_pool[id][i];
-        if (b.ptr == nullptr) {
-            b.ptr = ptr;
-            b.size = size;
-            return;
-        }
-    }
-    fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
-    CUDA_CHECK(cudaFree(ptr));
-}
-
-
-void ggml_init_cublas() {
-    static bool initialized = false;
-
-    if (!initialized) {
-        CUDA_CHECK(cudaGetDeviceCount(&g_device_count));
-        GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES);
-        int64_t total_vram = 0;
-        fprintf(stderr, "%s: found %d CUDA devices:\n", __func__, g_device_count);
-        for (int id = 0; id < g_device_count; ++id) {
-            cudaDeviceProp prop;
-            CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
-            fprintf(stderr, "  Device %d: %s, compute capability %d.%d\n", id, prop.name, prop.major, prop.minor);
-
-            g_tensor_split[id] = total_vram;
-            total_vram += prop.totalGlobalMem;
-
-            g_compute_capabilities[id] = 100*prop.major + 10*prop.minor;
-        }
-        for (int id = 0; id < g_device_count; ++id) {
-            g_tensor_split[id] /= total_vram;
-        }
-
-        for (int id = 0; id < g_device_count; ++id) {
-            CUDA_CHECK(cudaSetDevice(id));
-
-            // create main stream
-            CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams_main[id], cudaStreamNonBlocking));
-
-            // create cublas handle
-            CUBLAS_CHECK(cublasCreate(&g_cublas_handles[id]));
-            CUBLAS_CHECK(cublasSetMathMode(g_cublas_handles[id], CUBLAS_TF32_TENSOR_OP_MATH));
-        }
-
-        // configure logging to stdout
-        // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
-
-        initialized = true;
-    }
-}
-
-void ggml_cuda_set_tensor_split(const float * tensor_split) {
-    if (tensor_split == nullptr) {
-        return;
-    }
-    bool all_zero = true;
-    for (int i = 0; i < g_device_count; ++i) {
-        if (tensor_split[i] != 0.0f) {
-            all_zero = false;
-            break;
-        }
-    }
-    if (all_zero) {
-        return;
-    }
-    float split_sum = 0.0f;
-    for (int i = 0; i < g_device_count; ++i) {
-        g_tensor_split[i] = split_sum;
-        split_sum += tensor_split[i];
-    }
-    for (int i = 0; i < g_device_count; ++i) {
-        g_tensor_split[i] /= split_sum;
-    }
-}
-
-void * ggml_cuda_host_malloc(size_t size) {
-    if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
-        return nullptr;
-    }
-
-    void * ptr = nullptr;
-    cudaError_t err = cudaMallocHost((void **) &ptr, size);
-    if (err != cudaSuccess) {
-        // The allocation error can be bypassed. A null ptr will assigned out of this function.
-        // This can fixed the OOM error in WSL.
-        cudaGetLastError();
-        fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
-            size/1024.0/1024.0, cudaGetErrorString(err));
-        return nullptr;
-    }
-
-    return ptr;
-}
-
-void ggml_cuda_host_free(void * ptr) {
-    CUDA_CHECK(cudaFreeHost(ptr));
-}
-
-static cudaError_t ggml_cuda_cpy_tensor_2d(
-    void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
-
-    cudaMemcpyKind kind;
-    char * src_ptr;
-    if (src->backend == GGML_BACKEND_CPU) {
-        kind = cudaMemcpyHostToDevice;
-        src_ptr = (char *) src->data;
-    } else if (src->backend == GGML_BACKEND_GPU) {
-        kind = cudaMemcpyDeviceToDevice;
-        struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
-        int id;
-        CUDA_CHECK(cudaGetDevice(&id));
-        src_ptr = (char *) extra->data_device[id];
-    } else {
-        GGML_ASSERT(false);
-    }
-    char * dst_ptr = (char *) dst;
-
-    const int64_t ne0 = src->ne[0];
-    const int64_t nb0 = src->nb[0];
-    const int64_t nb1 = src->nb[1];
-    const int64_t nb2 = src->nb[2];
-    const int64_t nb3 = src->nb[3];
-    const enum ggml_type type = src->type;
-    const int64_t ts = ggml_type_size(type);
-    const int64_t bs = ggml_blck_size(type);
-    int64_t i1_diff = i1_high - i1_low;
-
-    const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
-    if (nb0 == ts && nb1 == ts*ne0/bs) {
-        return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
-    } else if (nb0 == ts) {
-        return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
-    } else {
-        for (int64_t i1 = 0; i1 < i1_diff; i1++) {
-            const void * rx = (const void *) ((const char *) x + i1*nb1);
-            void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
-            // pretend the row is a matrix with cols=1
-            cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
-            if (r != cudaSuccess) return r;
-        }
-        return cudaSuccess;
-    }
-}
-
-inline void ggml_cuda_op_add(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
-    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
-    cudaStream_t & cudaStream_main){
-
-    GGML_ASSERT(src0_ddq_i != nullptr || src0_ddf_i != nullptr);
-    GGML_ASSERT(src1_ddf_i != nullptr);
-    GGML_ASSERT(dst_ddf_i  != nullptr);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t i01_diff = i01_high - i01_low;
-
-    const int64_t ne10 = src1->ne[0];
-    const int64_t ne11 = src1->ne[1];
-
-    // compute
-    if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
-        add_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main);
-    } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
-        add_f16_f32_f16_cuda((half *) src0_ddq_i, src1_ddf_i, (half *) dst_ddf_i, ne00*i01_diff, cudaStream_main);
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    (void) src1;
-    (void) dst;
-    (void) src0_ddq_i;
-    (void) i02;
-    (void) i1;
-}
-
-inline void ggml_cuda_op_mul(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
-    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
-    cudaStream_t & cudaStream_main){
-
-    GGML_ASSERT(src0_ddf_i != nullptr);
-    GGML_ASSERT(src1_ddf_i != nullptr);
-    GGML_ASSERT(dst_ddf_i  != nullptr);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t i01_diff = i01_high - i01_low;
-
-    const int64_t ne10 = src1->ne[0];
-    const int64_t ne11 = src1->ne[1];
-
-    mul_f32_cuda(src0_ddf_i, src1_ddf_i, dst_ddf_i, ne00*i01_diff, ne10*ne11, cudaStream_main);
-
-    (void) dst;
-    (void) src0_ddq_i;
-    (void) i02;
-    (void) i1;
-}
-
-inline void ggml_cuda_op_gelu(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
-    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
-    cudaStream_t & cudaStream_main){
-
-    GGML_ASSERT(src0_ddf_i != nullptr);
-    GGML_ASSERT(dst_ddf_i != nullptr);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t i01_diff = i01_high - i01_low;
-
-    // compute
-    gelu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
-
-    (void) src1;
-    (void) dst;
-    (void) src0_ddq_i;
-    (void) src1_ddf_i;
-    (void) i02;
-    (void) i1;
-}
-
-inline void ggml_cuda_op_silu(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
-    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
-    cudaStream_t & cudaStream_main){
-
-    GGML_ASSERT(src0_ddf_i != nullptr);
-    GGML_ASSERT(dst_ddf_i != nullptr);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t i01_diff = i01_high - i01_low;
-
-    // compute
-    silu_f32_cuda(src0_ddf_i, dst_ddf_i, ne00*i01_diff, cudaStream_main);
-
-    (void) src1;
-    (void) dst;
-    (void) src0_ddq_i;
-    (void) src1_ddf_i;
-    (void) i02;
-    (void) i1;
-}
-
-inline void ggml_cuda_op_norm(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
-    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
-    cudaStream_t & cudaStream_main){
-
-    GGML_ASSERT(src0_ddf_i != nullptr);
-    GGML_ASSERT(dst_ddf_i != nullptr);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t i01_diff = i01_high - i01_low;
-
-    // compute
-    norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
-
-    (void) src1;
-    (void) dst;
-    (void) src0_ddq_i;
-    (void) src1_ddf_i;
-    (void) i02;
-    (void) i1;
-}
-
-inline void ggml_cuda_op_rms_norm(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
-    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
-    cudaStream_t & cudaStream_main){
-
-    GGML_ASSERT(src0_ddf_i != nullptr);
-    GGML_ASSERT(dst_ddf_i != nullptr);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t i01_diff = i01_high - i01_low;
-
-    float eps;
-    memcpy(&eps, dst->op_params, sizeof(float));
-
-    // compute
-    rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, eps, cudaStream_main);
-
-    (void) src1;
-    (void) dst;
-    (void) src0_ddq_i;
-    (void) src1_ddf_i;
-    (void) i02;
-    (void) i1;
-}
-
-inline void ggml_cuda_op_mul_mat_q(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
-    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
-    cudaStream_t & cudaStream_main){
-
-    GGML_ASSERT(src0_ddq_i != nullptr);
-    GGML_ASSERT(src1_ddf_i != nullptr);
-    GGML_ASSERT(dst_ddf_i != nullptr);
-
-    const int64_t ne00 = src0->ne[0];
-
-    const int64_t ne10 = src1->ne[0];
-    const int64_t ne11 = src1->ne[1];
-    GGML_ASSERT(ne10 % QK8_1 == 0);
-
-    const int64_t ne0 = dst->ne[0];
-
-    const int64_t i01_diff = i01_high - i01_low;
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-
-    // the main device has a larger memory buffer to hold the results from all GPUs
-    // nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
-    const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;
-
-    const int64_t padded_row_size = ne10 % MATRIX_ROW_PADDING == 0 ?
-        ne10 : ne10 - ne10 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING;
-    size_t as;
-    void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*ne11*sizeof(block_q8_1)/QK8_1, &as);
-    quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne10, ne11, padded_row_size, cudaStream_main);
-
-    switch (src0->type) {
-        case GGML_TYPE_Q4_0:
-            ggml_mul_mat_q4_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
-            break;
-        case GGML_TYPE_Q4_1:
-            ggml_mul_mat_q4_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
-            break;
-        case GGML_TYPE_Q5_0:
-            ggml_mul_mat_q5_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
-            break;
-        case GGML_TYPE_Q5_1:
-            ggml_mul_mat_q5_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
-            break;
-        case GGML_TYPE_Q8_0:
-            ggml_mul_mat_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
-            break;
-        case GGML_TYPE_Q2_K:
-            ggml_mul_mat_q2_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
-            break;
-        case GGML_TYPE_Q3_K:
-            ggml_mul_mat_q3_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
-            break;
-        case GGML_TYPE_Q4_K:
-            ggml_mul_mat_q4_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
-            break;
-        case GGML_TYPE_Q5_K:
-            ggml_mul_mat_q5_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
-            break;
-        case GGML_TYPE_Q6_K:
-            ggml_mul_mat_q6_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, i01_diff, ne11, padded_row_size, nrows_dst, cudaStream_main);
-            break;
-        default:
-            GGML_ASSERT(false);
-            break;
-    }
-
-    ggml_cuda_pool_free(src1_q8_1, as);
-
-    (void) src1;
-    (void) dst;
-    (void) src0_ddf_i;
-    (void) i02;
-    (void) i1;
-}
-
-static int64_t get_row_rounding(ggml_type type) {
-    int max_compute_capability = INT_MIN;
-    for (int id = 0; id < g_device_count; ++id) {
-        if (max_compute_capability < g_compute_capabilities[id]
-                && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
-            max_compute_capability = g_compute_capabilities[id];
-        }
-    }
-
-    switch(type) {
-        case GGML_TYPE_Q4_0:
-        case GGML_TYPE_Q4_1:
-            return max_compute_capability >= CC_TURING ? 128 : 64;
-        case GGML_TYPE_Q5_0:
-        case GGML_TYPE_Q5_1:
-        case GGML_TYPE_Q8_0:
-            return 64;
-        case GGML_TYPE_F16:
-            return 1;
-        case GGML_TYPE_Q2_K:
-        case GGML_TYPE_Q3_K:
-        case GGML_TYPE_Q4_K:
-        case GGML_TYPE_Q5_K:
-            return max_compute_capability >= CC_TURING ? 128 : 64;
-        case GGML_TYPE_Q6_K:
-            return 64;
-        default:
-            GGML_ASSERT(false);
-    }
-}
-
-inline void ggml_cuda_op_mul_mat_vec(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
-    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
-    cudaStream_t & cudaStream_main){
-
-    GGML_ASSERT(src0_ddq_i != nullptr);
-    GGML_ASSERT(src1_ddf_i != nullptr);
-    GGML_ASSERT(dst_ddf_i != nullptr);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t nrows = i01_high - i01_low;
-
-#ifdef GGML_CUDA_FORCE_DMMV
-    const bool use_mul_mat_vec_q = false;
-    (void) g_compute_capabilities[0];
-#else
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-
-    bool mul_mat_vec_q_implemented =
-        src0->type == GGML_TYPE_Q4_0 ||
-        src0->type == GGML_TYPE_Q4_1 ||
-        src0->type == GGML_TYPE_Q5_0 ||
-        src0->type == GGML_TYPE_Q5_1 ||
-        src0->type == GGML_TYPE_Q8_0;
-#if QK_K == 256
-    mul_mat_vec_q_implemented = mul_mat_vec_q_implemented ||
-        src0->type == GGML_TYPE_Q2_K ||
-        src0->type == GGML_TYPE_Q3_K ||
-        src0->type == GGML_TYPE_Q4_K ||
-        src0->type == GGML_TYPE_Q5_K ||
-        src0->type == GGML_TYPE_Q6_K;
-#endif // QK_K == 256
-
-    const bool use_mul_mat_vec_q = g_compute_capabilities[id] >= MIN_CC_DP4A && mul_mat_vec_q_implemented;
-#endif
-
-    if (use_mul_mat_vec_q) {
-        const int64_t padded_row_size = ne00 % MATRIX_ROW_PADDING == 0 ?
-            ne00 : ne00 - ne00 % MATRIX_ROW_PADDING + MATRIX_ROW_PADDING;
-        size_t as;
-        void * src1_q8_1 = ggml_cuda_pool_malloc(padded_row_size*sizeof(block_q8_1)/QK8_1, &as);
-        quantize_row_q8_1_cuda(src1_ddf_i, src1_q8_1, ne00, 1, padded_row_size, cudaStream_main);
-
-        switch (src0->type) {
-            case GGML_TYPE_Q4_0:
-                mul_mat_vec_q4_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q4_1:
-                mul_mat_vec_q4_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q5_0:
-                mul_mat_vec_q5_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q5_1:
-                mul_mat_vec_q5_1_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q8_0:
-                mul_mat_vec_q8_0_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q2_K:
-                mul_mat_vec_q2_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q3_K:
-                mul_mat_vec_q3_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q4_K:
-                mul_mat_vec_q4_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q5_K:
-                mul_mat_vec_q5_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q6_K:
-                mul_mat_vec_q6_K_q8_1_cuda(src0_ddq_i, src1_q8_1, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            default:
-                GGML_ASSERT(false);
-                break;
-        }
-
-        ggml_cuda_pool_free(src1_q8_1, as);
-    } else {
-        // on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
-#ifdef GGML_CUDA_F16
-        size_t ash;
-        dfloat * src1_dfloat = nullptr; // dfloat == half
-
-        bool src1_convert_f16 = src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
-            src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
-            src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
-
-        if (src1_convert_f16) {
-            src1_dfloat = (half *) ggml_cuda_pool_malloc(ne00*sizeof(half), &ash);
-            ggml_cpy_f32_f16_cuda((char *) src1_ddf_i, (char *) src1_dfloat, ne00,
-                                    ne00, 1, sizeof(float), 0, 0,
-                                    ne00, 1, sizeof(half),  0, 0, cudaStream_main);
-        }
-#else
-        dfloat * src1_dfloat = src1_ddf_i; // dfloat == float, no conversion
-#endif // GGML_CUDA_F16
-
-        switch (src0->type) {
-            case GGML_TYPE_Q4_0:
-                dequantize_mul_mat_vec_q4_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q4_1:
-                dequantize_mul_mat_vec_q4_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q5_0:
-                dequantize_mul_mat_vec_q5_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q5_1:
-                dequantize_mul_mat_vec_q5_1_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q8_0:
-                dequantize_mul_mat_vec_q8_0_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q2_K:
-                dequantize_mul_mat_vec_q2_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q3_K:
-                dequantize_mul_mat_vec_q3_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q4_K:
-                dequantize_mul_mat_vec_q4_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q5_K:
-                dequantize_mul_mat_vec_q5_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_Q6_K:
-                dequantize_mul_mat_vec_q6_K_cuda(src0_ddq_i, src1_ddf_i, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            case GGML_TYPE_F16:
-                convert_mul_mat_vec_f16_cuda(src0_ddq_i, src1_dfloat, dst_ddf_i, ne00, nrows, cudaStream_main);
-                break;
-            default:
-                GGML_ASSERT(false);
-                break;
-        }
-
-#ifdef GGML_CUDA_F16
-        if (src1_convert_f16) {
-            ggml_cuda_pool_free(src1_dfloat, ash);
-        }
-#endif // GGML_CUDA_F16
-    }
-
-    (void) src1;
-    (void) dst;
-    (void) src0_ddf_i;
-    (void) i02;
-    (void) i1;
-}
-
-inline void ggml_cuda_op_mul_mat_cublas(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
-    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
-    cudaStream_t & cudaStream_main){
-
-    GGML_ASSERT(src0_ddf_i != nullptr);
-    GGML_ASSERT(src1_ddf_i != nullptr);
-    GGML_ASSERT(dst_ddf_i != nullptr);
-
-    const float alpha = 1.0f;
-    const float beta = 0.0f;
-
-    const int64_t ne00 = src0->ne[0];
-
-    const int64_t ne10 = src1->ne[0];
-    const int64_t ne11 = src1->ne[1];
-
-    const int64_t ne0 = dst->ne[0];
-    const int64_t i01_diff = i01_high - i01_low;
-
-    int id;
-    CUDA_CHECK(cudaGetDevice(&id));
-
-    // the main device has a larger memory buffer to hold the results from all GPUs
-    // ldc == nrows of the matrix that cuBLAS writes into
-    int ldc = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;
-
-    CUBLAS_CHECK(cublasSetStream(g_cublas_handles[id], cudaStream_main));
-    CUBLAS_CHECK(
-        cublasSgemm(g_cublas_handles[id], CUBLAS_OP_T, CUBLAS_OP_N,
-                i01_diff, ne11, ne10,
-                &alpha, src0_ddf_i, ne00,
-                        src1_ddf_i, ne10,
-                &beta,  dst_ddf_i,  ldc));
-
-    (void) dst;
-    (void) src0_ddq_i;
-    (void) i02;
-    (void) i1;
-}
-
-inline void ggml_cuda_op_rope(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
-    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
-    cudaStream_t & cudaStream_main){
-
-    GGML_ASSERT(src0_ddf_i != nullptr);
-    GGML_ASSERT(dst_ddf_i != nullptr);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t i01_diff = i01_high - i01_low;
-
-    const int n_past = ((int32_t *) dst->op_params)[0];
-    const int n_dims = ((int32_t *) dst->op_params)[1];
-    const int mode   = ((int32_t *) dst->op_params)[2];
-    const int n_ctx  = ((int32_t *) dst->op_params)[3];
-    // RoPE alteration for extended context
-
-    float freq_base, freq_scale;
-    memcpy(&freq_base,  (int32_t *) dst->op_params + 4, sizeof(float));
-    memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
-
-    const float theta_scale = powf(freq_base, -2.0f/n_dims);
-
-    const bool is_glm = mode & 4;
-
-    // compute
-    if (is_glm) {
-        const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
-        const float id_p = min(p, n_ctx - 2.f);
-        const float block_p = max(p - (n_ctx - 2.f), 0.f);
-        rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
-    } else {
-        const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
-        rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
-    }
-
-    (void) src1;
-    (void) dst;
-    (void) src0_ddq_i;
-    (void) src1_ddf_i;
-    (void) i1;
-}
-
-inline void ggml_cuda_op_diag_mask_inf(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
-    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
-    cudaStream_t & cudaStream_main){
-
-    GGML_ASSERT(src0_ddf_i != nullptr);
-    GGML_ASSERT(dst_ddf_i != nullptr);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t i01_diff = i01_high - i01_low;
-
-    const int n_past = ((int32_t *) dst->op_params)[0];
-
-    // compute
-    diag_mask_inf_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, ne01, n_past, cudaStream_main);
-
-    (void) src1;
-    (void) dst;
-    (void) src0_ddq_i;
-    (void) src1_ddf_i;
-    (void) i02;
-    (void) i1;
-}
-
-inline void ggml_cuda_op_soft_max(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
-    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
-    cudaStream_t & cudaStream_main){
-
-    GGML_ASSERT(src0_ddf_i != nullptr);
-    GGML_ASSERT(dst_ddf_i != nullptr);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t i01_diff = i01_high - i01_low;
-
-    // compute
-    soft_max_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
-
-    (void) src1;
-    (void) dst;
-    (void) src0_ddq_i;
-    (void) src1_ddf_i;
-    (void) i02;
-    (void) i1;
-}
-
-inline void ggml_cuda_op_scale(
-    const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, char * src0_ddq_i,
-    float * src0_ddf_i, float * src1_ddf_i, float * dst_ddf_i, int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
-    cudaStream_t & cudaStream_main){
-
-    GGML_ASSERT(src0_ddf_i != nullptr);
-    GGML_ASSERT(dst_ddf_i != nullptr);
-
-    const float scale = ((float *) src1->data)[0];
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t i01_diff = i01_high - i01_low;
-
-    // compute
-    scale_f32_cuda(src0_ddf_i, dst_ddf_i, scale, ne00*i01_diff, cudaStream_main);
-    CUDA_CHECK(cudaGetLastError());
-
-    (void) src1;
-    (void) dst;
-    (void) src0_ddq_i;
-    (void) src1_ddf_i;
-    (void) i02;
-    (void) i1;
-}
-
-static void ggml_cuda_op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
-                         ggml_cuda_op_t op, bool src0_needs_f32, bool flatten_rows) {
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t ne02 = src0->ne[2];
-    const int64_t ne03 = src0->ne[3];
-    const int64_t nrows0 = ggml_nrows(src0);
-
-    const bool use_src1 = src1 != nullptr;
-    const int64_t ne10 = use_src1 ? src1->ne[0] : 1;
-    const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
-    const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
-    const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
-    const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
-
-    GGML_ASSERT(ne03 == ne13);
-
-    const int64_t ne0 = dst->ne[0];
-    const int64_t ne1 = dst->ne[1];
-
-    const int nb2  = dst->nb[2];
-    const int nb3  = dst->nb[3];
-
-    GGML_ASSERT(dst->backend != GGML_BACKEND_GPU_SPLIT);
-    GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
-
-    // strides for iteration over dims 3 and 2
-    const int64_t num_iters_0 = ne02 >= ne12 ? ne02*ne03 : ne12*ne13;
-    const int64_t num_iters = flatten_rows ? 1 : num_iters_0;
-    const int64_t stride_mod = flatten_rows ? num_iters_0 : 1;
-    const int64_t src0_stride = ne00 * ne01 * stride_mod;
-    const int64_t src1_stride = ne10 * ne11 * stride_mod;
-    const int64_t dst_stride = ne0 * ne1 * stride_mod;
-
-    const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
-    const int64_t i03_max = flatten_rows ? 1 : ne03;
-    const int64_t i02_max = flatten_rows ? 1 : (ne02 >= ne12 ? ne02 : ne12);
-    const int64_t i02_divisor = ne02 >= ne12 ? 1 : ne12 / ne02;
-    GGML_ASSERT(!(flatten_rows && ne02 < ne12));
-
-    const size_t src0_ts = ggml_type_size(src0->type);
-    const size_t src0_bs = ggml_blck_size(src0->type);
-
-    struct ggml_tensor_extra_gpu * src0_extra =            (ggml_tensor_extra_gpu *) src0->extra;
-    struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
-    struct ggml_tensor_extra_gpu * dst_extra  =            (ggml_tensor_extra_gpu *) dst->extra;
-
-    const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
-    const bool src0_is_contiguous = ggml_is_contiguous(src0);
-    const bool src0_is_f32 = src0->type == GGML_TYPE_F32;
-
-    const bool src1_is_contiguous = use_src1 && ggml_is_contiguous(src1);
-    const bool src1_stays_on_host = use_src1 && (
-        dst->op == GGML_OP_SCALE || dst->op == GGML_OP_DIAG_MASK_INF || dst->op == GGML_OP_ROPE);
-
-    const bool split = src0->backend == GGML_BACKEND_GPU_SPLIT;
-    GGML_ASSERT(!(split && ne02 < ne12));
-
-    const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
-
-    // dd = data device
-    char  * src0_ddq[GGML_CUDA_MAX_DEVICES] = {nullptr}; // quantized
-    float * src0_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr}; // float
-    float * src1_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
-    float *  dst_ddf[GGML_CUDA_MAX_DEVICES] = {nullptr};
-
-    // asq = actual size quantized, asf = actual size float
-    size_t src0_asq[GGML_CUDA_MAX_DEVICES] = {0};
-    size_t src0_asf[GGML_CUDA_MAX_DEVICES] = {0};
-    size_t src1_asf[GGML_CUDA_MAX_DEVICES] = {0};
-    size_t  dst_asf[GGML_CUDA_MAX_DEVICES] = {0};
-
-    // if multiple devices are used they need to wait for the main device
-    // here an event is recorded that signifies that the main device has finished calculating the input data
-    if (split && g_device_count > 1) {
-        CUDA_CHECK(cudaSetDevice(g_main_device));
-        CUDA_CHECK(cudaEventRecord(src0_extra->events[g_main_device], g_cudaStreams_main[g_main_device]));
-    }
-
-    for (int id = 0; id < g_device_count; ++id) {
-        if (!split && id != g_main_device) {
-            continue;
-        }
-
-        const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU && id == g_main_device;
-        const bool dst_on_device = dst->backend == GGML_BACKEND_GPU && id == g_main_device;
-
-        int64_t row_low, row_high;
-        if (split) {
-            const int64_t rounding = get_row_rounding(src0->type);
-
-            row_low = id == 0 ? 0 : nrows0*g_tensor_split[id];
-            row_low -= row_low % rounding;
-
-            if (id == g_device_count - 1) {
-                row_high = nrows0;
-            } else {
-                row_high = nrows0*g_tensor_split[id + 1];
-                row_high -= row_high % rounding;
-            }
-        } else {
-            row_low = 0;
-            row_high = nrows0*i02_divisor;
-        }
-        if (row_low == row_high) {
-            continue;
-        }
-
-        int64_t row_diff = row_high - row_low;
-
-        cudaSetDevice(id);
-        cudaStream_t cudaStream_main = g_cudaStreams_main[id];
-
-        // wait for main GPU data if necessary
-        if (split && id != g_main_device) {
-            CUDA_CHECK(cudaStreamWaitEvent(cudaStream_main, src0_extra->events[g_main_device]));
-        }
-
-        if (src0_on_device && src0_is_contiguous) {
-            if (src0_is_f32) {
-                src0_ddf[id] = (float *) src0_extra->data_device[id];
-            } else {
-                src0_ddq[id] = (char *) src0_extra->data_device[id];
-            }
-        } else {
-            if (src0_is_f32) {
-                src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
-            } else {
-                src0_ddq[id] = (char *) ggml_cuda_pool_malloc(row_diff*ne00 * src0_ts/src0_bs, &src0_asq[id]);
-            }
-        }
-
-        if (src0_needs_f32 && !src0_is_f32) {
-            src0_ddf[id] = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_asf[id]);
-        }
-
-        if (use_src1 && !src1_stays_on_host) {
-            if (src1_on_device && src1_is_contiguous) {
-                src1_ddf[id] = (float *) src1_extra->data_device[id];
-            } else {
-                src1_ddf[id] = (float *) ggml_cuda_pool_malloc(num_iters*src1_stride * sizeof(float), &src1_asf[id]);
-            }
-        }
-        if (dst_on_device) {
-            dst_ddf[id] = (float *) dst_extra->data_device[id];
-        } else {
-            size_t size_dst_ddf = split ? row_diff*ne1 * sizeof(float) : num_iters*dst_stride * sizeof(float);
-            dst_ddf[id] = (float *) ggml_cuda_pool_malloc(size_dst_ddf, &dst_asf[id]);
-        }
-
-        for (int64_t i03 = 0; i03 < i03_max; i03++) {
-            const int64_t i13 = i03 % ne13;
-            for (int64_t i02 = 0; i02 < i02_max; i02++) {
-                const int64_t i12 = i02 % ne12;
-
-                const int64_t i0 = i03*i02_max + i02;
-
-                // i0 values that contain the lower/upper rows for a split tensor when using multiple GPUs
-                const int64_t i0_offset_low = row_low/rows_per_iter;
-                const int64_t i0_offset_high = row_high/rows_per_iter;
-
-                int64_t i01_low = 0;
-                int64_t i01_high = rows_per_iter;
-                if (split) {
-                    if (i0 < i0_offset_low || i0 > i0_offset_high) {
-                        continue;
-                    }
-                    if (i0 == i0_offset_low) {
-                        i01_low = row_low % rows_per_iter;
-                    }
-                    if (i0 == i0_offset_high) {
-                        i01_high = row_high % rows_per_iter;
-                    }
-                }
-
-                // There is possibly a bug in the Windows nvcc compiler regarding instruction reordering or optimizing out local variables.
-                // Removing the first assert or changing the order of the arguments causes the second assert to fail.
-                // Removing both asserts results in i01_high becoming 0 which in turn results in garbage output.
-                // The root cause seems to be a problem with i0_offset_high becoming 0 when it should always be >0 (for single GPU).
-                GGML_ASSERT(i01_low == 0 || g_device_count > 1);
-                GGML_ASSERT(i01_high == rows_per_iter || g_device_count > 1);
-
-                const int64_t i01_diff = i01_high - i01_low;
-                if (i01_diff == 0) {
-                    continue;
-                }
-                const int64_t i11 = i13*ne12 + i12;
-
-                // for split tensors the data begins at i0 == i0_offset_low
-                char  * src0_ddq_i = src0_ddq[id] + (i0/i02_divisor - i0_offset_low)*src0_stride*src0_ts/src0_bs;
-                float * src0_ddf_i = src0_ddf[id] + (i0/i02_divisor - i0_offset_low)*src0_stride;
-                float * src1_ddf_i = src1_ddf[id] + i11*src1_stride;
-                float * dst_ddf_i  =  dst_ddf[id] + (i0             - i0_offset_low)*dst_stride;
-
-                // for split tensors the data pointer needs to be rounded down
-                // to the bin edge for i03, i02 bins beyond the first
-                if (i0 - i0_offset_low > 0) {
-                    GGML_ASSERT(!flatten_rows);
-                    src0_ddq_i -= (row_low % ne01)*ne00 * src0_ts/src0_bs;
-                    src0_ddf_i -= (row_low % ne01)*ne00;
-                    dst_ddf_i  -= (row_low % ne0)*ne1;
-                }
-
-                // the main device memory buffer can be on VRAM scratch, with space for all partial results
-                // in that case an offset on dst_ddf_i is needed
-                if (dst->backend == GGML_BACKEND_GPU && id == g_main_device) {
-                    dst_ddf_i += i01_low; // offset is 0 if no tensor split
-                }
-
-                // copy src0, src1 to device if necessary
-                if (use_src1 && !src1_stays_on_host) {
-                    if (src1->backend == GGML_BACKEND_CPU) {
-                        GGML_ASSERT(!flatten_rows || nrows0 == ggml_nrows(src1));
-                        int64_t nrows1 = flatten_rows ? nrows0 : ne11;
-                        CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, nrows1, cudaStream_main));
-                    } else if (src1->backend == GGML_BACKEND_GPU && src1_is_contiguous) {
-                        if (id != g_main_device) {
-                            GGML_ASSERT(!flatten_rows);
-                            float * src1_ddf_i_source = (float *) src1_extra->data_device[g_main_device];
-                            src1_ddf_i_source += i11*src1_stride;
-                            CUDA_CHECK(cudaMemcpyAsync(src1_ddf_i, src1_ddf_i_source, src1_stride*sizeof(float),
-                                                    cudaMemcpyDeviceToDevice, cudaStream_main));
-                        }
-                    } else if (src1_on_device && !src1_is_contiguous) {
-                        GGML_ASSERT(!split);
-                        CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src1_ddf_i, src1, i03, i02, 0, ne11, cudaStream_main));
-                    } else {
-                        GGML_ASSERT(false);
-                    }
-                }
-
-                if ((!src0_on_device || !src0_is_contiguous) && i02 % i02_divisor == 0) {
-                    if (src0_is_f32) {
-                        CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddf_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
-                    } else {
-                        CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_ddq_i, src0, i03, i02/i02_divisor, i01_low, i01_high, cudaStream_main));
-                    }
-                }
-
-                // convert src0 to f32 if it is necessary for the ggml_cuda_op
-                if (src0_needs_f32 && !src0_is_f32) {
-                    to_fp32_cuda(src0_ddq_i, src0_ddf_i, i01_diff*ne00, cudaStream_main);
-                    CUDA_CHECK(cudaGetLastError());
-                }
-
-                // do the computation
-                op(src0, src1, dst, src0_ddq_i, src0_ddf_i, src1_ddf_i, dst_ddf_i, i02, i01_low, i01_high, i11, cudaStream_main);
-                CUDA_CHECK(cudaGetLastError());
-
-                // copy dst to host or other device if necessary
-                if (!dst_on_device) {
-                    void * dst_off_device;
-                    cudaMemcpyKind kind;
-                    if (dst->backend == GGML_BACKEND_CPU) {
-                        dst_off_device = dst->data;
-                        kind = cudaMemcpyDeviceToHost;
-                    } else if (dst->backend == GGML_BACKEND_GPU) {
-                        dst_off_device = dst_extra->data_device[g_main_device];
-                        kind = cudaMemcpyDeviceToDevice;
-                    } else {
-                        GGML_ASSERT(false);
-                    }
-                    if (split) {
-                        // src0 = weight matrix is saved as a transposed matrix for better memory layout.
-                        // dst is NOT transposed.
-                        // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
-                        // Instead they need to be copied to the correct slice in ne0 = dst row index.
-                        // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
-                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i01_low*sizeof(float) + i02*nb2 + i03*nb3);
-                        CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), dst_ddf_i, i01_diff*sizeof(float),
-                                                     i01_diff*sizeof(float), ne1, kind, cudaStream_main));
-                    } else {
-                        float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
-                        CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_ddf_i, dst_stride*sizeof(float), kind, cudaStream_main));
-                    }
-                }
-
-                // signify to main device that other device is done
-                if (split && g_device_count > 1 && id != g_main_device) {
-                    CUDA_CHECK(cudaEventRecord(src0_extra->events[id], cudaStream_main));
-                }
-            }
-        }
-    }
-
-    // wait until each device is finished, then free their buffers
-    for (int id = 0; id < g_device_count; ++id) {
-        if (src0_asq[id] == 0 && src0_asf[id] == 0 && src1_asf[id] == 0 && dst_asf[id] == 0) {
-            continue;
-        }
-
-        CUDA_CHECK(cudaSetDevice(id));
-
-        if (src0_asq[id] > 0) {
-            ggml_cuda_pool_free(src0_ddq[id], src0_asq[id]);
-        }
-        if (src0_asf[id] > 0) {
-            ggml_cuda_pool_free(src0_ddf[id], src0_asf[id]);
-        }
-        if (src1_asf[id] > 0) {
-            ggml_cuda_pool_free(src1_ddf[id], src1_asf[id]);
-        }
-        if (dst_asf[id] > 0) {
-            ggml_cuda_pool_free(dst_ddf[id], dst_asf[id]);
-        }
-    }
-
-    // main device waits for all other devices to be finished
-    if (split && g_device_count > 1) {
-        CUDA_CHECK(cudaSetDevice(g_main_device));
-        for (int id = 0; id < g_device_count; ++id) {
-            if (id != g_main_device && src0_extra->events[id]) {
-                CUDA_CHECK(cudaStreamWaitEvent(g_cudaStreams_main[g_main_device], src0_extra->events[id]));
-            }
-        }
-    }
-
-    if (dst->backend == GGML_BACKEND_CPU) {
-        CUDA_CHECK(cudaSetDevice(g_main_device));
-        CUDA_CHECK(cudaDeviceSynchronize());
-    }
-}
-
-void ggml_cuda_add(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    // ggml_cuda_add permits f16 dst even though this could in theory cause problems with the pointer arithmetic in ggml_cuda_op.
-    // Due to flatten_rows == true this does in practice not make a difference however.
-    // Better solution would be nice but right now that would require disproportionate changes.
-    GGML_ASSERT(
-        (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16) &&
-        src1->type == GGML_TYPE_F32 &&
-        (dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16));
-    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_add, false, true);
-}
-
-void ggml_cuda_mul(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
-    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul, true, false); // TODO ggml_cuda_op needs modification for flatten
-}
-
-void ggml_cuda_gelu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
-    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_gelu, true, true);
-}
-
-void ggml_cuda_silu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
-    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_silu, true, true);
-}
-
-void ggml_cuda_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
-    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_norm, true, true);
-}
-
-void ggml_cuda_rms_norm(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
-    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rms_norm, true, true);
-}
-
-bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
-    const int64_t ne10 = src1->ne[0];
-
-    const int64_t ne0 = dst->ne[0];
-    const int64_t ne1 = dst->ne[1];
-
-    // TODO: find the optimal values for these
-    if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
-        src1->type == GGML_TYPE_F32 &&
-        dst->type == GGML_TYPE_F32 &&
-        (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
-        return true;
-    }
-
-    return false;
-}
-
-void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
-    GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
-    GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
-    GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
-    GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
-    GGML_ASSERT(src0->type == GGML_TYPE_F16);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t ne02 = src0->ne[2];
-
-    const int64_t ne12 = src1->ne[2];
-
-    CUDA_CHECK(cudaSetDevice(g_main_device));
-    cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
-
-    struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
-    void * src0_ddq = src0_extra->data_device[g_main_device];
-
-    struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
-    float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
-
-    struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
-    float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
-
-    ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, cudaStream_main);
-}
-
-void ggml_cuda_mul_mat_vec_nc(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
-    GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1));
-    GGML_ASSERT(!ggml_is_permuted(src0));
-    GGML_ASSERT(src0->backend != GGML_BACKEND_GPU_SPLIT);
-    GGML_ASSERT(src0->type == GGML_TYPE_F16);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t ne02 = src0->ne[2];
-
-    const int64_t ne12 = src1->ne[2];
-
-    const int64_t nb01 = src0->nb[1];
-    const int64_t nb02 = src0->nb[2];
-
-    CUDA_CHECK(cudaSetDevice(g_main_device));
-    cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
-
-    struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
-    void * src0_ddq = src0_extra->data_device[g_main_device];
-
-    struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
-    float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
-
-    struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
-    float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
-
-    const int row_stride_x = nb01 / sizeof(half);
-    const int channel_stride_x = nb02 / sizeof(half);
-
-    ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, cudaStream_main);
-}
-
-void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    bool all_on_device = (src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT) &&
-        src1->backend == GGML_BACKEND_GPU && dst->backend == GGML_BACKEND_GPU;
-
-    if (all_on_device && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
-        ggml_cuda_mul_mat_vec_p021(src0, src1, dst);
-    } else if (all_on_device && !ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->ne[1] == 1) {
-        ggml_cuda_mul_mat_vec_nc(src0, src1, dst);
-    }else if (src0->type == GGML_TYPE_F32) {
-        ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
-    } else if (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) {
-        if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0) {
-            ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_vec, false, false);
-        } else {
-            int min_compute_capability = INT_MAX;
-            for (int id = 0; id < g_device_count; ++id) {
-                if (min_compute_capability > g_compute_capabilities[id]
-                        && g_tensor_split[id] < (id + 1 < g_device_count ? g_tensor_split[id + 1] : 1.0f)) {
-                    min_compute_capability = g_compute_capabilities[id];
-                }
-            }
-
-            if (g_mul_mat_q && ggml_is_quantized(src0->type) && min_compute_capability >= MIN_CC_DP4A) {
-                ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_q, false, false);
-            } else {
-                ggml_cuda_op(src0, src1, dst, ggml_cuda_op_mul_mat_cublas, true, false);
-            }
-        }
-    } else {
-        GGML_ASSERT(false);
-    }
-}
-
-void ggml_cuda_scale(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
-    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_scale, true, true);
-}
-
-void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    const int64_t ne = ggml_nelements(src0);
-    GGML_ASSERT(ne == ggml_nelements(src1));
-
-    GGML_ASSERT(src0->backend == GGML_BACKEND_GPU);
-    GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
-
-    GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
-    GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    GGML_ASSERT(src0->ne[3] == 1);
-
-    const int64_t nb00 = src0->nb[0];
-    const int64_t nb01 = src0->nb[1];
-    const int64_t nb02 = src0->nb[2];
-
-    const int64_t ne10 = src1->ne[0];
-    const int64_t ne11 = src1->ne[1];
-    GGML_ASSERT(src1->ne[3] == 1);
-
-    const int64_t nb10 = src1->nb[0];
-    const int64_t nb11 = src1->nb[1];
-    const int64_t nb12 = src1->nb[2];
-
-    CUDA_CHECK(cudaSetDevice(g_main_device));
-    cudaStream_t cudaStream_main = g_cudaStreams_main[g_main_device];
-
-    const struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
-    const struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
-
-    char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
-    char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
-
-    if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
-        ggml_cpy_f32_f32_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
-                              ne10, ne11, nb10, nb11, nb12, cudaStream_main);
-    } else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
-        ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
-                              ne10, ne11, nb10, nb11, nb12, cudaStream_main);
-    } else {
-        GGML_ASSERT(false);
-    }
-
-    (void) dst;
-}
-
-void ggml_cuda_dup(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    ggml_cuda_cpy(src0, dst, nullptr);
-    (void) src1;
-}
-
-void ggml_cuda_diag_mask_inf(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
-    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_diag_mask_inf, true, true);
-}
-
-void ggml_cuda_soft_max(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
-    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_soft_max, true, true);
-}
-
-void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
-
-    const int mode = ((int32_t *) dst->op_params)[2];
-    const bool is_glm = mode & 4;
-    ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, !is_glm); // flatten support not implemented for glm
-}
-
-void ggml_cuda_nop(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    (void) src0;
-    (void) src1;
-    (void) dst;
-}
-
-void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) {
-    int nrows = ggml_nrows(tensor);
-
-    const int64_t ne0 = tensor->ne[0];
-
-    const size_t nb1 = tensor->nb[1];
-
-    ggml_backend backend = tensor->backend;
-    struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
-    memset(extra, 0, sizeof(*extra));
-
-    for (int id = 0; id < g_device_count; ++id) {
-        if (backend == GGML_BACKEND_GPU && id != g_main_device) {
-            continue;
-        }
-
-        cudaSetDevice(id);
-
-        int row_low, row_high;
-        if (backend == GGML_BACKEND_GPU) {
-            row_low = 0;
-            row_high = nrows;
-        } else if (backend == GGML_BACKEND_GPU_SPLIT) {
-            const int64_t rounding = get_row_rounding(tensor->type);
-
-            row_low = id == 0 ? 0 : nrows*g_tensor_split[id];
-            row_low -= row_low % rounding;
-
-            if (id == g_device_count - 1) {
-                row_high = nrows;
-            } else {
-                row_high = nrows*g_tensor_split[id + 1];
-                row_high -= row_high % rounding;
-            }
-        } else {
-            GGML_ASSERT(false);
-        }
-        if (row_low == row_high) {
-            continue;
-        }
-
-        int64_t nrows_split = row_high - row_low;
-
-        const size_t offset_split = row_low*nb1;
-        size_t size = ggml_nbytes_split(tensor, nrows_split);
-        const size_t original_size = size;
-
-        // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
-        if (ne0 % MATRIX_ROW_PADDING != 0) {
-            size += (MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING)
-                * ggml_type_size(tensor->type)/ggml_blck_size(tensor->type);
-        }
-
-        char * buf;
-        CUDA_CHECK(cudaMalloc(&buf, size));
-        char * buf_host = (char*)data + offset_split;
-
-        // set padding to 0 to avoid possible NaN values
-        if (size > original_size) {
-            CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
-        }
-
-
-        CUDA_CHECK(cudaMemcpy(buf, buf_host, original_size, cudaMemcpyHostToDevice));
-
-        extra->data_device[id] = buf;
-
-        if (backend == GGML_BACKEND_GPU_SPLIT) {
-            CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id], cudaEventDisableTiming));
-        }
-    }
-
-    tensor->extra = extra;
-}
-
-void ggml_cuda_free_data(struct ggml_tensor * tensor) {
-    if (!tensor || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) {
-        return;
-    }
-
-    ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
-
-    for (int id = 0; id < g_device_count; ++id) {
-        if (extra->data_device[id] != nullptr) {
-            CUDA_CHECK(cudaSetDevice(id));
-            CUDA_CHECK(cudaFree(extra->data_device[id]));
-        }
-
-        if (extra->events[id] != nullptr) {
-            CUDA_CHECK(cudaSetDevice(id));
-            CUDA_CHECK(cudaEventDestroy(extra->events[id]));
-        }
-    }
-
-    delete extra;
-}
-
-static struct ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr;
-static size_t g_temp_tensor_extra_index = 0;
-
-static struct ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
-    if (g_temp_tensor_extras == nullptr) {
-        g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES];
-    }
-
-    size_t alloc_index = g_temp_tensor_extra_index;
-    g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_MAX_NODES;
-    struct ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
-    memset(extra, 0, sizeof(*extra));
-
-    return extra;
-}
-
-void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace) {
-    if (scratch && g_scratch_size == 0) {
-        return;
-    }
-
-    // recursively assign CUDA buffers until a compute tensor is found
-    if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) {
-        const ggml_op src0_op = tensor->src[0]->op;
-        if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) {
-            ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace);
-        }
-    }
-    if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) {
-        ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace);
-    }
-
-    tensor->backend = GGML_BACKEND_GPU;
-    struct ggml_tensor_extra_gpu * extra;
-
-    const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) ||
-        tensor->op == GGML_OP_VIEW ||
-        force_inplace;
-    const size_t size = ggml_nbytes(tensor);
-
-    CUDA_CHECK(cudaSetDevice(g_main_device));
-    if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) {
-        struct ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra;
-        char * src0_ddc = (char *) src0_extra->data_device[g_main_device];
-        size_t offset = 0;
-        if (tensor->op == GGML_OP_VIEW) {
-            memcpy(&offset, tensor->op_params, sizeof(size_t));
-        }
-        extra = ggml_cuda_alloc_temp_tensor_extra();
-        extra->data_device[g_main_device] = src0_ddc + offset;
-    } else if (tensor->op == GGML_OP_CPY) {
-        struct ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra;
-        void * src1_ddv = src1_extra->data_device[g_main_device];
-        extra = ggml_cuda_alloc_temp_tensor_extra();
-        extra->data_device[g_main_device] = src1_ddv;
-    } else if (scratch) {
-        GGML_ASSERT(size <= g_scratch_size);
-        if (g_scratch_offset + size > g_scratch_size) {
-            g_scratch_offset = 0;
-        }
-
-        char * data = (char *) g_scratch_buffer;
-        if (data == nullptr) {
-            CUDA_CHECK(cudaMalloc(&data, g_scratch_size));
-            g_scratch_buffer = data;
-        }
-        extra = ggml_cuda_alloc_temp_tensor_extra();
-        extra->data_device[g_main_device] = data + g_scratch_offset;
-
-        g_scratch_offset += size;
-
-        GGML_ASSERT(g_scratch_offset <= g_scratch_size);
-    } else { // allocate new buffers outside of scratch
-        void * data;
-        CUDA_CHECK(cudaMalloc(&data, size));
-        CUDA_CHECK(cudaMemset(data, 0, size));
-        extra = new ggml_tensor_extra_gpu;
-        memset(extra, 0, sizeof(*extra));
-        extra->data_device[g_main_device] = data;
-    }
-
-    tensor->extra = extra;
-}
-
-void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) {
-    ggml_cuda_assign_buffers_impl(tensor, true, false);
-}
-
-void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) {
-    ggml_cuda_assign_buffers_impl(tensor, false, false);
-}
-
-void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor) {
-    ggml_cuda_assign_buffers_impl(tensor, false, true);
-}
-
-void ggml_cuda_set_main_device(int main_device) {
-    if (main_device >= g_device_count) {
-        fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n",
-                main_device, g_device_count, g_main_device);
-        return;
-    }
-    g_main_device = main_device;
-    if (g_device_count > 1) {
-        cudaDeviceProp prop;
-        CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device));
-        fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name);
-    }
-}
-
-void ggml_cuda_set_mul_mat_q(bool mul_mat_q) {
-    g_mul_mat_q = mul_mat_q;
-}
-
-void ggml_cuda_set_scratch_size(size_t scratch_size) {
-    g_scratch_size = scratch_size;
-}
-
-void ggml_cuda_free_scratch() {
-    if (g_scratch_buffer == nullptr) {
-        return;
-    }
-
-    CUDA_CHECK(cudaFree(g_scratch_buffer));
-    g_scratch_buffer = nullptr;
-}
-
-bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor){
-    ggml_cuda_func_t func;
-    const bool any_on_device = tensor->backend == GGML_BACKEND_GPU
-        || (tensor->src[0] != nullptr && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT))
-        || (tensor->src[1] != nullptr && tensor->src[1]->backend == GGML_BACKEND_GPU);
-
-    switch (tensor->op) {
-        case GGML_OP_DUP:
-            if (!any_on_device) {
-                return false;
-            }
-            func = ggml_cuda_dup;
-            break;
-        case GGML_OP_ADD:
-            if (!any_on_device) {
-                return false;
-            }
-            func = ggml_cuda_add;
-            break;
-        case GGML_OP_MUL:
-            if (!any_on_device) {
-                return false;
-            }
-            func = ggml_cuda_mul;
-            break;
-        case GGML_OP_UNARY:
-            switch (ggml_get_unary_op(tensor)) {
-                case GGML_UNARY_OP_GELU:
-                    if (!any_on_device) {
-                        return false;
-                    }
-                    func = ggml_cuda_gelu;
-                    break;
-                case GGML_UNARY_OP_SILU:
-                    if (!any_on_device) {
-                        return false;
-                    }
-                    func = ggml_cuda_silu;
-                    break;
-                default:
-                    return false;
-            } break;
-        case GGML_OP_NORM:
-            if (!any_on_device) {
-                return false;
-            }
-            func = ggml_cuda_norm;
-            break;
-        case GGML_OP_RMS_NORM:
-            if (!any_on_device) {
-                return false;
-            }
-            func = ggml_cuda_rms_norm;
-            break;
-        case GGML_OP_MUL_MAT:
-            if (!any_on_device && !ggml_cuda_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
-                return false;
-            }
-            func = ggml_cuda_mul_mat;
-            break;
-        case GGML_OP_SCALE:
-            if (!any_on_device) {
-                return false;
-            }
-            func = ggml_cuda_scale;
-            break;
-        case GGML_OP_CPY:
-            if (!any_on_device) {
-                return false;
-            }
-            func = ggml_cuda_cpy;
-            break;
-        case GGML_OP_CONT:
-            if (!any_on_device) {
-                return false;
-            }
-            func = ggml_cuda_dup;
-            break;
-        case GGML_OP_RESHAPE:
-        case GGML_OP_VIEW:
-        case GGML_OP_PERMUTE:
-        case GGML_OP_TRANSPOSE:
-            if (!any_on_device) {
-                return false;
-            }
-            func = ggml_cuda_nop;
-            break;
-        case GGML_OP_DIAG_MASK_INF:
-            if (!any_on_device) {
-                return false;
-            }
-            func = ggml_cuda_diag_mask_inf;
-            break;
-        case GGML_OP_SOFT_MAX:
-            if (!any_on_device) {
-                return false;
-            }
-            func = ggml_cuda_soft_max;
-            break;
-        case GGML_OP_ROPE:
-            if (!any_on_device) {
-                return false;
-            }
-            func = ggml_cuda_rope;
-            break;
-        default:
-            return false;
-    }
-
-    if (params->ith != 0) {
-        return true;
-    }
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return true;
-    }
-    func(tensor->src[0], tensor->src[1], tensor);
-    return true;
-}

+ 0 - 63
llm/ggml-cuda.h

@@ -1,63 +0,0 @@
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#pragma once
-
-#include "ggml.h"
-
-#ifdef  __cplusplus
-extern "C" {
-#endif
-
-#define GGML_CUDA_MAX_DEVICES       16
-
-void   ggml_init_cublas(void);
-void   ggml_cuda_set_tensor_split(const float * tensor_split);
-
-void   ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
-bool   ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
-size_t ggml_cuda_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
-void   ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
-
-// TODO: export these with GGML_API
-void * ggml_cuda_host_malloc(size_t size);
-void   ggml_cuda_host_free(void * ptr);
-
-void   ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor);
-
-void   ggml_cuda_free_data(struct ggml_tensor * tensor);
-void   ggml_cuda_assign_buffers(struct ggml_tensor * tensor);
-void   ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor);
-void   ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor);
-void   ggml_cuda_set_main_device(int main_device);
-void   ggml_cuda_set_mul_mat_q(bool mul_mat_q);
-void   ggml_cuda_set_scratch_size(size_t scratch_size);
-void   ggml_cuda_free_scratch(void);
-bool   ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
-
-#ifdef  __cplusplus
-}
-#endif

+ 0 - 106
llm/ggml-metal.h

@@ -1,106 +0,0 @@
-//go:build darwin
-
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-// An interface allowing to compute ggml_cgraph with Metal
-//
-// This is a fully functional interface that extends ggml with GPU support for Apple devices.
-// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.)
-//
-// How it works?
-//
-// As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this
-// interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you
-// use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.)
-//
-// You only need to make sure that all memory buffers that you used during the graph creation
-// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is
-// used during the graph evaluation to determine the arguments of the compute kernels.
-//
-// Synchronization between device and host memory (for example for input and output tensors)
-// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions.
-//
-
-#pragma once
-
-#include <stddef.h>
-#include <stdbool.h>
-
-// max memory buffers that can be mapped to the device
-#define GGML_METAL_MAX_BUFFERS 16
-
-struct ggml_tensor;
-struct ggml_cgraph;
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-struct ggml_metal_context;
-
-// number of command buffers to use
-struct ggml_metal_context * ggml_metal_init(int n_cb);
-void ggml_metal_free(struct ggml_metal_context * ctx);
-
-// set the number of command buffers to use
-void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb);
-
-// creates a mapping between a host memory buffer and a device memory buffer
-// - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute
-// - the mapping is used during computation to determine the arguments of the compute kernels
-// - you don't need to keep the host memory buffer allocated as it is never accessed by Metal
-// - max_size specifies the maximum size of a tensor and is used to create shared views such
-//   that it is guaranteed that the tensor will fit in at least one of the views
-//
-bool ggml_metal_add_buffer(
-        struct ggml_metal_context * ctx,
-                       const char * name,
-                             void * data,
-                           size_t   size,
-                           size_t   max_size);
-
-// set data from host memory into the device
-void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
-
-// get data from the device into host memory
-void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t);
-
-// try to find operations that can be run concurrently in the graph
-// you should run it again if the topology of your graph changes
-void ggml_metal_graph_find_concurrency(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
-
-// if the graph has been optimized for concurrently dispatch
-bool ggml_metal_if_optimized(struct ggml_metal_context * ctx);
-
-// same as ggml_graph_compute but uses Metal
-// creates gf->n_threads command buffers in parallel
-void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf);
-
-#ifdef __cplusplus
-}
-#endif
-

+ 0 - 1180
llm/ggml-metal.m

@@ -1,1180 +0,0 @@
-//go:build darwin
-
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#import "ggml-metal.h"
-
-#import "ggml.h"
-
-#import <Foundation/Foundation.h>
-
-#import <Metal/Metal.h>
-#import <MetalPerformanceShaders/MetalPerformanceShaders.h>
-
-#undef MIN
-#undef MAX
-#define MIN(a, b) ((a) < (b) ? (a) : (b))
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
-
-#ifdef GGML_METAL_NDEBUG
-#define metal_printf(...)
-#else
-#define metal_printf(...) fprintf(stderr, __VA_ARGS__)
-#endif
-
-#define UNUSED(x) (void)(x)
-
-#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
-
-struct ggml_metal_buffer {
-    const char * name;
-
-    void   * data;
-    size_t   size;
-
-    id<MTLBuffer> metal;
-};
-
-struct ggml_metal_context {
-    int n_cb;
-
-    float * logits;
-
-    id<MTLDevice>       device;
-    id<MTLCommandQueue> queue;
-    id<MTLLibrary>      library;
-
-    int n_buffers;
-    struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
-
-    int concur_list[GGML_MAX_CONCUR];
-    int concur_list_len;
-
-    // custom kernels
-#define GGML_METAL_DECL_KERNEL(name) \
-    id<MTLFunction>             function_##name; \
-    id<MTLComputePipelineState> pipeline_##name
-
-    GGML_METAL_DECL_KERNEL(add);
-    GGML_METAL_DECL_KERNEL(add_row); // TODO: avoid this extra kernel, instead extend the "add" kernel to support broadcast
-    GGML_METAL_DECL_KERNEL(mul);
-    GGML_METAL_DECL_KERNEL(mul_row); // TODO: avoid this extra kernel, instead extend the "mul" kernel to support broadcast
-    GGML_METAL_DECL_KERNEL(scale);
-    GGML_METAL_DECL_KERNEL(silu);
-    GGML_METAL_DECL_KERNEL(relu);
-    GGML_METAL_DECL_KERNEL(gelu);
-    GGML_METAL_DECL_KERNEL(soft_max);
-    GGML_METAL_DECL_KERNEL(diag_mask_inf);
-    GGML_METAL_DECL_KERNEL(get_rows_f16);
-    GGML_METAL_DECL_KERNEL(get_rows_q4_0);
-    GGML_METAL_DECL_KERNEL(get_rows_q4_1);
-    GGML_METAL_DECL_KERNEL(get_rows_q2_K);
-    GGML_METAL_DECL_KERNEL(get_rows_q3_K);
-    GGML_METAL_DECL_KERNEL(get_rows_q4_K);
-    GGML_METAL_DECL_KERNEL(get_rows_q5_K);
-    GGML_METAL_DECL_KERNEL(get_rows_q6_K);
-    GGML_METAL_DECL_KERNEL(rms_norm);
-    GGML_METAL_DECL_KERNEL(norm);
-    GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
-    GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
-    GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
-    GGML_METAL_DECL_KERNEL(mul_mat_q2_K_f32);
-    GGML_METAL_DECL_KERNEL(mul_mat_q3_K_f32);
-    GGML_METAL_DECL_KERNEL(mul_mat_q4_K_f32);
-    GGML_METAL_DECL_KERNEL(mul_mat_q5_K_f32);
-    GGML_METAL_DECL_KERNEL(mul_mat_q6_K_f32);
-    GGML_METAL_DECL_KERNEL(rope);
-    GGML_METAL_DECL_KERNEL(alibi_f32);
-    GGML_METAL_DECL_KERNEL(cpy_f32_f16);
-    GGML_METAL_DECL_KERNEL(cpy_f32_f32);
-    GGML_METAL_DECL_KERNEL(cpy_f16_f16);
-
-#undef GGML_METAL_DECL_KERNEL
-};
-
-// MSL code
-// TODO: move the contents here when ready
-//       for now it is easier to work in a separate file
-static NSString * const msl_library_source = @"see metal.metal";
-
-// Here to assist with NSBundle Path Hack
-@interface GGMLMetalClass : NSObject
-@end
-@implementation GGMLMetalClass
-@end
-
-struct ggml_metal_context * ggml_metal_init(int n_cb) {
-    fprintf(stderr, "%s: allocating\n", __func__);
-
-    struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
-
-    ctx->n_cb   = n_cb;
-    ctx->device = MTLCreateSystemDefaultDevice();
-    ctx->queue  = [ctx->device newCommandQueue];
-    ctx->n_buffers = 0;
-    ctx->concur_list_len = 0;
-
-    // determine if we can use MPS
-    if (MPSSupportsMTLDevice(ctx->device)) {
-        fprintf(stderr, "%s: using MPS\n", __func__);
-    } else {
-        fprintf(stderr, "%s: not using MPS\n", __func__);
-        GGML_ASSERT(false && "MPS not supported");
-    }
-
-#if 0
-    // compile from source string and show compile log
-    {
-        NSError * error = nil;
-
-        ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
-        if (error) {
-            fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
-            return NULL;
-        }
-    }
-#else
-    UNUSED(msl_library_source);
-
-    // read the source from "ggml-metal.metal" into a string and use newLibraryWithSource
-    {
-        NSError * error = nil;
-
-        //NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
-        NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
-        NSString * path = [bundle pathForResource:@"ggml-metal" ofType:@"metal"];
-        fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]);
-
-        NSString * src  = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
-        if (error) {
-            fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
-            return NULL;
-        }
-
-#ifdef GGML_QKK_64
-        MTLCompileOptions* options = [MTLCompileOptions new];
-        options.preprocessorMacros = @{ @"QK_K" : @(64) };
-        ctx->library = [ctx->device newLibraryWithSource:src options:options error:&error];
-#else
-        ctx->library = [ctx->device newLibraryWithSource:src options:nil error:&error];
-#endif
-        if (error) {
-            fprintf(stderr, "%s: error: %s\n", __func__, [[error description] UTF8String]);
-            return NULL;
-        }
-    }
-#endif
-
-    // load kernels
-    {
-#define GGML_METAL_ADD_KERNEL(name) \
-        ctx->function_##name = [ctx->library newFunctionWithName:@"kernel_"#name]; \
-        ctx->pipeline_##name = [ctx->device newComputePipelineStateWithFunction:ctx->function_##name error:nil]; \
-        fprintf(stderr, "%s: loaded %-32s %16p\n", __func__, "kernel_"#name, (void *) ctx->pipeline_##name);
-
-        GGML_METAL_ADD_KERNEL(add);
-        GGML_METAL_ADD_KERNEL(add_row);
-        GGML_METAL_ADD_KERNEL(mul);
-        GGML_METAL_ADD_KERNEL(mul_row);
-        GGML_METAL_ADD_KERNEL(scale);
-        GGML_METAL_ADD_KERNEL(silu);
-        GGML_METAL_ADD_KERNEL(relu);
-        GGML_METAL_ADD_KERNEL(gelu);
-        GGML_METAL_ADD_KERNEL(soft_max);
-        GGML_METAL_ADD_KERNEL(diag_mask_inf);
-        GGML_METAL_ADD_KERNEL(get_rows_f16);
-        GGML_METAL_ADD_KERNEL(get_rows_q4_0);
-        GGML_METAL_ADD_KERNEL(get_rows_q4_1);
-        GGML_METAL_ADD_KERNEL(get_rows_q2_K);
-        GGML_METAL_ADD_KERNEL(get_rows_q3_K);
-        GGML_METAL_ADD_KERNEL(get_rows_q4_K);
-        GGML_METAL_ADD_KERNEL(get_rows_q5_K);
-        GGML_METAL_ADD_KERNEL(get_rows_q6_K);
-        GGML_METAL_ADD_KERNEL(rms_norm);
-        GGML_METAL_ADD_KERNEL(norm);
-        GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
-        GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
-        GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
-        GGML_METAL_ADD_KERNEL(mul_mat_q2_K_f32);
-        GGML_METAL_ADD_KERNEL(mul_mat_q3_K_f32);
-        GGML_METAL_ADD_KERNEL(mul_mat_q4_K_f32);
-        GGML_METAL_ADD_KERNEL(mul_mat_q5_K_f32);
-        GGML_METAL_ADD_KERNEL(mul_mat_q6_K_f32);
-        GGML_METAL_ADD_KERNEL(rope);
-        GGML_METAL_ADD_KERNEL(alibi_f32);
-        GGML_METAL_ADD_KERNEL(cpy_f32_f16);
-        GGML_METAL_ADD_KERNEL(cpy_f32_f32);
-        GGML_METAL_ADD_KERNEL(cpy_f16_f16);
-
-#undef GGML_METAL_ADD_KERNEL
-    }
-
-    fprintf(stderr, "%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
-    fprintf(stderr, "%s: hasUnifiedMemory             = %s\n",       __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
-    if (ctx->device.maxTransferRate != 0) {
-        fprintf(stderr, "%s: maxTransferRate              = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
-    } else {
-        fprintf(stderr, "%s: maxTransferRate              = built-in GPU\n", __func__);
-    }
-
-    return ctx;
-}
-
-void ggml_metal_free(struct ggml_metal_context * ctx) {
-    fprintf(stderr, "%s: deallocating\n", __func__);
-    for (int i = 0; i < ctx->n_buffers; ++i) {
-        [ctx->buffers[i].metal release];
-    }
-    free(ctx);
-}
-
-void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb) {
-    ctx->n_cb = n_cb;
-}
-
-bool ggml_metal_if_optimized(struct ggml_metal_context * ctx) {
-    if (ctx->concur_list_len) {
-        return true;
-    }
-    return false;
-}
-
-// finds the Metal buffer that contains the tensor data on the GPU device
-// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the
-// Metal buffer based on the host memory pointer
-//
-static id<MTLBuffer> ggml_metal_get_buffer(struct ggml_metal_context * ctx, struct ggml_tensor * t, size_t * offs) {
-    //fprintf(stderr, "%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach);
-
-    const int64_t tsize = ggml_nbytes(t);
-
-    // find the view that contains the tensor fully
-    for (int i = 0; i < ctx->n_buffers; ++i) {
-        const int64_t ioffs = (int64_t) t->data - (int64_t) ctx->buffers[i].data;
-
-        if (ioffs >= 0 && ioffs + tsize <= (int64_t) ctx->buffers[i].size) {
-            *offs = (size_t) ioffs;
-
-            //fprintf(stderr, "%s: '%s' tensor '%16s', offs = %8ld\n", __func__, ctx->buffers[i].name, t->name, *offs);
-
-            return ctx->buffers[i].metal;
-        }
-    }
-
-    fprintf(stderr, "%s: error: buffer is nil\n", __func__);
-
-    return nil;
-}
-
-bool ggml_metal_add_buffer(
-        struct ggml_metal_context * ctx,
-                     const char * name,
-                           void * data,
-                         size_t   size,
-                         size_t   max_size) {
-    if (ctx->n_buffers >= GGML_METAL_MAX_BUFFERS) {
-        fprintf(stderr, "%s: too many buffers\n", __func__);
-        return false;
-    }
-
-    if (data) {
-        // verify that the buffer does not overlap with any of the existing buffers
-        for (int i = 0; i < ctx->n_buffers; ++i) {
-            const int64_t ioffs = (int64_t) data - (int64_t) ctx->buffers[i].data;
-
-            if (ioffs >= 0 && ioffs < (int64_t) ctx->buffers[i].size) {
-                fprintf(stderr, "%s: error: buffer '%s' overlaps with '%s'\n", __func__, name, ctx->buffers[i].name);
-                return false;
-            }
-        }
-
-        const size_t size_page = getpagesize();
-
-        size_t size_aligned = size;
-        if ((size_aligned % size_page) != 0) {
-            size_aligned += (size_page - (size_aligned % size_page));
-        }
-
-        // the buffer fits into the max buffer size allowed by the device
-        if (size_aligned <= ctx->device.maxBufferLength) {
-            ctx->buffers[ctx->n_buffers].name = name;
-            ctx->buffers[ctx->n_buffers].data = data;
-            ctx->buffers[ctx->n_buffers].size = size;
-
-            ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil];
-
-            if (ctx->buffers[ctx->n_buffers].metal == nil) {
-                fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_aligned / 1024.0 / 1024.0);
-                return false;
-            }
-
-            fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB", __func__, name, size_aligned / 1024.0 / 1024.0);
-
-            ++ctx->n_buffers;
-        } else {
-            // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into
-            // one of the views
-            const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case
-            const size_t size_step = ctx->device.maxBufferLength - size_ovlp;
-            const size_t size_view = ctx->device.maxBufferLength;
-
-            for (size_t i = 0; i < size; i += size_step) {
-                const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i);
-
-                ctx->buffers[ctx->n_buffers].name = name;
-                ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i);
-                ctx->buffers[ctx->n_buffers].size = size_step_aligned;
-
-                ctx->buffers[ctx->n_buffers].metal = [ctx->device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil];
-
-                if (ctx->buffers[ctx->n_buffers].metal == nil) {
-                    fprintf(stderr, "%s: failed to allocate '%-16s' buffer, size = %8.2f MB\n", __func__, name, size_step_aligned / 1024.0 / 1024.0);
-                    return false;
-                }
-
-                fprintf(stderr, "%s: allocated '%-16s' buffer, size = %8.2f MB, offs = %12ld", __func__, name, size_step_aligned / 1024.0 / 1024.0, i);
-                if (i + size_step < size) {
-                    fprintf(stderr, "\n");
-                }
-
-                ++ctx->n_buffers;
-            }
-        }
-
-        fprintf(stderr, ", (%8.2f / %8.2f)",
-                ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
-                ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
-
-        if (ctx->device.currentAllocatedSize > ctx->device.recommendedMaxWorkingSetSize) {
-            fprintf(stderr, ", warning: current allocated size is greater than the recommended max working set size\n");
-        } else {
-            fprintf(stderr, "\n");
-        }
-    }
-
-    return true;
-}
-
-void ggml_metal_set_tensor(
-        struct ggml_metal_context * ctx,
-        struct ggml_tensor * t) {
-    metal_printf("%s: set input for tensor '%s'\n", __func__, t->name);
-
-    size_t offs;
-    id<MTLBuffer> id_dst = ggml_metal_get_buffer(ctx, t, &offs);
-
-    memcpy((void *) ((uint8_t *) id_dst.contents + offs), t->data, ggml_nbytes(t));
-}
-
-void ggml_metal_get_tensor(
-        struct ggml_metal_context * ctx,
-        struct ggml_tensor * t) {
-    metal_printf("%s: extract results for tensor '%s'\n", __func__, t->name);
-
-    size_t offs;
-    id<MTLBuffer> id_src = ggml_metal_get_buffer(ctx, t, &offs);
-
-    memcpy(t->data, (void *) ((uint8_t *) id_src.contents + offs), ggml_nbytes(t));
-}
-
-void ggml_metal_graph_find_concurrency(
-        struct ggml_metal_context * ctx,
-        struct ggml_cgraph * gf) {
-    int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
-    int nodes_unused[GGML_MAX_CONCUR];
-
-    for (int i = 0; i < GGML_MAX_CONCUR; i++) { ctx->concur_list[i] = 0; }
-    for (int i = 0; i < gf->n_nodes;     i++) { nodes_unused[i]     = 1; }
-    ctx->concur_list_len = 0;
-
-    int n_left    = gf->n_nodes;
-    int n_start   = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
-    int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
-
-    while (n_left > 0) {
-        // number of nodes at a layer (that can be issued concurrently)
-        int concurrency = 0;
-        for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) {
-            if (nodes_unused[i]) {
-                // if the requirements for gf->nodes[i] are satisfied
-                int exe_flag = 1;
-
-                // scan all srcs
-                for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) {
-                    struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind];
-                    if (src_cur) {
-                        // if is leaf nodes it's satisfied.
-                        // TODO: ggml_is_leaf()
-                        if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {
-                            continue;
-                        }
-
-                        // otherwise this src should be the output from previous nodes.
-                        int is_found = 0;
-
-                        // scan 2*search_depth back because we inserted barrier.
-                        //for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
-                        for (int j = MAX(0, level_pos - 2*search_depth); j < level_pos; j++) {
-                            if (ctx->concur_list[j] >= 0 && gf->nodes[ctx->concur_list[j]] == src_cur) {
-                                is_found = 1;
-                                break;
-                            }
-                        }
-                        if (is_found == 0) {
-                            exe_flag = 0;
-                            break;
-                        }
-                    }
-                }
-                if (exe_flag) {
-                    // check if nodes[i]'s data will be overwritten by a node before nodes[i].
-                    // if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
-                    int64_t data_start = (int64_t) gf->nodes[i]->data;
-                    int64_t length     = (int64_t) ggml_nbytes(gf->nodes[i]);
-                    for (int j = n_start; j < i; j++) {
-                        if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \
-                                            && gf->nodes[j]->op != GGML_OP_VIEW \
-                                            && gf->nodes[j]->op != GGML_OP_TRANSPOSE \
-                                            && gf->nodes[j]->op != GGML_OP_PERMUTE) {
-                            if (((int64_t)gf->nodes[j]->data) >= data_start + length || \
-                                ((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) {
-                                continue;
-                            }
-
-                            exe_flag = 0;
-                        }
-                    }
-                }
-                if (exe_flag) {
-                    ctx->concur_list[level_pos + concurrency] = i;
-                    nodes_unused[i] = 0;
-                    concurrency++;
-                    ctx->concur_list_len++;
-                }
-            }
-        }
-        n_left -= concurrency;
-        // adding a barrier different layer
-        ctx->concur_list[level_pos + concurrency] = -1;
-        ctx->concur_list_len++;
-        // jump all sorted nodes at nodes_bak
-        while (!nodes_unused[n_start]) {
-            n_start++;
-        }
-        level_pos += concurrency + 1;
-    }
-
-    if (ctx->concur_list_len > GGML_MAX_CONCUR) {
-        fprintf(stderr, "%s: too many elements for metal ctx->concur_list!\n", __func__);
-    }
-}
-
-void ggml_metal_graph_compute(
-        struct ggml_metal_context * ctx,
-               struct ggml_cgraph * gf) {
-    metal_printf("%s: evaluating graph\n", __func__);
-
-    // if there is ctx->concur_list, dispatch concurrently
-    // else fallback to serial dispatch
-    MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
-
-    const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_CONCUR;
-
-    const int n_nodes  = has_concur ? ctx->concur_list_len      : gf->n_nodes;
-    edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial;
-
-    // create multiple command buffers and enqueue them
-    // then, we encode the graph into the command buffers in parallel
-
-    const int n_cb = ctx->n_cb;
-
-    NSMutableArray * command_buffers = [NSMutableArray arrayWithCapacity:n_cb];
-
-    for (int i = 0; i < n_cb; ++i) {
-        command_buffers[i] = [ctx->queue commandBuffer];
-
-        // enqueue the command buffers in order to specify their execution order
-        [command_buffers[i] enqueue];
-    }
-
-    // TODO: is this the best way to start threads?
-    dispatch_queue_t queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
-
-    for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
-        const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
-
-        dispatch_async(queue, ^{
-            size_t offs_src0 = 0;
-            size_t offs_src1 = 0;
-            size_t offs_dst  = 0;
-
-            id<MTLCommandBuffer> command_buffer = command_buffers[cb_idx];
-
-            id<MTLComputeCommandEncoder> encoder = nil;
-
-            const int node_start =                                  (cb_idx + 0) * n_nodes_per_cb;
-            const int node_end   = (cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb;
-
-            for (int ind = node_start; ind < node_end; ++ind) {
-                const int i = has_concur ? ctx->concur_list[ind] : ind;
-
-                if (i == -1) {
-                    if (encoder == nil) {
-                        encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                        continue;
-                    }
-                    [encoder memoryBarrierWithScope:MTLBarrierScopeBuffers];
-                    continue;
-                }
-
-                metal_printf("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op));
-
-                struct ggml_tensor * src0 = gf->nodes[i]->src[0];
-                struct ggml_tensor * src1 = gf->nodes[i]->src[1];
-                struct ggml_tensor * dst  = gf->nodes[i];
-
-                const int64_t  ne00 = src0 ? src0->ne[0] : 0;
-                const int64_t  ne01 = src0 ? src0->ne[1] : 0;
-                const int64_t  ne02 = src0 ? src0->ne[2] : 0;
-                const int64_t  ne03 = src0 ? src0->ne[3] : 0;
-
-                const uint64_t nb00 = src0 ? src0->nb[0] : 0;
-                const uint64_t nb01 = src0 ? src0->nb[1] : 0;
-                const uint64_t nb02 = src0 ? src0->nb[2] : 0;
-                const uint64_t nb03 = src0 ? src0->nb[3] : 0;
-
-                const int64_t  ne10 = src1 ? src1->ne[0] : 0;
-                const int64_t  ne11 = src1 ? src1->ne[1] : 0;
-                const int64_t  ne12 = src1 ? src1->ne[2] : 0;
-                const int64_t  ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
-
-                const uint64_t nb10 = src1 ? src1->nb[0] : 0;
-                const uint64_t nb11 = src1 ? src1->nb[1] : 0;
-                const uint64_t nb12 = src1 ? src1->nb[2] : 0;
-                const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
-
-                const int64_t  ne0  = dst ? dst->ne[0] : 0;
-                const int64_t  ne1  = dst ? dst->ne[1] : 0;
-                const int64_t  ne2  = dst ? dst->ne[2] : 0;
-                const int64_t  ne3  = dst ? dst->ne[3] : 0;
-
-                const uint64_t nb0  = dst ? dst->nb[0] : 0;
-                const uint64_t nb1  = dst ? dst->nb[1] : 0;
-                const uint64_t nb2  = dst ? dst->nb[2] : 0;
-                const uint64_t nb3  = dst ? dst->nb[3] : 0;
-
-                const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
-                const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
-                const enum ggml_type dstt  = dst  ? dst->type  : GGML_TYPE_COUNT;
-
-                id<MTLBuffer> id_src0 = src0 ? ggml_metal_get_buffer(ctx, src0, &offs_src0) : nil;
-                id<MTLBuffer> id_src1 = src1 ? ggml_metal_get_buffer(ctx, src1, &offs_src1) : nil;
-                id<MTLBuffer> id_dst  = dst  ? ggml_metal_get_buffer(ctx, dst,  &offs_dst)  : nil;
-
-                //metal_printf("%s: op - %s\n", __func__, ggml_op_name(dst->op));
-                //if (src0) {
-                //    metal_printf("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02,
-                //            ggml_is_contiguous(src0), src0->name);
-                //}
-                //if (src1) {
-                //    metal_printf("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12,
-                //            ggml_is_contiguous(src1), src1->name);
-                //}
-                //if (dst) {
-                //    metal_printf("%s: dst  - %4s [%5lld, %5lld, %5lld], 1, %s\n",  __func__, ggml_type_name(dstt),  ne0,  ne1,  ne2,
-                //            dst->name);
-                //}
-
-                switch (dst->op) {
-                    case GGML_OP_NONE:
-                    case GGML_OP_RESHAPE:
-                    case GGML_OP_VIEW:
-                    case GGML_OP_TRANSPOSE:
-                    case GGML_OP_PERMUTE:
-                        {
-                            // noop
-                        } break;
-                    case GGML_OP_ADD:
-                        {
-                            if (encoder == nil) {
-                                encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                            }
-
-                            if (ggml_nelements(src1) == ne10) {
-                                // src1 is a row
-                                [encoder setComputePipelineState:ctx->pipeline_add_row];
-                            } else {
-                                [encoder setComputePipelineState:ctx->pipeline_add];
-                            }
-                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                            [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
-                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
-                            [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
-
-                            const int64_t n = ggml_nelements(dst);
-
-                            [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
-                        } break;
-                    case GGML_OP_MUL:
-                        {
-                            if (encoder == nil) {
-                                encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                            }
-
-                            if (ggml_nelements(src1) == ne10) {
-                                // src1 is a row
-                                [encoder setComputePipelineState:ctx->pipeline_mul_row];
-                            } else {
-                                [encoder setComputePipelineState:ctx->pipeline_mul];
-                            }
-                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                            [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
-                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
-                            [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
-
-                            const int64_t n = ggml_nelements(dst);
-
-                            [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
-                        } break;
-                    case GGML_OP_SCALE:
-                        {
-                            if (encoder == nil) {
-                                encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                            }
-
-                            const float scale = *(const float *) src1->data;
-
-                            [encoder setComputePipelineState:ctx->pipeline_scale];
-                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
-                            [encoder setBytes:&scale length:sizeof(scale) atIndex:2];
-
-                            const int64_t n = ggml_nelements(dst);
-
-                            [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
-                        } break;
-                    case GGML_OP_UNARY:
-                        switch (ggml_get_unary_op(gf->nodes[i])) {
-                            case GGML_UNARY_OP_SILU:
-                                {
-                                    if (encoder == nil) {
-                                        encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                                    }
-
-                                    [encoder setComputePipelineState:ctx->pipeline_silu];
-                                    [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                                    [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
-
-                                    const int64_t n = ggml_nelements(dst);
-
-                                    [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
-                                } break;
-                            case GGML_UNARY_OP_RELU:
-                                {
-                                    if (encoder == nil) {
-                                        encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                                    }
-
-                                    [encoder setComputePipelineState:ctx->pipeline_relu];
-                                    [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                                    [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
-
-                                    const int64_t n = ggml_nelements(dst);
-
-                                    [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
-                                } break;
-                            case GGML_UNARY_OP_GELU:
-                                {
-                                    if (encoder == nil) {
-                                        encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                                    }
-
-                                    [encoder setComputePipelineState:ctx->pipeline_gelu];
-                                    [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                                    [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
-
-                                    const int64_t n = ggml_nelements(dst);
-
-                                    [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
-                                } break;
-                            default:
-                                {
-                                    fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
-                                    GGML_ASSERT(false);
-                                }
-                        } break;
-                    case GGML_OP_SOFT_MAX:
-                        {
-                            if (encoder == nil) {
-                                encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                            }
-
-                            const int nth = 32;
-
-                            [encoder setComputePipelineState:ctx->pipeline_soft_max];
-                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
-                            [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
-                            [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
-                            [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
-                            [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
-
-                            [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
-                        } break;
-                    case GGML_OP_DIAG_MASK_INF:
-                        {
-                            if (encoder == nil) {
-                                encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                            }
-
-                            const int n_past = ((int32_t *)(dst->op_params))[0];
-
-                            [encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
-                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
-                            [encoder setBytes:&ne00   length:sizeof(ne00) atIndex:2];
-                            [encoder setBytes:&ne01   length:sizeof(ne01) atIndex:3];
-                            [encoder setBytes:&n_past length:sizeof(int)  atIndex:4];
-
-                            [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
-                        } break;
-                    case GGML_OP_MUL_MAT:
-                        {
-                            // TODO: needs to be updated after PR: https://github.com/ggerganov/ggml/pull/224
-
-                            GGML_ASSERT(ne00 == ne10);
-                            // GGML_ASSERT(ne02 == ne12); // Should be checked on individual data types until broadcast is implemented everywhere
-                            GGML_ASSERT(ne03 == ne13);
-
-                            if (ggml_is_contiguous(src0) &&
-                                ggml_is_contiguous(src1) &&
-                                (src0t == GGML_TYPE_F32 || src0t == GGML_TYPE_F16) && ne11 > 1) {
-
-                                if (encoder != nil) {
-                                    [encoder endEncoding];
-                                    encoder = nil;
-                                }
-
-                                MPSDataType src0dt = src0t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
-                                MPSDataType src1dt = src1t == GGML_TYPE_F32 ? MPSDataTypeFloat32 : MPSDataTypeFloat16;
-
-                                // for F32 x F32 we use MPS
-                                MPSMatrixDescriptor * desc0 = [MPSMatrixDescriptor
-                                    matrixDescriptorWithRows:ne01 columns:ne00 rowBytes:src0->nb[1] dataType:src0dt];
-
-                                MPSMatrixDescriptor * desc1 = [MPSMatrixDescriptor
-                                    matrixDescriptorWithRows:ne11 columns:ne10 rowBytes:src1->nb[1] dataType:src1dt];
-
-                                MPSMatrixDescriptor * desc  = [MPSMatrixDescriptor
-                                    matrixDescriptorWithRows:ne1 columns:ne0 rowBytes:dst->nb[1] dataType:MPSDataTypeFloat32];
-
-                                MPSMatrixMultiplication * mul = [[MPSMatrixMultiplication alloc]
-                                    initWithDevice:ctx->device transposeLeft:false transposeRight:true
-                                        resultRows:ne11 resultColumns:ne01 interiorColumns:ne00 alpha:1.0 beta:0.0];
-
-                                // we need to do ne12 multiplications
-                                // TODO: is there a way to do this in parallel - currently very slow ..
-                                // TODO: might be possible to offload part of the computation to ANE using Accelerate's CBLAS
-                                for (int64_t i02 = 0; i02 < ne12; ++i02) {
-                                    size_t offs_src0_cur = offs_src0 + i02/(ne12/ne02)*nb02; // gqa not used for now
-                                    size_t offs_src1_cur = offs_src1 + i02*nb12;
-                                    size_t offs_dst_cur  = offs_dst  + i02*nb2;
-
-                                    MPSMatrix * mat_src0 = [[MPSMatrix alloc] initWithBuffer:id_src0 offset:offs_src0_cur descriptor:desc0];
-                                    MPSMatrix * mat_src1 = [[MPSMatrix alloc] initWithBuffer:id_src1 offset:offs_src1_cur descriptor:desc1];
-                                    MPSMatrix * mat_dst  = [[MPSMatrix alloc] initWithBuffer:id_dst  offset:offs_dst_cur  descriptor:desc ];
-
-                                    [mul encodeToCommandBuffer:command_buffer leftMatrix:mat_src1 rightMatrix:mat_src0 resultMatrix:mat_dst];
-                                }
-                            } else {
-                                if (encoder == nil) {
-                                    encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                                }
-
-                                int nth0 = 32;
-                                int nth1 = 1;
-
-                                // use custom matrix x vector kernel
-                                switch (src0t) {
-                                    case GGML_TYPE_F16:
-                                        {
-                                            nth0 = 64;
-                                            nth1 = 1;
-                                            [encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
-                                        } break;
-                                    case GGML_TYPE_Q4_0:
-                                        {
-                                            GGML_ASSERT(ne02 == 1);
-                                            GGML_ASSERT(ne12 == 1);
-
-                                            nth0 = 8;
-                                            nth1 = 8;
-                                            [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
-                                        } break;
-                                    case GGML_TYPE_Q4_1:
-                                        {
-                                            GGML_ASSERT(ne02 == 1);
-                                            GGML_ASSERT(ne12 == 1);
-
-                                            nth0 = 8;
-                                            nth1 = 8;
-                                            [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_1_f32];
-                                        } break;
-                                    case GGML_TYPE_Q2_K:
-                                        {
-                                            GGML_ASSERT(ne02 == 1);
-                                            GGML_ASSERT(ne12 == 1);
-
-                                            nth0 = 2;
-                                            nth1 = 32;
-                                            [encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_K_f32];
-                                        } break;
-                                    case GGML_TYPE_Q3_K:
-                                        {
-                                            GGML_ASSERT(ne02 == 1);
-                                            GGML_ASSERT(ne12 == 1);
-
-                                            nth0 = 2;
-                                            nth1 = 32;
-                                            [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32];
-                                        } break;
-                                    case GGML_TYPE_Q4_K:
-                                        {
-                                            GGML_ASSERT(ne02 == 1);
-                                            GGML_ASSERT(ne12 == 1);
-
-                                            nth0 = 2;
-                                            nth1 = 32;
-                                            [encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_K_f32];
-                                        } break;
-                                    case GGML_TYPE_Q5_K:
-                                        {
-                                            GGML_ASSERT(ne02 == 1);
-                                            GGML_ASSERT(ne12 == 1);
-
-                                            nth0 = 2;
-                                            nth1 = 32;
-                                            [encoder setComputePipelineState:ctx->pipeline_mul_mat_q5_K_f32];
-                                        } break;
-                                    case GGML_TYPE_Q6_K:
-                                        {
-                                            GGML_ASSERT(ne02 == 1);
-                                            GGML_ASSERT(ne12 == 1);
-
-                                            nth0 = 2;
-                                            nth1 = 32;
-                                            [encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_K_f32];
-                                        } break;
-                                    default:
-                                        {
-                                            fprintf(stderr, "Asserting on type %d\n",(int)src0t);
-                                            GGML_ASSERT(false && "not implemented");
-                                        }
-                                };
-
-                                [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                                [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
-                                [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
-                                [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3];
-                                [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4];
-                                [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5];
-                                [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6];
-                                [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7];
-                                [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8];
-                                [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9];
-                                [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10];
-                                [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11];
-                                [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12];
-                                [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13];
-                                [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14];
-                                [encoder setBytes:&ne0  length:sizeof(ne0)  atIndex:15];
-                                [encoder setBytes:&ne1  length:sizeof(ne1)  atIndex:16];
-
-                                if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 ||
-                                    src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
-                                    [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
-                                }
-                                else if (src0t == GGML_TYPE_Q3_K) {
-#ifdef GGML_QKK_64
-                                    [encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
-#else
-                                    [encoder dispatchThreadgroups:MTLSizeMake((ne01+3)/4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
-#endif
-                                }
-                                else if (src0t == GGML_TYPE_Q5_K) {
-                                    [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
-                                }
-                                else if (src0t == GGML_TYPE_Q6_K) {
-                                    [encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
-                                } else {
-                                    [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
-                                    [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
-                                }
-                            }
-                        } break;
-                    case GGML_OP_GET_ROWS:
-                        {
-                            if (encoder == nil) {
-                                encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                            }
-
-                            switch (src0->type) {
-                                case GGML_TYPE_F16:  [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
-                                case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
-                                case GGML_TYPE_Q4_1: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_1]; break;
-                                case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_K]; break;
-                                case GGML_TYPE_Q3_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q3_K]; break;
-                                case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_K]; break;
-                                case GGML_TYPE_Q5_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q5_K]; break;
-                                case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_K]; break;
-                                default: GGML_ASSERT(false && "not implemented");
-                            }
-
-                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                            [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
-                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:2];
-                            [encoder setBytes:&(src0->ne[0]) length:sizeof( int64_t) atIndex:3];
-                            [encoder setBytes:&(src0->nb[1]) length:sizeof(uint64_t) atIndex:4];
-                            [encoder setBytes:&(dst->nb[1])  length:sizeof(uint64_t) atIndex:5];
-
-                            const int64_t n = ggml_nelements(src1);
-
-                            [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
-                        } break;
-                    case GGML_OP_RMS_NORM:
-                        {
-                            if (encoder == nil) {
-                                encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                            }
-
-                            float eps;
-                            memcpy(&eps, dst->op_params, sizeof(float));
-
-                            const int nth = 512;
-
-                            [encoder setComputePipelineState:ctx->pipeline_rms_norm];
-                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
-                            [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
-                            [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
-                            [encoder setBytes:&eps  length:sizeof(   float) atIndex:4];
-                            [encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0];
-
-                            const int64_t nrows = ggml_nrows(src0);
-
-                            [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
-                        } break;
-                    case GGML_OP_NORM:
-                        {
-                            if (encoder == nil) {
-                                encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                            }
-
-                            const float eps = 1e-5f;
-
-                            const int nth = 256;
-
-                            [encoder setComputePipelineState:ctx->pipeline_norm];
-                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
-                            [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
-                            [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
-                            [encoder setBytes:&eps  length:sizeof(   float) atIndex:4];
-                            [encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
-
-                            const int64_t nrows = ggml_nrows(src0);
-
-                            [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
-                        } break;
-                    case GGML_OP_ALIBI:
-                        {
-                            if (encoder == nil) {
-                                encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                            }
-
-                            GGML_ASSERT((src0t == GGML_TYPE_F32));
-
-                            const int n_past = ((int32_t *) dst->op_params)[0]; UNUSED(n_past);
-                            const int n_head = ((int32_t *) dst->op_params)[1];
-                            float max_bias;
-                            memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
-
-                            if (__builtin_popcount(n_head) != 1) {
-                                GGML_ASSERT(false && "only power-of-two n_head implemented");
-                            }
-
-                            const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
-                            const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
-
-                            [encoder setComputePipelineState:ctx->pipeline_alibi_f32];
-                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
-                            [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
-                            [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
-                            [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
-                            [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
-                            [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
-                            [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
-                            [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
-                            [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
-                            [encoder setBytes:&ne0  length:sizeof( int64_t) atIndex:10];
-                            [encoder setBytes:&ne1  length:sizeof( int64_t) atIndex:11];
-                            [encoder setBytes:&ne2  length:sizeof( int64_t) atIndex:12];
-                            [encoder setBytes:&ne3  length:sizeof( int64_t) atIndex:13];
-                            [encoder setBytes:&nb0  length:sizeof(uint64_t) atIndex:14];
-                            [encoder setBytes:&nb1  length:sizeof(uint64_t) atIndex:15];
-                            [encoder setBytes:&nb2  length:sizeof(uint64_t) atIndex:16];
-                            [encoder setBytes:&nb3  length:sizeof(uint64_t) atIndex:17];
-                            [encoder setBytes:&m0  length:sizeof(    float) atIndex:18];
-                            const int nth = 32;
-                            [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
-                        } break;
-                    case GGML_OP_ROPE:
-                        {
-                            if (encoder == nil) {
-                                encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                            }
-
-                            const int n_past = ((int32_t *) dst->op_params)[0];
-                            const int n_dims = ((int32_t *) dst->op_params)[1];
-                            const int mode   = ((int32_t *) dst->op_params)[2];
-
-                            float freq_base;
-                            float freq_scale;
-                            memcpy(&freq_base,  (int32_t *) dst->op_params + 4, sizeof(float));
-                            memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
-
-                            [encoder setComputePipelineState:ctx->pipeline_rope];
-                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
-                            [encoder setBytes:&ne00    length:sizeof( int64_t) atIndex:2];
-                            [encoder setBytes:&ne01    length:sizeof( int64_t) atIndex:3];
-                            [encoder setBytes:&ne02    length:sizeof( int64_t) atIndex:4];
-                            [encoder setBytes:&ne03    length:sizeof( int64_t) atIndex:5];
-                            [encoder setBytes:&nb00    length:sizeof(uint64_t) atIndex:6];
-                            [encoder setBytes:&nb01    length:sizeof(uint64_t) atIndex:7];
-                            [encoder setBytes:&nb02    length:sizeof(uint64_t) atIndex:8];
-                            [encoder setBytes:&nb03    length:sizeof(uint64_t) atIndex:9];
-                            [encoder setBytes:&ne0     length:sizeof( int64_t) atIndex:10];
-                            [encoder setBytes:&ne1     length:sizeof( int64_t) atIndex:11];
-                            [encoder setBytes:&ne2     length:sizeof( int64_t) atIndex:12];
-                            [encoder setBytes:&ne3     length:sizeof( int64_t) atIndex:13];
-                            [encoder setBytes:&nb0     length:sizeof(uint64_t) atIndex:14];
-                            [encoder setBytes:&nb1     length:sizeof(uint64_t) atIndex:15];
-                            [encoder setBytes:&nb2     length:sizeof(uint64_t) atIndex:16];
-                            [encoder setBytes:&nb3     length:sizeof(uint64_t) atIndex:17];
-                            [encoder setBytes:&n_past  length:sizeof(     int) atIndex:18];
-                            [encoder setBytes:&n_dims  length:sizeof(     int) atIndex:19];
-                            [encoder setBytes:&mode    length:sizeof(     int) atIndex:20];
-                            [encoder setBytes:&freq_base  length:sizeof(float) atIndex:21];
-                            [encoder setBytes:&freq_scale length:sizeof(float) atIndex:22];
-
-                            [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
-                        } break;
-                    case GGML_OP_DUP:
-                    case GGML_OP_CPY:
-                    case GGML_OP_CONT:
-                        {
-                            if (encoder == nil) {
-                                encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc];
-                            }
-
-                            const int nth = 32;
-
-                            switch (src0t) {
-                                case GGML_TYPE_F32:
-                                    {
-                                        switch (dstt) {
-                                            case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f16]; break;
-                                            case GGML_TYPE_F32: [encoder setComputePipelineState:ctx->pipeline_cpy_f32_f32]; break;
-                                            default: GGML_ASSERT(false && "not implemented");
-                                        };
-                                    } break;
-                                case GGML_TYPE_F16:
-                                    {
-                                        switch (dstt) {
-                                            case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_cpy_f16_f16]; break;
-                                            case GGML_TYPE_F32: GGML_ASSERT(false && "cpy_f16_f32 not implemented"); break;
-                                            default: GGML_ASSERT(false && "not implemented");
-                                        };
-                                    } break;
-                                default: GGML_ASSERT(false && "not implemented");
-                            }
-
-                            [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
-                            [encoder setBuffer:id_dst  offset:offs_dst  atIndex:1];
-                            [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
-                            [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3];
-                            [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4];
-                            [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5];
-                            [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6];
-                            [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7];
-                            [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8];
-                            [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9];
-                            [encoder setBytes:&ne0  length:sizeof( int64_t) atIndex:10];
-                            [encoder setBytes:&ne1  length:sizeof( int64_t) atIndex:11];
-                            [encoder setBytes:&ne2  length:sizeof( int64_t) atIndex:12];
-                            [encoder setBytes:&ne3  length:sizeof( int64_t) atIndex:13];
-                            [encoder setBytes:&nb0  length:sizeof(uint64_t) atIndex:14];
-                            [encoder setBytes:&nb1  length:sizeof(uint64_t) atIndex:15];
-                            [encoder setBytes:&nb2  length:sizeof(uint64_t) atIndex:16];
-                            [encoder setBytes:&nb3  length:sizeof(uint64_t) atIndex:17];
-
-                            [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
-                        } break;
-                    default:
-                        {
-                            fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
-                            GGML_ASSERT(false);
-                        }
-                }
-            }
-
-            if (encoder != nil) {
-                [encoder endEncoding];
-                encoder = nil;
-            }
-
-            [command_buffer commit];
-        });
-    }
-
-    // wait for all threads to finish
-    dispatch_barrier_sync(queue, ^{});
-
-    [command_buffers[n_cb - 1] waitUntilCompleted];
-
-    // check status of command buffers
-    // needed to detect if the device ran out-of-memory for example (#1881)
-    for (int i = 0; i < n_cb; i++) {
-        MTLCommandBufferStatus status = (MTLCommandBufferStatus) [command_buffers[i] status];
-        if (status != MTLCommandBufferStatusCompleted) {
-            fprintf(stderr, "%s: command buffer %d failed with status %lu\n", __func__, i, status);
-            GGML_ASSERT(false);
-        }
-    }
-}

+ 0 - 2000
llm/ggml-metal.metal

@@ -1,2000 +0,0 @@
-//go:build darwin
-
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include <metal_stdlib>
-
-using namespace metal;
-
-#define MAX(x, y) ((x) > (y) ? (x) : (y))
-
-#define QK4_0 32
-#define QR4_0 2
-typedef struct {
-    half    d;             // delta
-    uint8_t qs[QK4_0 / 2]; // nibbles / quants
-} block_q4_0;
-
-#define QK4_1 32
-typedef struct {
-    half d;          // delta
-    half m;          // min
-    uint8_t qs[QK4_1 / 2];  // nibbles / quants
-} block_q4_1;
-
-static void dequantize_row_q4_0(device const block_q4_0 * x, device float * y, int k) {
-    const int qk = QK4_0;
-
-    assert(k % qk == 0);
-
-    const int nb = k / qk;
-
-    for (int i = 0; i < nb; i++) {
-        const half d = x[i].d;
-
-        for (int j = 0; j < qk/2; ++j) {
-            const int x0 = (x[i].qs[j] & 0x0F) - 8;
-            const int x1 = (x[i].qs[j] >>   4) - 8;
-
-            y[i*qk + j + 0   ] = x0*d;
-            y[i*qk + j + qk/2] = x1*d;
-        }
-    }
-}
-
-static void dequantize_row_q4_1(device const block_q4_1 * x, device float * y, int k) {
-    const int qk = QK4_1;
-
-    assert(k % qk == 0);
-
-    const int nb = k / qk;
-
-    for (int i = 0; i < nb; i++) {
-        const half d = x[i].d;
-        const half m = x[i].m;
-
-        for (int j = 0; j < qk/2; ++j) {
-            const int x0 = (x[i].qs[j] & 0x0F);
-            const int x1 = (x[i].qs[j] >>   4);
-
-            y[i*qk + j + 0   ] = x0*d + m;
-            y[i*qk + j + qk/2] = x1*d + m;
-        }
-    }
-}
-
-kernel void kernel_add(
-        device const float * src0,
-        device const float * src1,
-        device       float * dst,
-        uint tpig[[thread_position_in_grid]]) {
-    dst[tpig] = src0[tpig] + src1[tpig];
-}
-
-// assumption: src1 is a row
-// broadcast src1 into src0
-kernel void kernel_add_row(
-        device const float * src0,
-        device const float * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        uint tpig[[thread_position_in_grid]]) {
-    dst[tpig] = src0[tpig] + src1[tpig % ne00];
-}
-
-kernel void kernel_mul(
-        device const float * src0,
-        device const float * src1,
-        device       float * dst,
-        uint tpig[[thread_position_in_grid]]) {
-    dst[tpig] = src0[tpig] * src1[tpig];
-}
-
-// assumption: src1 is a row
-// broadcast src1 into src0
-kernel void kernel_mul_row(
-        device const float * src0,
-        device const float * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        uint tpig[[thread_position_in_grid]]) {
-    dst[tpig] = src0[tpig] * src1[tpig % ne00];
-}
-
-kernel void kernel_scale(
-        device const float * src0,
-        device       float * dst,
-        constant     float & scale,
-        uint tpig[[thread_position_in_grid]]) {
-    dst[tpig] = src0[tpig] * scale;
-}
-
-kernel void kernel_silu(
-        device const float * src0,
-        device       float * dst,
-        uint tpig[[thread_position_in_grid]]) {
-    float x = src0[tpig];
-    dst[tpig] = x / (1.0f + exp(-x));
-}
-
-kernel void kernel_relu(
-        device const float * src0,
-        device       float * dst,
-        uint tpig[[thread_position_in_grid]]) {
-    dst[tpig] = max(0.0f, src0[tpig]);
-}
-
-constant float GELU_COEF_A    = 0.044715f;
-constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
-
-kernel void kernel_gelu(
-    device const float * src0,
-    device       float * dst,
-    uint tpig[[thread_position_in_grid]]) {
-    float x = src0[tpig];
-    dst[tpig] = 0.5f*x*(1.0f + tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
-}
-
-kernel void kernel_soft_max(
-        device const float * src0,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne01,
-        constant   int64_t & ne02,
-        threadgroup float  * buf [[threadgroup(0)]],
-        uint3 tgpig[[threadgroup_position_in_grid]],
-        uint3 tpitg[[thread_position_in_threadgroup]],
-        uint3   ntg[[threads_per_threadgroup]]) {
-    const int64_t i03 = tgpig[2];
-    const int64_t i02 = tgpig[1];
-    const int64_t i01 = tgpig[0];
-
-    device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
-    device       float * pdst  = dst  + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
-
-    // parallel max
-    buf[tpitg[0]] = -INFINITY;
-    for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
-        buf[tpitg[0]] = MAX(buf[tpitg[0]], psrc0[i00]);
-    }
-
-    // reduce
-    threadgroup_barrier(mem_flags::mem_threadgroup);
-    for (uint i = ntg[0]/2; i > 0; i /= 2) {
-        if (tpitg[0] < i) {
-            buf[tpitg[0]] = MAX(buf[tpitg[0]], buf[tpitg[0] + i]);
-        }
-        threadgroup_barrier(mem_flags::mem_threadgroup);
-    }
-
-    // broadcast
-    if (tpitg[0] == 0) {
-        buf[0] = buf[0];
-    }
-
-    threadgroup_barrier(mem_flags::mem_threadgroup);
-
-    const float max = buf[0];
-
-    // parallel sum
-    buf[tpitg[0]] = 0.0f;
-    for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
-        buf[tpitg[0]] += exp(psrc0[i00] - max);
-    }
-
-    // reduce
-    threadgroup_barrier(mem_flags::mem_threadgroup);
-    for (uint i = ntg[0]/2; i > 0; i /= 2) {
-        if (tpitg[0] < i) {
-            buf[tpitg[0]] += buf[tpitg[0] + i];
-        }
-        threadgroup_barrier(mem_flags::mem_threadgroup);
-    }
-
-    // broadcast
-    if (tpitg[0] == 0) {
-        buf[0] = buf[0];
-    }
-
-    threadgroup_barrier(mem_flags::mem_threadgroup);
-
-    const float sum = buf[0];
-
-    for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
-        pdst[i00] = exp(psrc0[i00] - max) / sum;
-    }
-}
-
-kernel void kernel_diag_mask_inf(
-        device const float * src0,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne01,
-        constant       int & n_past,
-        uint3 tpig[[thread_position_in_grid]]) {
-    const int64_t i02 = tpig[2];
-    const int64_t i01 = tpig[1];
-    const int64_t i00 = tpig[0];
-
-    if (i00 > n_past + i01) {
-        dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
-    } else {
-        dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
-    }
-}
-
-kernel void kernel_get_rows_f16(
-        device const  void * src0,
-        device const   int * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant  uint64_t & nb01,
-        constant  uint64_t & nb1,
-        uint tpig[[thread_position_in_grid]]) {
-    const int i = tpig;
-    const int r = ((device int32_t *) src1)[i];
-
-    for (int j = 0; j < ne00; j++) {
-        dst[i*nb1 + j] = ((device half *) ((device char *) src0 + r*nb01))[j];
-    }
-}
-
-kernel void kernel_get_rows_q4_0(
-        device const  void * src0,
-        device const   int * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant  uint64_t & nb01,
-        constant  uint64_t & nb1,
-        uint tpig[[thread_position_in_grid]]) {
-    const int i = tpig;
-    const int r = ((device int32_t *) src1)[i];
-
-    dequantize_row_q4_0(
-            (device const block_q4_0 *) ((device char *) src0 + r*nb01),
-                       (device float *) ((device char *)  dst + i*nb1), ne00);
-}
-
-kernel void kernel_get_rows_q4_1(
-        device const  void * src0,
-        device const   int * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant  uint64_t & nb01,
-        constant  uint64_t & nb1,
-        uint tpig[[thread_position_in_grid]]) {
-    const int i = tpig;
-    const int r = ((device int32_t *) src1)[i];
-
-    dequantize_row_q4_1(
-            (device const block_q4_1 *) ((device char *) src0 + r*nb01),
-                       (device float *) ((device char *)  dst + i*nb1), ne00);
-}
-
-kernel void kernel_norm(
-        device const  void * src0,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant  uint64_t & nb01,
-        constant     float & eps,
-        threadgroup float  * sum [[threadgroup(0)]],
-        uint tgpig[[threadgroup_position_in_grid]],
-        uint tpitg[[thread_position_in_threadgroup]],
-        uint   ntg[[threads_per_threadgroup]]) {
-    device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
-    // MEAN
-    // parallel sum
-    sum[tpitg] = 0.0f;
-    for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
-        sum[tpitg] += x[i00];
-    }
-    // reduce
-    threadgroup_barrier(mem_flags::mem_threadgroup);
-    for (uint i = ntg/2; i > 0; i /= 2) {
-        if (tpitg < i) {
-            sum[tpitg] += sum[tpitg + i];
-        }
-        threadgroup_barrier(mem_flags::mem_threadgroup);
-    }
-    // broadcast
-    if (tpitg == 0) {
-        sum[0] /= ne00;
-    }
-    threadgroup_barrier(mem_flags::mem_threadgroup);
-    const float mean  = sum[0];
-
-    // recenter
-    device float * y = dst + tgpig*ne00;
-    for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
-        y[i00] = x[i00] - mean;
-    }
-
-    // VARIANCE
-    // parallel sum
-    sum[tpitg] = 0.0f;
-    for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
-        sum[tpitg] += y[i00] * y[i00];
-    }
-    // reduce
-    threadgroup_barrier(mem_flags::mem_threadgroup);
-    for (uint i = ntg/2; i > 0; i /= 2) {
-        if (tpitg < i) {
-            sum[tpitg] += sum[tpitg + i];
-        }
-        threadgroup_barrier(mem_flags::mem_threadgroup);
-    }
-    // broadcast
-    if (tpitg == 0) {
-        sum[0] /= ne00;
-    }
-    threadgroup_barrier(mem_flags::mem_threadgroup);
-    const float variance = sum[0];
-
-    const float scale = 1.0f/sqrt(variance + eps);
-    for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
-        y[i00] = y[i00] * scale;
-    }
-}
-
-
-kernel void kernel_rms_norm(
-        device const  void * src0,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant  uint64_t & nb01,
-        constant     float & eps,
-        threadgroup float  * sum [[threadgroup(0)]],
-        uint tgpig[[threadgroup_position_in_grid]],
-        uint tpitg[[thread_position_in_threadgroup]],
-        uint sgitg[[simdgroup_index_in_threadgroup]],
-        uint tiisg[[thread_index_in_simdgroup]],
-        uint   ntg[[threads_per_threadgroup]]) {
-    device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
-    device const float * x_scalar = (device const float *) x;
-    float4 sumf=0;
-    float all_sum=0;
-
-    // parallel sum
-    for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
-        sumf += x[i00] * x[i00];
-    }
-    all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
-    all_sum = simd_sum(all_sum);
-    if (tiisg == 0) {
-        sum[sgitg] = all_sum;
-    }
-
-    threadgroup_barrier(mem_flags::mem_threadgroup);
-    // broadcast, simd group number is ntg / 32
-    for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
-       if (tpitg < i) {
-           sum[tpitg] += sum[tpitg + i];
-       }
-    }
-    if (tpitg == 0) {
-        for (int i = 4 * (ne00 / 4); i < ne00; i++) {sum[0] += x_scalar[i];}
-        sum[0] /= ne00;
-    }
-
-    threadgroup_barrier(mem_flags::mem_threadgroup);
-
-    const float mean  = sum[0];
-    const float scale = 1.0f/sqrt(mean + eps);
-
-    device float4 * y = (device float4 *) (dst + tgpig*ne00);
-    device float * y_scalar = (device float *) y;
-    for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
-        y[i00] = x[i00] * scale;
-    }
-    if (tpitg == 0) {
-        for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {y_scalar[i00] = x_scalar[i00] * scale;}
-    }
-}
-
-// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
-// il indicates where the q4 quants begin (0 or QK4_0/4)
-// we assume that the yl's have been multiplied with the appropriate scale factor
-// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
-inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
-    float d = qb_curr->d;
-    float2 acc = 0.f;
-    device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
-    for (int i = 0; i < 8; i+=2) {
-        acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
-                + yl[i + 1] * (qs[i / 2] & 0x0F00);
-        acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
-                + yl[i + 9] * (qs[i / 2] & 0xF000);
-    }
-    return d * (sumy * -8.f + acc[0] + acc[1]);
-}
-
-// function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
-// il indicates where the q4 quants begin (0 or QK4_0/4)
-// we assume that the yl's have been multiplied with the appropriate scale factor
-// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
-inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
-    float d = qb_curr->d;
-    float m = qb_curr->m;
-    device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
-    float2 acc = 0.f;
-    for (int i = 0; i < 8; i+=2) {
-        acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
-                + yl[i + 1] * (qs[i / 2] & 0x0F00);
-        acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
-                + yl[i + 9] * (qs[i / 2] & 0xF000);
-    }
-    return d * (acc[0] + acc[1]) + sumy * m;
-}
-
-// putting them in the kernel cause a significant performance penalty
-#define N_DST 4 // each SIMD group works on 4 rows
-#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
-#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
-//Note: This is a template, but strictly speaking it only applies to
-//      quantizations where the block size is 32. It also does not
-//      giard against the number of rows not being divisible by
-//      N_DST, so this is another explicit assumption of the implementation.
-template<typename block_q_type, int nr, int nsg, int nw>
-void mul_vec_q_n_f32(device const void * src0, device const float * src1, device float * dst,
-                    int64_t ne00, int64_t ne10, int64_t ne0, int64_t ne01,
-                    uint2 tgpig, uint tiisg, uint sgitg) {
-    const int nb = ne00/QK4_0;
-    const int r0 = tgpig.x;
-    const int r1 = tgpig.y;
-    const int first_row = (r0 * nsg + sgitg) * nr;
-    device const block_q_type * x = (device const block_q_type *) src0 + first_row * nb;
-    device const float      * y = (device const float      *) src1 + r1*ne10;
-    float yl[16];       // src1 vector cache
-    float sumf[nr]={0.f};
-
-    const int ix = tiisg/2;
-    const int il = 8*(tiisg%2);
-
-    device const float * yb = y + ix * QK4_0 + il;
-
-    // each thread in a SIMD group deals with half a block.
-    for (int ib = ix; ib < nb; ib += nw/2) {
-        float sumy = 0;
-        for (int i = 0; i < 8; i += 2) {
-            sumy += yb[i] + yb[i+1];
-            yl[i+0] = yb[i+ 0];
-            yl[i+1] = yb[i+ 1]/256.f;
-            sumy += yb[i+16] + yb[i+17];
-            yl[i+8] = yb[i+16]/16.f;
-            yl[i+9] = yb[i+17]/4096.f;
-        }
-
-        for (int row = 0; row < nr; row++) {
-            sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il);
-        }
-
-        yb += QK4_0 * 16;
-    }
-
-    for (int row = 0; row < nr; ++row) {
-        const float tot = simd_sum(sumf[row]);
-        if (tiisg == 0 && first_row + row < ne01) {
-            dst[r1*ne0 + first_row + row] = tot;
-        }
-    }
-}
-
-kernel void kernel_mul_mat_q4_0_f32(
-        device const  void * src0,
-        device const float * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne10,
-        constant   int64_t & ne0,
-        constant   int64_t & ne01[[buffer(4)]],
-        uint2 tgpig[[threadgroup_position_in_grid]],
-        uint tiisg[[thread_index_in_simdgroup]],
-        uint sgitg[[simdgroup_index_in_threadgroup]]) {
-    mul_vec_q_n_f32<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
-}
-
-kernel void kernel_mul_mat_q4_1_f32(
-        device const  void * src0,
-        device const float * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne10,
-        constant   int64_t & ne0,
-        constant   int64_t & ne01[[buffer(4)]],
-        uint2 tgpig[[threadgroup_position_in_grid]],
-        uint tiisg[[thread_index_in_simdgroup]],
-        uint sgitg[[simdgroup_index_in_threadgroup]]) {
-     mul_vec_q_n_f32<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
-}
-
-kernel void kernel_mul_mat_f16_f32(
-        device const  char * src0,
-        device const  char * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne01,
-        constant   int64_t & ne02,
-        constant  uint64_t & nb00,
-        constant  uint64_t & nb01,
-        constant  uint64_t & nb02,
-        constant   int64_t & ne10,
-        constant   int64_t & ne11,
-        constant   int64_t & ne12,
-        constant  uint64_t & nb10,
-        constant  uint64_t & nb11,
-        constant  uint64_t & nb12,
-        constant   int64_t & ne0,
-        constant   int64_t & ne1,
-        threadgroup float  * sum [[threadgroup(0)]],
-        uint3 tgpig[[threadgroup_position_in_grid]],
-        uint3  tpig[[thread_position_in_grid]],
-        uint3 tpitg[[thread_position_in_threadgroup]],
-        uint3  tptg[[threads_per_threadgroup]]) {
-
-    const int64_t r0 = tgpig.x;
-    const int64_t r1 = tgpig.y;
-    const int64_t im = tgpig.z;
-
-    device const half  * x = (device const half  *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
-    device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
-
-    sum[tpitg.x] = 0.0f;
-
-    for (int i = tpitg.x; i < ne00; i += tptg.x) {
-        sum[tpitg.x] += (float) x[i] * (float) y[i];
-    }
-
-    // accumulate the sum from all threads in the threadgroup
-    threadgroup_barrier(mem_flags::mem_threadgroup);
-    for (uint i = tptg.x/2; i > 0; i /= 2) {
-        if (tpitg.x < i) {
-            sum[tpitg.x] += sum[tpitg.x + i];
-        }
-        threadgroup_barrier(mem_flags::mem_threadgroup);
-    }
-
-    if (tpitg.x == 0) {
-        dst[im*ne1*ne0 + r1*ne0 + r0] = sum[0];
-    }
-}
-
-
-kernel void kernel_alibi_f32(
-        device const float * src0,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne01,
-        constant   int64_t & ne02,
-        constant   int64_t & ne03,
-        constant  uint64_t & nb00,
-        constant  uint64_t & nb01,
-        constant  uint64_t & nb02,
-        constant  uint64_t & nb03,
-        constant   int64_t & ne0,
-        constant   int64_t & ne1,
-        constant   int64_t & ne2,
-        constant   int64_t & ne3,
-        constant  uint64_t & nb0,
-        constant  uint64_t & nb1,
-        constant  uint64_t & nb2,
-        constant  uint64_t & nb3,
-        constant      float & m0,
-        uint3 tgpig[[threadgroup_position_in_grid]],
-        uint3 tpitg[[thread_position_in_threadgroup]],
-        uint3   ntg[[threads_per_threadgroup]]) {
-    const int64_t i03 = tgpig[2];
-    const int64_t i02 = tgpig[1];
-    const int64_t i01 = tgpig[0];
-
-    const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
-
-    const int64_t i3 = n / (ne2*ne1*ne0);
-    const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
-    const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
-    const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
-
-    device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
-    float m_k = pow(m0, i2 + 1);
-    for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
-        device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
-        dst_data[i00] = src[0] + m_k * (i00 - ne00 + 1);
-    }
-}
-
-kernel void kernel_rope(
-        device const  void * src0,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne01,
-        constant   int64_t & ne02,
-        constant   int64_t & ne03,
-        constant  uint64_t & nb00,
-        constant  uint64_t & nb01,
-        constant  uint64_t & nb02,
-        constant  uint64_t & nb03,
-        constant   int64_t & ne0,
-        constant   int64_t & ne1,
-        constant   int64_t & ne2,
-        constant   int64_t & ne3,
-        constant  uint64_t & nb0,
-        constant  uint64_t & nb1,
-        constant  uint64_t & nb2,
-        constant  uint64_t & nb3,
-        constant       int & n_past,
-        constant       int & n_dims,
-        constant       int & mode,
-        constant     float & freq_base,
-        constant     float & freq_scale,
-        uint3 tpig[[thread_position_in_grid]]) {
-    const int64_t i3 = tpig[2];
-    const int64_t i2 = tpig[1];
-    const int64_t i1 = tpig[0];
-
-    const bool is_neox = mode & 2;
-    const float theta_scale = pow(freq_base, -2.0f/n_dims);
-
-    const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
-
-    float theta = freq_scale * (float)p;
-
-    if (!is_neox) {
-        for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
-            const float cos_theta = cos(theta);
-            const float sin_theta = sin(theta);
-
-            theta *= theta_scale;
-
-            device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
-            device       float * dst_data  = (device float *)((device char *)  dst + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
-
-            const float x0 = src[0];
-            const float x1 = src[1];
-
-            dst_data[0] = x0*cos_theta - x1*sin_theta;
-            dst_data[1] = x0*sin_theta + x1*cos_theta;
-        }
-    } else {
-        // TODO: implement
-    }
-}
-
-kernel void kernel_cpy_f16_f16(
-        device const half * src0,
-        device       half * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne01,
-        constant   int64_t & ne02,
-        constant   int64_t & ne03,
-        constant  uint64_t & nb00,
-        constant  uint64_t & nb01,
-        constant  uint64_t & nb02,
-        constant  uint64_t & nb03,
-        constant   int64_t & ne0,
-        constant   int64_t & ne1,
-        constant   int64_t & ne2,
-        constant   int64_t & ne3,
-        constant  uint64_t & nb0,
-        constant  uint64_t & nb1,
-        constant  uint64_t & nb2,
-        constant  uint64_t & nb3,
-        uint3 tgpig[[threadgroup_position_in_grid]],
-        uint3 tpitg[[thread_position_in_threadgroup]],
-        uint3   ntg[[threads_per_threadgroup]]) {
-    const int64_t i03 = tgpig[2];
-    const int64_t i02 = tgpig[1];
-    const int64_t i01 = tgpig[0];
-
-    const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
-
-    const int64_t i3 = n / (ne2*ne1*ne0);
-    const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
-    const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
-    const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
-
-    device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
-
-    for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
-        device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
-        dst_data[i00] = src[0];
-    }
-}
-
-kernel void kernel_cpy_f32_f16(
-        device const float * src0,
-        device        half * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne01,
-        constant   int64_t & ne02,
-        constant   int64_t & ne03,
-        constant  uint64_t & nb00,
-        constant  uint64_t & nb01,
-        constant  uint64_t & nb02,
-        constant  uint64_t & nb03,
-        constant   int64_t & ne0,
-        constant   int64_t & ne1,
-        constant   int64_t & ne2,
-        constant   int64_t & ne3,
-        constant  uint64_t & nb0,
-        constant  uint64_t & nb1,
-        constant  uint64_t & nb2,
-        constant  uint64_t & nb3,
-        uint3 tgpig[[threadgroup_position_in_grid]],
-        uint3 tpitg[[thread_position_in_threadgroup]],
-        uint3   ntg[[threads_per_threadgroup]]) {
-    const int64_t i03 = tgpig[2];
-    const int64_t i02 = tgpig[1];
-    const int64_t i01 = tgpig[0];
-
-    const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
-
-    const int64_t i3 = n / (ne2*ne1*ne0);
-    const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
-    const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
-    const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
-
-    device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
-
-    for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
-        device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
-
-        dst_data[i00] = src[0];
-    }
-}
-
-kernel void kernel_cpy_f32_f32(
-        device const float * src0,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne01,
-        constant   int64_t & ne02,
-        constant   int64_t & ne03,
-        constant  uint64_t & nb00,
-        constant  uint64_t & nb01,
-        constant  uint64_t & nb02,
-        constant  uint64_t & nb03,
-        constant   int64_t & ne0,
-        constant   int64_t & ne1,
-        constant   int64_t & ne2,
-        constant   int64_t & ne3,
-        constant  uint64_t & nb0,
-        constant  uint64_t & nb1,
-        constant  uint64_t & nb2,
-        constant  uint64_t & nb3,
-        uint3 tgpig[[threadgroup_position_in_grid]],
-        uint3 tpitg[[thread_position_in_threadgroup]],
-        uint3   ntg[[threads_per_threadgroup]]) {
-    const int64_t i03 = tgpig[2];
-    const int64_t i02 = tgpig[1];
-    const int64_t i01 = tgpig[0];
-
-    const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
-
-    const int64_t i3 = n / (ne2*ne1*ne0);
-    const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
-    const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
-    const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
-
-    device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
-
-    for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
-        device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
-
-        dst_data[i00] = src[0];
-    }
-}
-
-//============================================ k-quants ======================================================
-
-#ifndef QK_K
-#define QK_K 256
-#else
-static_assert(QK_K == 256 || QK_K == 64, "QK_K must be 256 or 64");
-#endif
-
-#if QK_K == 256
-#define K_SCALE_SIZE 12
-#else
-#define K_SCALE_SIZE 4
-#endif
-
-typedef struct {
-    uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
-    uint8_t qs[QK_K/4];      // quants
-    half d;           // super-block scale for quantized scales
-    half dmin;        // super-block scale for quantized mins
-} block_q2_K;
-// 84 bytes / block
-
-typedef struct {
-    uint8_t hmask[QK_K/8];     // quants - high bit
-    uint8_t qs[QK_K/4];        // quants - low 2 bits
-#if QK_K == 64
-    uint8_t scales[2];
-#else
-    uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
-#endif
-    half d;             // super-block scale
-} block_q3_K;
-
-#if QK_K == 64
-typedef struct {
-    half    d[2];          // super-block scales/mins
-    uint8_t scales[2];
-    uint8_t qs[QK_K/2];    // 4-bit quants
-} block_q4_K;
-#else
-typedef struct {
-    half d;             // super-block scale for quantized scales
-    half dmin;          // super-block scale for quantized mins
-    uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
-    uint8_t qs[QK_K/2];        // 4--bit quants
-} block_q4_K;
-#endif
-
-#if QK_K == 64
-typedef struct {
-    half  d;                     // super-block scales/mins
-    int8_t  scales[QK_K/16];     // 8-bit block scales
-    uint8_t qh[QK_K/8];          // quants, high bit
-    uint8_t qs[QK_K/2];          // quants, low 4 bits
-} block_q5_K;
-#else
-typedef struct {
-    half d;                      // super-block scale for quantized scales
-    half dmin;                   // super-block scale for quantized mins
-    uint8_t scales[3*QK_K/64];   // scales and mins, quantized with 6 bits
-    uint8_t qh[QK_K/8];          // quants, high bit
-    uint8_t qs[QK_K/2];          // quants, low 4 bits
-} block_q5_K;
-// 176 bytes / block
-#endif
-
-typedef struct {
-    uint8_t ql[QK_K/2];      // quants, lower 4 bits
-    uint8_t qh[QK_K/4];      // quants, upper 2 bits
-    int8_t  scales[QK_K/16]; // scales, quantized with 8 bits
-    half d;                  // super-block scale
-} block_q6_K;
-// 210 bytes / block
-
-static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
-    uchar4 r;
-    if (j < 4) {
-        r[0] = q[j+0] & 63;
-        r[2] = q[j+1] & 63;
-        r[1] = q[j+4] & 63;
-        r[3] = q[j+5] & 63;
-    } else {
-        r[0] = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
-        r[2] = (q[j+5] & 0xF) | ((q[j-3] >> 6) << 4);
-        r[1] = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
-        r[3] = (q[j+5] >>  4) | ((q[j+1] >> 6) << 4);
-    }
-    return r;
-}
-
-//========================================== dequantization =============================
-
-static void dequantize_row_q2_K(device const block_q2_K * x, device float * y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    for (int i = 0; i < nb; i++) {
-
-        const float d = x[i].d;
-        const float min = x[i].dmin;
-
-        device const uint8_t * q = x[i].qs;
-
-#if QK_K == 256
-        int is = 0;
-        float dl, ml;
-        for (int n = 0; n < QK_K; n += 128) {
-            int shift = 0;
-            for (int j = 0; j < 4; ++j) {
-
-                uint8_t sc = x[i].scales[is++];
-                dl = d * (sc & 0xF); ml = min * (sc >> 4);
-                for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
-
-                sc = x[i].scales[is++];
-                dl = d * (sc & 0xF); ml = min * (sc >> 4);
-                for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
-
-                shift += 2;
-            }
-            q += 32;
-        }
-#else
-        float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
-        float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
-        float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
-        float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
-        for (int l = 0; l < 16; ++l) {
-            y[l+ 0] = dl1 * ((q[l] >> 0) & 3) - ml1;
-            y[l+16] = dl2 * ((q[l] >> 2) & 3) - ml2;
-            y[l+32] = dl3 * ((q[l] >> 4) & 3) - ml3;
-            y[l+48] = dl4 * ((q[l] >> 6) & 3) - ml4;
-        }
-        y += QK_K;
-#endif
-
-    }
-}
-
-static void dequantize_row_q3_K(device const block_q3_K * x, device float * y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-#if QK_K == 256
-
-    const uint16_t kmask1 = 0x0303;
-    const uint16_t kmask2 = 0x0f0f;
-
-    uint16_t aux[8];
-    thread const int8_t * scales = (thread const int8_t*)aux;
-
-    for (int i = 0; i < nb; i++) {
-
-        const float d_all = (float)(x[i].d);
-
-        device const uint8_t * q = x[i].qs;
-        device const uint8_t * h = x[i].hmask;
-        uint8_t m = 1;
-
-        device const uint16_t * a = (device const uint16_t *)x[i].scales;
-        aux[0] = (a[0] & kmask2) | (((a[4] >> 0) & kmask1) << 4);
-        aux[1] = (a[1] & kmask2) | (((a[5] >> 0) & kmask1) << 4);
-        aux[2] = (a[2] & kmask2) | (((a[4] >> 2) & kmask1) << 4);
-        aux[3] = (a[3] & kmask2) | (((a[5] >> 2) & kmask1) << 4);
-        aux[4] = ((a[0] >> 4) & kmask2) | (((a[4] >> 4) & kmask1) << 4);
-        aux[5] = ((a[1] >> 4) & kmask2) | (((a[5] >> 4) & kmask1) << 4);
-        aux[6] = ((a[2] >> 4) & kmask2) | (((a[4] >> 6) & kmask1) << 4);
-        aux[7] = ((a[3] >> 4) & kmask2) | (((a[5] >> 6) & kmask1) << 4);
-
-        int is = 0;
-        float dl;
-        for (int n = 0; n < QK_K; n += 128) {
-            int shift = 0;
-            for (int j = 0; j < 4; ++j) {
-
-                dl = d_all * (scales[is++] - 32);
-                for (int l = 0; l < 16; ++l) {
-                    *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((h[l+ 0] & m) ? 0 : 4));
-                }
-
-                dl = d_all * (scales[is++] - 32);
-                for (int l = 0; l < 16; ++l) {
-                    *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((h[l+16] & m) ? 0 : 4));
-                }
-
-                shift += 2;
-                m <<= 1;
-            }
-            q += 32;
-        }
-    }
-#else
-    for (int i = 0; i < nb; i++) {
-
-        const float d_all = (float)(x[i].d);
-
-        device const uint8_t * q = x[i].qs;
-        device const uint8_t * hm = x[i].hmask;
-
-        const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
-        const float d2 = d_all * ((x[i].scales[0] >>  4) - 8);
-        const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
-        const float d4 = d_all * ((x[i].scales[1] >>  4) - 8);
-
-        for (int l = 0; l < 8; ++l) {
-            uint8_t h = hm[l];
-            y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
-            y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
-            y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
-            y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
-            y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
-            y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
-            y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
-            y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
-        }
-        y += QK_K;
-    }
-#endif
-
-}
-
-static void dequantize_row_q4_K(device const block_q4_K * x, device float * y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    for (int i = 0; i < nb; i++) {
-
-        device const uint8_t * q = x[i].qs;
-
-#if QK_K == 256
-        const float d = x[i].d;
-        const float min = x[i].dmin;
-
-        device const uint8_t * scales = x[i].scales;
-
-        int is = 0;
-        for (int j = 0; j < QK_K; j += 64) {
-            const uchar4 sc = get_scale_min_k4(is, scales);
-            const float d1 = d * sc[0]; const float m1 = min * sc[1];
-            const float d2 = d * sc[2]; const float m2 = min * sc[3];
-            for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
-            for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l]  >> 4) - m2;
-            q += 32; is += 2;
-        }
-#else
-        device const uint8_t * s = x[i].scales;
-        device const half2 * dh = (device const half2 *)x[i].d;
-        const float2 d = (float2)dh[0];
-        const float d1 = d[0] * (s[0] & 0xF);
-        const float d2 = d[0] * (s[1] & 0xF);
-        const float m1 = d[1] * (s[0] >>  4);
-        const float m2 = d[1] * (s[1] >>  4);
-        for (int l = 0; l < 32; ++l) {
-            y[l+ 0] = d1 * (q[l] & 0xF) - m1;
-            y[l+32] = d2 * (q[l] >>  4) - m2;
-        }
-        y += QK_K;
-#endif
-
-    }
-}
-
-static void dequantize_row_q5_K(device const block_q5_K * x, device float * y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-#if QK_K == 256
-   for (int i = 0; i < nb; i++) {
-
-        const float d = (float)(x[i].d);
-        const float min = (float)(x[i].dmin);
-
-        device const uint8_t * ql = x[i].qs;
-        device const uint8_t * qh = x[i].qh;
-
-        int is = 0;
-        uint8_t u1 = 1, u2 = 2;
-        for (int j = 0; j < QK_K; j += 64) {
-            const uchar4 sc = get_scale_min_k4(is, x[i].scales);
-            const float d1 = d * sc[0]; const float m1 = min * sc[1];
-            const float d2 = d * sc[2]; const float m2 = min * sc[3];
-            for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
-            for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l]  >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
-            ql += 32; is += 2;
-            u1 <<= 2; u2 <<= 2;
-        }
-    }
-#else
-    for (int i = 0; i < nb; i++) {
-
-        const float d = (float)x[i].d;
-
-        device const uint8_t * ql = x[i].qs;
-        device const uint8_t * qh = x[i].qh;
-        device const int8_t  * sc = x[i].scales;
-
-        for (int l = 0; l < 8; ++l) {
-            y[l+ 0] = d * sc[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
-            y[l+ 8] = d * sc[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
-            y[l+16] = d * sc[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
-            y[l+24] = d * sc[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
-            y[l+32] = d * sc[2] * ((ql[l+ 0] >>  4) - (qh[l] & 0x10 ? 0 : 16));
-            y[l+40] = d * sc[2] * ((ql[l+ 8] >>  4) - (qh[l] & 0x20 ? 0 : 16));
-            y[l+48] = d * sc[3] * ((ql[l+16] >>  4) - (qh[l] & 0x40 ? 0 : 16));
-            y[l+56] = d * sc[3] * ((ql[l+24] >>  4) - (qh[l] & 0x80 ? 0 : 16));
-        }
-        y += QK_K;
-    }
-#endif
-
-}
-
-static void dequantize_row_q6_K(device const block_q6_K * x, device float * y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    for (int i = 0; i < nb; i++) {
-
-        device const uint8_t * ql = x[i].ql;
-        device const uint8_t * qh = x[i].qh;
-        device const int8_t  * sc = x[i].scales;
-
-        const float d = x[i].d;
-
-#if QK_K == 256
-        for (int n = 0; n < QK_K; n += 128) {
-            for (int l = 0; l < 32; ++l) {
-                int is = l/16;
-                const int8_t q1 = (int8_t)((ql[l +  0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
-                const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
-                const int8_t q3 = (int8_t)((ql[l +  0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
-                const int8_t q4 = (int8_t)((ql[l + 32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
-                y[l +  0] = d * sc[is + 0] * q1;
-                y[l + 32] = d * sc[is + 2] * q2;
-                y[l + 64] = d * sc[is + 4] * q3;
-                y[l + 96] = d * sc[is + 6] * q4;
-            }
-            y  += 128;
-            ql += 64;
-            qh += 32;
-            sc += 8;
-        }
-#else
-        for (int l = 0; l < 16; ++l) {
-            const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
-            const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
-            const int8_t q3 = (int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
-            const int8_t q4 = (int8_t)((ql[l+16]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
-            y[l+ 0] = d * sc[0] * q1;
-            y[l+16] = d * sc[1] * q2;
-            y[l+32] = d * sc[2] * q3;
-            y[l+48] = d * sc[3] * q4;
-        }
-        y  += 64;
-#endif
-    }
-}
-
-kernel void kernel_get_rows_q2_K(
-        device const  void * src0,
-        device const   int * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant  uint64_t & nb01,
-        constant  uint64_t & nb1,
-        uint tpig[[thread_position_in_grid]]) {
-    const int i = tpig;
-    const int r = ((device int32_t *) src1)[i];
-
-    dequantize_row_q2_K(
-            (device const block_q2_K *) ((device char *) src0 + r*nb01),
-                       (device float *) ((device char *)  dst + i*nb1), ne00);
-}
-
-kernel void kernel_get_rows_q3_K(
-        device const  void * src0,
-        device const   int * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant  uint64_t & nb01,
-        constant  uint64_t & nb1,
-        uint tpig[[thread_position_in_grid]]) {
-    const int i = tpig;
-    const int r = ((device int32_t *) src1)[i];
-
-    dequantize_row_q3_K(
-            (device const block_q3_K *) ((device char *) src0 + r*nb01),
-                       (device float *) ((device char *)  dst + i*nb1), ne00);
-}
-
-kernel void kernel_get_rows_q4_K(
-        device const  void * src0,
-        device const   int * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant  uint64_t & nb01,
-        constant  uint64_t & nb1,
-        uint tpig[[thread_position_in_grid]]) {
-    const int i = tpig;
-    const int r = ((device int32_t *) src1)[i];
-
-    dequantize_row_q4_K(
-            (device const block_q4_K *) ((device char *) src0 + r*nb01),
-                       (device float *) ((device char *)  dst + i*nb1), ne00);
-}
-
-kernel void kernel_get_rows_q5_K(
-        device const  void * src0,
-        device const   int * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant  uint64_t & nb01,
-        constant  uint64_t & nb1,
-        uint tpig[[thread_position_in_grid]]) {
-    const int i = tpig;
-    const int r = ((device int32_t *) src1)[i];
-
-    dequantize_row_q5_K(
-            (device const block_q5_K *) ((device char *) src0 + r*nb01),
-                       (device float *) ((device char *)  dst + i*nb1), ne00);
-}
-
-kernel void kernel_get_rows_q6_K(
-        device const  void * src0,
-        device const   int * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant  uint64_t & nb01,
-        constant  uint64_t & nb1,
-        uint tpig[[thread_position_in_grid]]) {
-    const int i = tpig;
-    const int r = ((device int32_t *) src1)[i];
-
-    dequantize_row_q6_K(
-            (device const block_q6_K *) ((device char *) src0 + r*nb01),
-                       (device float *) ((device char *)  dst + i*nb1), ne00);
-}
-
-//====================================== dot products =========================
-
-kernel void kernel_mul_mat_q2_K_f32(
-        device const  void * src0,
-        device const float * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne10,
-        constant   int64_t & ne0,
-        constant   int64_t & ne01[[buffer(4)]],
-        uint2 tgpig[[threadgroup_position_in_grid]],
-        uint tiisg[[thread_index_in_simdgroup]],
-        uint sgitg[[simdgroup_index_in_threadgroup]]) {
-
-    const int nb = ne00/QK_K;
-    const int r0 = tgpig.x;
-    const int r1 = tgpig.y;
-
-    const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
-    const int ib_row = first_row * nb;
-    device const block_q2_K * x = (device const block_q2_K *) src0 + ib_row;
-    device const float      * y = (device const float      *) src1 + r1*ne10;
-    float yl[32];
-    float sumf[N_DST]={0.f}, all_sum;
-
-    const int step = sizeof(block_q2_K) * nb;
-
-#if QK_K == 256
-    const int ix = tiisg/8;  // 0...3
-    const int it = tiisg%8;  // 0...7
-    const int im = it/4;     // 0 or 1
-    const int ir = it%4;     // 0...3
-    const int is = (8*ir)/16;// 0 or 1
-
-    device const float * y4 = y + ix * QK_K + 128 * im + 8 * ir;
-
-    for (int ib = ix; ib < nb; ib += 4) {
-
-        float4 sumy = {0.f, 0.f, 0.f, 0.f};
-        for (int i = 0; i < 8; ++i) {
-            yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
-            yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8];
-            yl[i+16] = y4[i+64]; sumy[2] += yl[i+16];
-            yl[i+24] = y4[i+96]; sumy[3] += yl[i+24];
-        }
-
-        device const uint8_t  * sc = (device const uint8_t  *)x[ib].scales + 8*im + is;
-        device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * im + 4 * ir;
-        device const half     * dh = &x[ib].d;
-
-        for (int row = 0; row < N_DST; row++) {
-
-            float4 acc1 = {0.f, 0.f, 0.f, 0.f};
-            float4 acc2 = {0.f, 0.f, 0.f, 0.f};
-            for (int i = 0; i < 8; i += 2) {
-                acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
-                acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
-                acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
-                acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
-                acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
-                acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
-                acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
-                acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
-            }
-            float dall = dh[0];
-            float dmin = dh[1] * 1.f/16.f;
-            sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
-                                 (acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f +
-                                 (acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f +
-                                 (acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) -
-                         dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0));
-
-            qs += step/2;
-            sc += step;
-            dh += step/2;
-        }
-
-        y4 += 4 * QK_K;
-    }
-#else
-    const int ix = tiisg/2;  // 0...15
-    const int it = tiisg%2;  // 0...1
-
-    device const float * y4 = y + ix * QK_K + 8 * it;
-
-    for (int ib = ix; ib < nb; ib += 16) {
-
-        float4 sumy = {0.f, 0.f, 0.f, 0.f};
-        for (int i = 0; i < 8; ++i) {
-            yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
-            yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8];
-            yl[i+16] = y4[i+32]; sumy[2] += yl[i+16];
-            yl[i+24] = y4[i+48]; sumy[3] += yl[i+24];
-        }
-
-        device const uint8_t  * sc = (device const uint8_t  *)x[ib].scales;
-        device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
-        device const half     * dh = &x[ib].d;
-
-        for (int row = 0; row < N_DST; row++) {
-
-            float4 acc1 = {0.f, 0.f, 0.f, 0.f};
-            float4 acc2 = {0.f, 0.f, 0.f, 0.f};
-            for (int i = 0; i < 8; i += 2) {
-                acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
-                acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
-                acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
-                acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
-                acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
-                acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
-                acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
-                acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
-            }
-
-            float dall = dh[0];
-            float dmin = dh[1];
-            sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
-                                 (acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f +
-                                 (acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f +
-                                 (acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) -
-                         dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4));
-
-            qs += step/2;
-            sc += step;
-            dh += step/2;
-        }
-
-        y4 += 16 * QK_K;
-    }
-#endif
-
-    for (int row = 0; row < N_DST; ++row) {
-        all_sum = simd_sum(sumf[row]);
-        if (tiisg == 0) {
-            dst[r1*ne0 + first_row + row] = all_sum;
-        }
-    }
-}
-
-#if QK_K == 256
-kernel void kernel_mul_mat_q3_K_f32(
-        device const  void * src0,
-        device const float * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne10,
-        constant   int64_t & ne0,
-        constant   int64_t & ne1,
-        uint2 tgpig[[threadgroup_position_in_grid]],
-        uint tiisg[[thread_index_in_simdgroup]],
-        uint sgitg[[simdgroup_index_in_threadgroup]]) {
-
-    const int nb = ne00/QK_K;
-
-    const int64_t r0 = tgpig.x;
-    const int64_t r1 = tgpig.y;
-
-    const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
-
-    device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb;
-    device const float     * yy = (device const float      *) src1 + r1*ne10;
-
-    float yl[16];
-
-    const uint16_t kmask1 = 0x0303;
-    const uint16_t kmask2 = 0x0f0f;
-
-    const int tid = tiisg/2;
-    const int ix  = tiisg%2;
-    const int ip  = tid/8;          // 0 or 1
-    const int il  = tid/2 - 4*ip;   // 0...3
-    const int ir  = tid%2;
-    const int n   = 8;
-    const int l0  = n*ir;
-
-    const uint16_t m1 = 1 << (4*ip + il);
-    const uint16_t m2 = m1 << 8;
-
-    const int shift = 2*il;
-    const uint16_t qm1 = 0x0003 << shift;
-    const uint16_t qm2 = 0x0300 << shift;
-    const int32_t v1 = 4 << shift;
-    const int32_t v2 = 1024 << shift;
-
-    const uint16_t s_shift1 = 4*ip;
-    const uint16_t s_shift2 = s_shift1 + 2*(il/2);
-    const int ik = 4 + (il%2);
-
-    const int q_offset = 32*ip + l0;
-    const int y_offset = 128*ip + 32*il + l0;
-
-    const int step = sizeof(block_q3_K) * nb / 2;
-
-    device const float * y1 = yy + ix*QK_K + y_offset;
-
-    float sumf1[2] = {0.f}, sumf2[2] = {0.f};
-    for (int i = ix; i < nb; i += 2) {
-
-        for (int l = 0; l < 8; ++l) {
-            yl[l+0] = y1[l+ 0];
-            yl[l+8] = y1[l+16];
-        }
-
-        device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
-        device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
-        device const uint16_t * a = (device const uint16_t *)(x[i].scales);
-        device const half * dh = &x[i].d;
-
-        for (int row = 0; row < 2; ++row) {
-
-            const float d_all = (float)dh[0];
-            const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
-
-            float s1 = 0, s2 = 0;
-            for (int l = 0; l < n; l += 2) {
-                const uint16_t qs = q[l/2];
-                s1 += yl[l+0] * ((int32_t)(qs & qm1) - ((h[l/2] & m1) ? 0 : v1));
-                s2 += yl[l+1] * ((int32_t)(qs & qm2) - ((h[l/2] & m2) ? 0 : v2));
-            }
-            float d = d_all * (s1 + 1.f/256.f * s2);
-            sumf1[row] += d * scales[0];
-            sumf2[row] += d;
-
-            s1 = s2 = 0;
-            for (int l = 0; l < n; l += 2) {
-                const uint16_t qs = q[l/2+8];
-                s1 += yl[l+8] * ((int32_t)(qs & qm1) - ((h[l/2+8] & m1) ? 0 : v1));
-                s2 += yl[l+9] * ((int32_t)(qs & qm2) - ((h[l/2+8] & m2) ? 0 : v2));
-            }
-            d = d_all * (s1 + 1.f/256.f * s2);
-            sumf1[row] += d * scales[1];
-            sumf2[row] += d;
-
-            q  += step;
-            h  += step;
-            a  += step;
-            dh += step;
-
-        }
-
-        y1 += 2 * QK_K;
-
-    }
-
-    for (int row = 0; row < 2; ++row) {
-        const float sumf = (sumf1[row] - 32.f*sumf2[row]) / (1 << shift);
-        const float tot = simd_sum(sumf);
-        if (tiisg == 0) {
-            dst[r1*ne0 + first_row + row] = tot;
-        }
-    }
-}
-#else
-kernel void kernel_mul_mat_q3_K_f32(
-        device const  void * src0,
-        device const float * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne10,
-        constant   int64_t & ne0,
-        constant   int64_t & ne1,
-        uint2 tgpig[[threadgroup_position_in_grid]],
-        uint tiisg[[thread_index_in_simdgroup]],
-        uint sgitg[[simdgroup_index_in_threadgroup]]) {
-
-    const int nb = ne00/QK_K;
-
-    const int64_t r0 = tgpig.x;
-    const int64_t r1 = tgpig.y;
-
-    const int row = 2 * r0 + sgitg;
-
-    device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb;
-    device const float     * yy = (device const float      *) src1 + r1*ne10;
-    const int ix = tiisg/4;
-    const int il = 4 * (tiisg%4);// 0, 4, 8, 12
-    const int im = il/8;         // 0, 0, 1, 1
-    const int in = il%8;         // 0, 4, 0, 4
-
-    float2 sum = {0.f, 0.f};
-
-    for (int i = ix; i < nb; i += 8) {
-
-        const float d_all = (float)(x[i].d);
-
-        device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
-        device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
-        device const uint16_t * s = (device const uint16_t *)(x[i].scales);
-        device const float    * y = yy + i * QK_K + il;
-
-        const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
-        const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
-        const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
-        const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
-
-        for (int l = 0; l < 4; l += 2) {
-            const uint16_t hm = h[l/2] >> im;
-            sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 :  4))
-                    + y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
-                    + y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
-                    + y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
-            sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
-                    + y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
-                    + y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
-                    + y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
-        }
-
-    }
-    const float sumf = sum[0] + sum[1] * 1.f/256.f;
-
-    const float tot = simd_sum(sumf);
-    if (tiisg == 0) {
-        dst[r1*ne0 + row] = tot;
-    }
-
-}
-#endif
-
-#if QK_K == 256
-kernel void kernel_mul_mat_q4_K_f32(
-        device const  void * src0,
-        device const float * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne10,
-        constant   int64_t & ne0,
-        constant   int64_t & ne01[[buffer(4)]],
-        uint2 tgpig[[threadgroup_position_in_grid]],
-        uint tiisg[[thread_index_in_simdgroup]],
-        uint sgitg[[simdgroup_index_in_threadgroup]]) {
-
-    const uint16_t kmask1 = 0x3f3f;
-    const uint16_t kmask2 = 0x0f0f;
-    const uint16_t kmask3 = 0xc0c0;
-
-    const int ix = tiisg/8;  // 0...3
-    const int it = tiisg%8;  // 0...7
-    const int im = it/4;     // 0 or 1
-    const int ir = it%4;     // 0...3
-
-    const int nb = ne00/QK_K;
-    const int r0 = tgpig.x;
-    const int r1 = tgpig.y;
-    const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
-    const int ib_row = first_row * nb;
-    device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row;
-    device const float      * y = (device const float      *) src1 + r1*ne10;
-    float yl[16];
-    float yh[16];
-    float sumf[N_DST]={0.f}, all_sum;
-
-    const int step = sizeof(block_q4_K) * nb / 2;
-
-    device const float * y4 = y + ix * QK_K + 64 * im + 8 * ir;
-
-    uint16_t sc16[4];
-    thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
-
-    for (int ib = ix; ib < nb; ib += 4) {
-
-        float4 sumy = {0.f, 0.f, 0.f, 0.f};
-        for (int i = 0; i < 8; ++i) {
-            yl[i+0] = y4[i+  0]; sumy[0] += yl[i+0];
-            yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8];
-            yh[i+0] = y4[i+128]; sumy[2] += yh[i+0];
-            yh[i+8] = y4[i+160]; sumy[3] += yh[i+8];
-        }
-
-        device const uint16_t * sc = (device const uint16_t *)x[ib].scales + im;
-        device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * im + 4 * ir;
-        device const half     * dh = &x[ib].d;
-
-        for (int row = 0; row < N_DST; row++) {
-
-            sc16[0] = sc[0] & kmask1;
-            sc16[1] = sc[2] & kmask1;
-            sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2);
-            sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2);
-
-            device const uint16_t * q2 = q1 + 32;
-
-            float4 acc1 = {0.f, 0.f, 0.f, 0.f};
-            float4 acc2 = {0.f, 0.f, 0.f, 0.f};
-            for (int i = 0; i < 8; i += 2) {
-                acc1[0] += yl[i+0] * (q1[i/2] & 0x000F);
-                acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00);
-                acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0);
-                acc1[3] += yl[i+9] * (q1[i/2] & 0xF000);
-                acc2[0] += yh[i+0] * (q2[i/2] & 0x000F);
-                acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00);
-                acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0);
-                acc2[3] += yh[i+9] * (q2[i/2] & 0xF000);
-            }
-
-            float dall = dh[0];
-            float dmin = dh[1];
-            sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] +
-                                 (acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f +
-                                 (acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] +
-                                 (acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) -
-                         dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
-
-            q1 += step;
-            sc += step;
-            dh += step;
-        }
-
-        y4 += 4 * QK_K;
-    }
-
-    for (int row = 0; row < N_DST; ++row) {
-        all_sum = simd_sum(sumf[row]);
-        if (tiisg == 0) {
-            dst[r1*ne0 + first_row + row] = all_sum;
-        }
-    }
-}
-#else
-kernel void kernel_mul_mat_q4_K_f32(
-        device const  void * src0,
-        device const float * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne10,
-        constant   int64_t & ne0,
-        constant   int64_t & ne01[[buffer(4)]],
-        uint2 tgpig[[threadgroup_position_in_grid]],
-        uint tiisg[[thread_index_in_simdgroup]],
-        uint sgitg[[simdgroup_index_in_threadgroup]]) {
-
-    const int ix = tiisg/4;  // 0...7
-    const int it = tiisg%4;  // 0...3
-
-    const int nb = ne00/QK_K;
-    const int r0 = tgpig.x;
-    const int r1 = tgpig.y;
-    const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
-    const int ib_row = first_row * nb;
-    device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row;
-    device const float      * y = (device const float      *) src1 + r1*ne10;
-    float yl[8];
-    float yh[8];
-    float sumf[N_DST]={0.f}, all_sum;
-
-    const int step = sizeof(block_q4_K) * nb / 2;
-
-    device const float * y4 = y + ix * QK_K + 8 * it;
-
-    uint16_t sc16[4];
-
-    for (int ib = ix; ib < nb; ib += 8) {
-
-        float2 sumy = {0.f, 0.f};
-        for (int i = 0; i < 8; ++i) {
-            yl[i] = y4[i+ 0]; sumy[0] += yl[i];
-            yh[i] = y4[i+32]; sumy[1] += yh[i];
-        }
-
-        device const uint16_t * sc = (device const uint16_t *)x[ib].scales;
-        device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
-        device const half     * dh = x[ib].d;
-
-        for (int row = 0; row < N_DST; row++) {
-
-            sc16[0] = sc[0] & 0x000f;
-            sc16[1] = sc[0] & 0x0f00;
-            sc16[2] = sc[0] & 0x00f0;
-            sc16[3] = sc[0] & 0xf000;
-
-            float2 acc1 = {0.f, 0.f};
-            float2 acc2 = {0.f, 0.f};
-            for (int i = 0; i < 8; i += 2) {
-                acc1[0] += yl[i+0] * (qs[i/2] & 0x000F);
-                acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00);
-                acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0);
-                acc2[1] += yh[i+1] * (qs[i/2] & 0xF000);
-            }
-
-            float dall = dh[0];
-            float dmin = dh[1];
-            sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] +
-                                 (acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) -
-                         dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f);
-
-            qs += step;
-            sc += step;
-            dh += step;
-        }
-
-        y4 += 8 * QK_K;
-    }
-
-    for (int row = 0; row < N_DST; ++row) {
-        all_sum = simd_sum(sumf[row]);
-        if (tiisg == 0) {
-            dst[r1*ne0 + first_row + row] = all_sum;
-        }
-    }
-}
-#endif
-
-kernel void kernel_mul_mat_q5_K_f32(
-        device const  void * src0,
-        device const float * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne10,
-        constant   int64_t & ne0,
-        uint2 tgpig[[threadgroup_position_in_grid]],
-        uint tiisg[[thread_index_in_simdgroup]],
-        uint sgitg[[simdgroup_index_in_threadgroup]]) {
-
-    const int nb = ne00/QK_K;
-
-    const int64_t r0 = tgpig.x;
-    const int64_t r1 = tgpig.y;
-
-    const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
-
-    device const block_q5_K * x = (device const block_q5_K *) src0 + first_row*nb;
-    device const float     * yy = (device const float      *) src1 + r1*ne10;
-
-    float sumf[2]={0.f};
-
-    const int step = sizeof(block_q5_K) * nb;
-
-#if QK_K == 256
-#
-    float yl[16], yh[16];
-
-    const uint16_t kmask1 = 0x3f3f;
-    const uint16_t kmask2 = 0x0f0f;
-    const uint16_t kmask3 = 0xc0c0;
-
-    const int tid = tiisg/4;
-    const int ix  = tiisg%4;
-    const int im  = tid/4;
-    const int ir  = tid%4;
-    const int n   = 8;
-
-    const int l0 = n*ir;
-    const int q_offset = 32*im + l0;
-    const int y_offset = 64*im + l0;
-
-    const uint8_t hm1 = 1u << (2*im);
-    const uint8_t hm2 = hm1 << 1;
-    const uint8_t hm3 = hm1 << 4;
-    const uint8_t hm4 = hm2 << 4;
-
-    uint16_t sc16[4];
-    thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
-
-    device const float * y1 = yy + ix*QK_K + y_offset;
-
-    for (int i = ix; i < nb; i += 4) {
-
-        device const uint8_t * q1 = x[i].qs + q_offset;
-        device const uint8_t * qh = x[i].qh + l0;
-        device const half * dh = &x[i].d;
-        device const uint16_t * a = (device const uint16_t *)x[i].scales + im;
-
-        device const float * y2 = y1 + 128;
-        float4 sumy = {0.f, 0.f, 0.f, 0.f};
-        for (int l = 0; l < 8; ++l) {
-            yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0];
-            yl[l+8] = y1[l+32]; sumy[1] += yl[l+8];
-            yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0];
-            yh[l+8] = y2[l+32]; sumy[3] += yh[l+8];
-        }
-
-        for (int row = 0; row < 2; ++row) {
-
-            device const uint8_t * q2 = q1 + 64;
-
-            sc16[0] = a[0] & kmask1;
-            sc16[1] = a[2] & kmask1;
-            sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
-            sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
-
-            float4 acc = {0.f, 0.f, 0.f, 0.f};
-            for (int l = 0; l < n; ++l) {
-                uint8_t h = qh[l];
-                acc[0] += yl[l+0] * ((uint16_t)(q1[l] & 0x0F) + (h & hm1 ? 16 : 0));
-                acc[1] += yl[l+8] * ((uint16_t)(q1[l] & 0xF0) + (h & hm2 ? 256 : 0));
-                acc[2] += yh[l+0] * ((uint16_t)(q2[l] & 0x0F) + (h & hm3 ? 16 : 0));
-                acc[3] += yh[l+8] * ((uint16_t)(q2[l] & 0xF0) + (h & hm4 ? 256 : 0));
-            }
-            const float dall = dh[0];
-            const float dmin = dh[1];
-            sumf[row] += dall * (acc[0] * sc8[0] + acc[1] * sc8[1] * 1.f/16.f + acc[2] * sc8[4] + acc[3] * sc8[5] * 1.f/16.f) -
-                         dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
-
-            q1 += step;
-            qh += step;
-            dh += step/2;
-            a  += step/2;
-
-        }
-
-        y1 += 4 * QK_K;
-
-    }
-#else
-    float yl[8], yh[8];
-
-    const int il = 4 * (tiisg/8);  // 0, 4, 8, 12
-    const int ix = tiisg%8;
-    const int im = il/8;         // 0, 0, 1, 1
-    const int in = il%8;         // 0, 4, 0, 4
-
-    device const float * y = yy + ix*QK_K + il;
-
-    for (int i = ix; i < nb; i += 8) {
-
-        for (int l = 0; l < 4; ++l) {
-            yl[l+0] = y[l+ 0];
-            yl[l+4] = y[l+16];
-            yh[l+0] = y[l+32];
-            yh[l+4] = y[l+48];
-        }
-
-        device const half * dh = &x[i].d;
-        device const uint8_t * q = x[i].qs + il;
-        device const uint8_t * h = x[i].qh + in;
-        device const int8_t  * s = x[i].scales;
-
-        for (int row = 0; row < 2; ++row) {
-
-            const float d = dh[0];
-
-            float2 acc = {0.f, 0.f};
-            for (int l = 0; l < 4; ++l) {
-                const uint8_t hl = h[l] >> im;
-                acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16))
-                        + yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16));
-                acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256))
-                        + yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256));
-            }
-            sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]);
-
-            q += step;
-            h += step;
-            s += step;
-            dh += step/2;
-
-        }
-
-        y += 8 * QK_K;
-    }
-#endif
-
-    for (int row = 0; row < 2; ++row) {
-        const float tot = simd_sum(sumf[row]);
-        if (tiisg == 0) {
-            dst[r1*ne0 + first_row + row] = tot;
-        }
-    }
-
-}
-
-kernel void kernel_mul_mat_q6_K_f32(
-        device const  void * src0,
-        device const float * src1,
-        device       float * dst,
-        constant   int64_t & ne00,
-        constant   int64_t & ne10,
-        constant   int64_t & ne0,
-        uint2 tgpig[[threadgroup_position_in_grid]],
-        uint tiisg[[thread_index_in_simdgroup]],
-        uint sgitg[[simdgroup_index_in_threadgroup]]) {
-
-    const uint8_t kmask1 = 0x03;
-    const uint8_t kmask2 = 0x0C;
-    const uint8_t kmask3 = 0x30;
-    const uint8_t kmask4 = 0xC0;
-
-    const int nb = ne00/QK_K;
-
-    const int64_t r0 = tgpig.x;
-    const int64_t r1 = tgpig.y;
-
-    const int row = 2 * r0 + sgitg;
-
-    device const block_q6_K * x = (device const block_q6_K *) src0 + row * nb; //r0*nb;
-    device const float     * yy = (device const float      *) src1 + r1*ne10;
-
-    float sumf = 0;
-
-#if QK_K == 256
-    const int tid  = tiisg/2;
-    const int ix   = tiisg%2;
-    const int ip   = tid/8;         // 0 or 1
-    const int il   = tid%8;
-    const int n    = 4;
-    const int l0   = n*il;
-    const int is   = 8*ip + l0/16;
-
-    const int y_offset = 128*ip + l0;
-    const int q_offset_l = 64*ip + l0;
-    const int q_offset_h = 32*ip + l0;
-
-    for (int i = ix; i < nb; i += 2) {
-
-        device const uint8_t * q1 = x[i].ql + q_offset_l;
-        device const uint8_t * q2 = q1 + 32;
-        device const uint8_t * qh = x[i].qh + q_offset_h;
-        device const int8_t  * sc = x[i].scales + is;
-
-        device const float * y = yy + i * QK_K + y_offset;
-
-        const float dall = x[i].d;
-
-        float4 sums = {0.f, 0.f, 0.f, 0.f};
-        for (int l = 0; l < n; ++l) {
-            sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
-            sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
-            sums[2] += y[l+64] * ((int8_t)((q1[l]  >> 4) | ((qh[l] & kmask3) << 0)) - 32);
-            sums[3] += y[l+96] * ((int8_t)((q2[l]  >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
-        }
-
-        sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
-
-    }
-
-#else
-    const int ix  = tiisg/4;
-    const int il  = 4*(tiisg%4);
-
-    for (int i = ix; i < nb; i += 8) {
-        device const float * y = yy + i * QK_K + il;
-        device const uint8_t * ql = x[i].ql + il;
-        device const uint8_t * qh = x[i].qh + il;
-        device const int8_t  * s  = x[i].scales;
-
-        const float d = x[i].d;
-
-        float4 sums = {0.f, 0.f, 0.f, 0.f};
-        for (int l = 0; l < 4; ++l) {
-            sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
-            sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
-            sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >>  4) | ((qh[l] & kmask3) >> 0)) - 32);
-            sums[3] += y[l+48] * ((int8_t)((ql[l+16] >>  4) | ((qh[l] & kmask4) >> 2)) - 32);
-        }
-        sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]);
-    }
-
-#endif
-
-    const float tot = simd_sum(sumf);
-    if (tiisg == 0) {
-        dst[r1*ne0 + row] = tot;
-    }
-}

+ 0 - 244
llm/ggml-mpi.c

@@ -1,244 +0,0 @@
-//go:build mpi
-
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "ggml-mpi.h"
-
-#include "ggml.h"
-
-#include <mpi.h>
-
-#include <stdio.h>
-#include <stdlib.h>
-
-#define MIN(a, b) ((a) < (b) ? (a) : (b))
-
-#define UNUSED GGML_UNUSED
-
-struct ggml_mpi_context {
-    int rank;
-    int size;
-};
-
-void ggml_mpi_backend_init(void) {
-    MPI_Init(NULL, NULL);
-}
-
-void ggml_mpi_backend_free(void) {
-    MPI_Finalize();
-}
-
-struct ggml_mpi_context * ggml_mpi_init(void) {
-    struct ggml_mpi_context * ctx = calloc(1, sizeof(struct ggml_mpi_context));
-
-    MPI_Comm_rank(MPI_COMM_WORLD, &ctx->rank);
-    MPI_Comm_size(MPI_COMM_WORLD, &ctx->size);
-
-    return ctx;
-}
-
-void ggml_mpi_free(struct ggml_mpi_context * ctx) {
-    free(ctx);
-}
-
-int ggml_mpi_rank(struct ggml_mpi_context * ctx) {
-    return ctx->rank;
-}
-
-void ggml_mpi_eval_init(
-        struct ggml_mpi_context * ctx_mpi,
-                            int * n_tokens,
-                            int * n_past,
-                            int * n_threads) {
-    UNUSED(ctx_mpi);
-
-    // synchronize the worker node parameters with the root node
-    MPI_Barrier(MPI_COMM_WORLD);
-
-    MPI_Bcast(n_tokens,  1, MPI_INT, 0, MPI_COMM_WORLD);
-    MPI_Bcast(n_past,    1, MPI_INT, 0, MPI_COMM_WORLD);
-    MPI_Bcast(n_threads, 1, MPI_INT, 0, MPI_COMM_WORLD);
-}
-
-static int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) {
-    struct ggml_tensor * t = ggml_graph_get_tensor(gf, name);
-    if (t == NULL) {
-        fprintf(stderr, "%s: tensor %s not found\n", __func__, name);
-        return -1;
-    }
-
-    for (int i = 0; i < gf->n_nodes; i++) {
-        if (gf->nodes[i] == t) {
-            return i;
-        }
-    }
-
-    fprintf(stderr, "%s: tensor %s not found in graph (should not happen)\n", __func__, name);
-    return -1;
-}
-
-static void ggml_mpi_tensor_send(struct ggml_tensor * t, int mpi_rank_dst) {
-    MPI_Datatype mpi_type;
-
-    switch (t->type) {
-        case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
-        case GGML_TYPE_F32: mpi_type = MPI_FLOAT;   break;
-        default: GGML_ASSERT(false && "not implemented");
-    }
-
-    const int retval = MPI_Send(t->data, ggml_nelements(t), mpi_type, mpi_rank_dst, 0, MPI_COMM_WORLD);
-    GGML_ASSERT(retval == MPI_SUCCESS);
-}
-
-static void ggml_mpi_tensor_recv(struct ggml_tensor * t, int mpi_rank_src) {
-    MPI_Datatype mpi_type;
-
-    switch (t->type) {
-        case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
-        case GGML_TYPE_F32: mpi_type = MPI_FLOAT;   break;
-        default: GGML_ASSERT(false && "not implemented");
-    }
-
-    MPI_Status status; UNUSED(status);
-
-    const int retval = MPI_Recv(t->data, ggml_nelements(t), mpi_type, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
-    GGML_ASSERT(retval == MPI_SUCCESS);
-}
-
-// TODO: there are many improvements that can be done to this implementation
-void ggml_mpi_graph_compute_pre(
-        struct ggml_mpi_context * ctx_mpi,
-             struct ggml_cgraph * gf,
-                            int   n_layers) {
-    const int mpi_rank = ctx_mpi->rank;
-    const int mpi_size = ctx_mpi->size;
-
-    struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens");
-    if (inp_tokens == NULL) {
-        fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__);
-        return;
-    }
-
-    struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0");
-    if (inp0 == NULL) {
-        fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__);
-        return;
-    }
-
-    GGML_ASSERT(inp0 == gf->nodes[0]);
-
-    // distribute the compute graph into slices across the MPI nodes
-    //
-    // the main node (0) processes the last layers + the remainder of the compute graph
-    // and is responsible to pass the input tokens to the first node (1)
-    //
-    // node 1:   [(  0) * n_per_node, (  1) * n_per_node)
-    // node 2:   [(  1) * n_per_node, (  2) * n_per_node)
-    // ...
-    // node n-1: [(n-2) * n_per_node, (n-1) * n_per_node)
-    // node 0:   [(n-1) * n_per_node,            n_nodes)
-    //
-    if (mpi_rank > 0) {
-        if (mpi_rank == 1) {
-            // the first node (1) receives the input tokens from the main node (0)
-            ggml_mpi_tensor_recv(inp_tokens, 0);
-        } else {
-            // recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph)
-            ggml_mpi_tensor_recv(inp0, mpi_rank - 1);
-        }
-    } else if (mpi_size > 1) {
-        // node 0 sends the input tokens to node 1
-        ggml_mpi_tensor_send(inp_tokens, 1);
-
-        // recv the output data from the last node
-        ggml_mpi_tensor_recv(inp0, mpi_size - 1);
-    }
-
-    {
-        const int n_per_node = (n_layers + (mpi_size - 1)) / mpi_size;
-
-        const int mpi_idx = mpi_rank > 0 ? mpi_rank - 1 : mpi_size - 1;
-
-        const int il0 =               (mpi_idx + 0) * n_per_node;
-        const int il1 = MIN(n_layers, (mpi_idx + 1) * n_per_node);
-
-        char name_l0[GGML_MAX_NAME];
-        char name_l1[GGML_MAX_NAME];
-
-        snprintf(name_l0, sizeof(name_l0), "layer_inp_%d", il0);
-        snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1);
-
-        const int idx_l0 =                ggml_graph_get_node_idx(gf, name_l0);
-        const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes;
-
-        if (idx_l0 < 0 || idx_l1 < 0) {
-            fprintf(stderr, "%s: layer input nodes not found\n", __func__);
-            return;
-        }
-
-        // attach the input data to all nodes that need it
-        // TODO: not great - should be able to do this without modifying the compute graph (see next TODO below)
-        for (int i = idx_l0; i < idx_l1; i++) {
-            if (gf->nodes[i]->src[0] == gf->nodes[idx_l0]) {
-                gf->nodes[i]->src[0] =  inp0;
-            }
-            if (gf->nodes[i]->src[1] == gf->nodes[idx_l0]) {
-                gf->nodes[i]->src[1] =  inp0;
-            }
-        }
-
-        // TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph
-        for (int i = 1; i < idx_l1 - idx_l0; i++) {
-            gf->nodes[i] = gf->nodes[idx_l0 + i];
-            gf->grads[i] = gf->grads[idx_l0 + i];
-        }
-
-        // the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node
-        if (mpi_idx != 0) {
-            gf->nodes[0]->op = GGML_OP_NONE;
-        }
-
-        gf->n_nodes = idx_l1 - idx_l0;
-
-        //fprintf(stderr, "%s: node %d: processing %d nodes [%d, %d)\n", __func__, mpi_rank, gf->n_nodes, il0, il1);
-    }
-}
-
-void ggml_mpi_graph_compute_post(
-        struct ggml_mpi_context * ctx_mpi,
-             struct ggml_cgraph * gf,
-                            int   n_layers) {
-    UNUSED(n_layers);
-
-    const int mpi_rank = ctx_mpi->rank;
-    const int mpi_size = ctx_mpi->size;
-
-    // send the output data to the next node
-    if (mpi_rank > 0) {
-        ggml_mpi_tensor_send(gf->nodes[gf->n_nodes - 1], (mpi_rank + 1) % mpi_size);
-    }
-}

+ 0 - 67
llm/ggml-mpi.h

@@ -1,67 +0,0 @@
-//go:build mpi
-
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#pragma once
-
-struct ggml_context;
-struct ggml_tensor;
-struct ggml_cgraph;
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-struct ggml_mpi_context;
-
-void ggml_mpi_backend_init(void);
-void ggml_mpi_backend_free(void);
-
-struct ggml_mpi_context * ggml_mpi_init(void);
-void ggml_mpi_free(struct ggml_mpi_context * ctx);
-
-int ggml_mpi_rank(struct ggml_mpi_context * ctx);
-
-void ggml_mpi_eval_init(
-        struct ggml_mpi_context * ctx_mpi,
-                            int * n_tokens,
-                            int * n_past,
-                            int * n_threads);
-
-void ggml_mpi_graph_compute_pre(
-        struct ggml_mpi_context * ctx_mpi,
-             struct ggml_cgraph * gf,
-                            int   n_layers);
-
-void ggml_mpi_graph_compute_post(
-        struct ggml_mpi_context * ctx_mpi,
-             struct ggml_cgraph * gf,
-                            int   n_layers);
-
-#ifdef __cplusplus
-}
-#endif

+ 0 - 1893
llm/ggml-opencl.cpp

@@ -1,1893 +0,0 @@
-//go:build opencl
-
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "ggml-opencl.h"
-
-#include <array>
-#include <atomic>
-#include <sstream>
-#include <vector>
-#include <limits>
-
-#define CL_TARGET_OPENCL_VERSION 110
-#include <clblast.h>
-
-#include <stdlib.h>
-#include <stdio.h>
-#include <string.h>
-
-#include "ggml.h"
-
-#if defined(_MSC_VER)
-#pragma warning(disable: 4244 4267) // possible loss of data
-#endif
-
-#define CL_DMMV_BLOCK_SIZE 32
-
-#ifndef K_QUANTS_PER_ITERATION
-#define K_QUANTS_PER_ITERATION 1
-#else
-static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
-#endif
-
-#define MULTILINE_QUOTE(...) #__VA_ARGS__
-static std::string program_source = MULTILINE_QUOTE(
-
-typedef char int8_t;
-typedef uchar uint8_t;
-typedef short int16_t;
-typedef ushort uint16_t;
-typedef int int32_t;
-typedef uint uint32_t;
-
-struct __attribute__ ((packed)) block_q4_0
-{
-    half d;
-    uint8_t qs[QK4_0 / 2];
-};
-
-struct __attribute__ ((packed)) block_q4_1
-{
-    half d;
-    half m;
-    uint8_t qs[QK4_1 / 2];
-};
-
-struct __attribute__ ((packed)) block_q5_0
-{
-    half d;
-    uint32_t qh;
-    uint8_t qs[QK5_0 / 2];
-};
-
-struct __attribute__ ((packed)) block_q5_1
-{
-    half d;
-    half m;
-    uint32_t qh;
-    uint8_t qs[QK5_1 / 2];
-};
-
-struct __attribute__ ((packed)) block_q8_0
-{
-    half d;
-    int8_t qs[QK8_0];
-};
-
-struct __attribute__((packed)) block_q2_K
-{
-    uint8_t scales[16];
-    uint8_t qs[64];
-    half d;
-    half dmin;
-};
-
-struct __attribute__((packed)) block_q3_K
-{
-    uint8_t hmask[32];
-    uint8_t qs[64];
-    uint8_t scales[12];
-    half d;
-};
-
-struct __attribute__((packed)) block_q4_K
-{
-    half d;
-    half dmin;
-    uint8_t scales[12];
-    uint8_t qs[128];
-};
-
-struct __attribute__((packed)) block_q5_K
-{
-    half d;
-    half dmin;
-    uint8_t scales[12];
-    uint8_t qh[32];
-    uint8_t qs[128];
-};
-
-struct __attribute__((packed)) block_q6_K
-{
-    uint8_t ql[128];
-    uint8_t qh[64];
-    int8_t scales[16];
-    half d;
-};
-
-__kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
-    const uint i = get_global_id(0);
-
-    y[i] = vload_half(0, &x[i]);
-}
-
-void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) {
-    const float d = vload_half(0, &x[ib].d);
-
-    const uint8_t vui = x[ib].qs[iqs];
-
-    const int8_t vi0 = vui & 0xF;
-    const int8_t vi1 = vui >> 4;
-
-    *v0 = (vi0 - 8)*d;
-    *v1 = (vi1 - 8)*d;
-}
-void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) {
-    const float d = vload_half(0, &x[ib].d);
-    const float m = vload_half(0, &x[ib].m);
-
-    const uint8_t vui = x[ib].qs[iqs];
-
-    const int8_t vi0 = vui & 0xF;
-    const int8_t vi1 = vui >> 4;
-
-    *v0 = vi0*d + m;
-    *v1 = vi1*d + m;
-}
-void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) {
-    const float d = vload_half(0, &x[ib].d);
-
-    uint32_t qh = x[ib].qh;
-
-    const uint8_t xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
-    const uint8_t xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
-
-    const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
-    const int32_t x1 = ((x[ib].qs[iqs] >>  4) | xh_1) - 16;
-
-    *v0 = x0*d;
-    *v1 = x1*d;
-}
-void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) {
-    const float d = vload_half(0, &x[ib].d);
-    const float m = vload_half(0, &x[ib].m);
-
-    uint32_t qh = x[ib].qh;
-
-    const uint8_t xh_0 = ((qh >> (iqs +  0)) << 4) & 0x10;
-    const uint8_t xh_1 = ((qh >> (iqs + 12))     ) & 0x10;
-
-    const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
-    const int32_t x1 = ((x[ib].qs[iqs] >>  4) | xh_1);
-
-    *v0 = x0*d + m;
-    *v1 = x1*d + m;
-}
-void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) {
-    const float d = vload_half(0, &x[ib].d);
-
-    const int8_t vi0 = x[ib].qs[iqs + 0];
-    const int8_t vi1 = x[ib].qs[iqs + 1];
-
-    *v0 = vi0*d;
-    *v1 = vi1*d;
-}
-void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){
-    *v0 = vload_half(0, &x[ib + 0]);
-    *v1 = vload_half(0, &x[ib + 1]);
-}
-);
-
-static std::string k_quants_source = MULTILINE_QUOTE(
-inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m)
-{
-    if (j < 4)
-    {
-        *d = q[j] & 63;
-        *m = q[j + 4] & 63;
-    }
-    else
-    {
-        *d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4);
-        *m = (q[j + 4] >> 4) | ((q[j - 0] >> 6) << 4);
-    }
-}
-
-__kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy)
-{
-    const int i = get_group_id(0);
-    const int tid = get_local_id(0);
-    const int n = tid / 32;
-    const int l = tid - 32 * n;
-    const int is = 8 * n + l / 16;
-
-    const uint8_t q = x[i].qs[32 * n + l];
-    __global float *y = yy + i * QK_K + 128 * n;
-
-    const float dall = vload_half(0, &x[i].d);
-    const float dmin = vload_half(0, &x[i].dmin);
-
-    y[l + 0] = dall * (x[i].scales[is + 0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is + 0] >> 4);
-    y[l + 32] = dall * (x[i].scales[is + 2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is + 2] >> 4);
-    y[l + 64] = dall * (x[i].scales[is + 4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is + 4] >> 4);
-    y[l + 96] = dall * (x[i].scales[is + 6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is + 6] >> 4);
-}
-
-__kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy)
-{
-    int r = get_local_id(0) / 4;
-    int i = get_group_id(0);
-    int tid = r / 2;
-    int is0 = r % 2;
-    int l0 = 16 * is0 + 4 * (get_local_id(0) % 4);
-    int n = tid / 4;
-    int j = tid - 4 * n;
-
-    uint8_t m = 1 << (4 * n + j);
-    int is = 8 * n + 2 * j + is0;
-    int shift = 2 * j;
-
-    int8_t us = is < 4 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 8] >> 0) & 3) << 4)
-              : is < 8 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 4] >> 2) & 3) << 4)
-              : is < 12  ? (x[i].scales[is - 8] >> 4) | (((x[i].scales[is + 0] >> 4) & 3) << 4)
-              : (x[i].scales[is - 8] >> 4) | (((x[i].scales[is - 4] >> 6) & 3) << 4);
-    float d_all = vload_half(0, &x[i].d);
-    float dl = d_all * (us - 32);
-
-    __global float *y = yy + i * QK_K + 128 * n + 32 * j;
-    const __global uint8_t *q = x[i].qs + 32 * n;
-    const __global uint8_t *hm = x[i].hmask;
-
-    for (int l = l0; l < l0 + 4; ++l)
-        y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
-}
-
-__kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy)
-{
-    const int i = get_group_id(0);
-    const int tid = get_local_id(0);
-    const int il = tid / 8;
-    const int ir = tid % 8;
-    const int is = 2 * il;
-    const int n = 4;
-
-    __global float *y = yy + i * QK_K + 64 * il + n * ir;
-
-    const float dall = vload_half(0, &x[i].d);
-    const float dmin = vload_half(0, &x[i].dmin);
-
-    __global const uint8_t *q = x[i].qs + 32 * il + n * ir;
-
-    uint8_t sc, m;
-    get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
-    float d1 = dall * sc;
-    float m1 = dmin * m;
-    get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
-    float d2 = dall * sc;
-    float m2 = dmin * m;
-    for (int l = 0; l < n; ++l)
-    {
-        y[l + 0] = d1 * (q[l] & 0xF) - m1;
-        y[l + 32] = d2 * (q[l] >> 4) - m2;
-    }
-}
-
-__kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy)
-{
-    const int i = get_group_id(0);
-    const int tid = get_local_id(0);
-    const int il = tid / 16;
-    const int ir = tid % 16;
-    const int is = 2 * il;
-
-    __global float *y = yy + i * QK_K + 64 * il + 2 * ir;
-
-    const float dall = vload_half(0, &x[i].d);
-    const float dmin = vload_half(0, &x[i].dmin);
-
-    __global const uint8_t *ql = x[i].qs + 32 * il + 2 * ir;
-    __global const uint8_t *qh = x[i].qh + 2 * ir;
-
-    uint8_t sc, m;
-    get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
-    const float d1 = dall * sc;
-    const float m1 = dmin * m;
-    get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
-    const float d2 = dall * sc;
-    const float m2 = dmin * m;
-
-    uint8_t hm = 1 << (2 * il);
-    y[0] = d1 * ((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0)) - m1;
-    y[1] = d1 * ((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0)) - m1;
-    hm <<= 1;
-    y[32] = d2 * ((ql[0] >> 4) + (qh[0] & hm ? 16 : 0)) - m2;
-    y[33] = d2 * ((ql[1] >> 4) + (qh[1] & hm ? 16 : 0)) - m2;
-}
-
-__kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy)
-{
-    const int i = get_group_id(0);
-    const int tid = get_local_id(0);
-    const int ip = tid / 32;
-    const int il = tid - 32 * ip;
-    const int is = 8 * ip + il / 16;
-
-    __global float *y = yy + i * QK_K + 128 * ip + il;
-
-    const float d = vload_half(0, &x[i].d);
-
-    __global const uint8_t *ql = x[i].ql + 64 * ip + il;
-    const uint8_t qh = x[i].qh[32 * ip + il];
-    __global const int8_t *sc = x[i].scales + is;
-
-    y[0] = d * sc[0] * ((int8_t)((ql[0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
-    y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
-    y[64] = d * sc[4] * ((int8_t)((ql[0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
-    y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
-}
-
-__kernel void dequantize_mul_mat_vec_q2_K(__global const struct block_q2_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
-
-    const int row = get_group_id(0);
-
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
-
-    __global const struct block_q2_K * x = xx + ib0;
-
-    const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION;  // 0...31 or 0...15
-    const int ix  = get_local_id(0)%K_QUANTS_PER_ITERATION;  // 0 or 0,1
-
-    const int step = 16/K_QUANTS_PER_ITERATION;
-
-    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
-    const int in = tid - step*im;                        // 0...15 or 0...7
-
-    const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15 or 0...14 in steps of 2
-    const int q_offset = 32*im + l0;
-    const int s_offset = 8*im;
-    const int y_offset = 128*im + l0;
-
-    tmp[16 * ix + tid] = 0;
-
-    uint32_t aux[4];
-    const uint8_t * d = (const uint8_t *)aux;
-    const uint8_t * m = (const uint8_t *)(aux + 2);
-
-    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
-
-        __global const float   * y = yy + i * QK_K + y_offset;
-        __global const uint8_t * q = x[i].qs + q_offset;
-
-        const float dall = vload_half(0, &x[i].d);
-        const float dmin = vload_half(0, &x[i].dmin);
-
-        __global const uint32_t * a = (__global const uint32_t *)(x[i].scales + s_offset);
-        aux[0] = a[0] & 0x0f0f0f0f;
-        aux[1] = a[1] & 0x0f0f0f0f;
-        aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
-        aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
-
-        float sum1 = 0, sum2 = 0;
-        for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
-            sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
-                  + y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
-                  + y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
-                  + y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
-                  + y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
-                  + y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
-                  + y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
-                  +y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
-            sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
-                  + y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
-
-        }
-        tmp[16 * ix + tid] += dall * sum1 - dmin * sum2;
-
-    }
-
-    // sum up partial sums and write back result
-    barrier(CLK_LOCAL_MEM_FENCE);
-    for (int s=16; s>0; s>>=1) {
-        if (tid < s) {
-            tmp[tid] += tmp[tid + s];
-        }
-        barrier(CLK_LOCAL_MEM_FENCE);
-    }
-    if (tid == 0) {
-        dst[row] = tmp[0];
-    }
-}
-
-__kernel void dequantize_mul_mat_vec_q3_K(__global const struct block_q3_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
-    const uint16_t kmask1 = 0x0303;
-    const uint16_t kmask2 = 0x0f0f;
-
-    const int row = get_group_id(0);
-
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
-
-    __global const struct block_q3_K * x = xx + ib0;
-
-    const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
-    const int ix  = get_local_id(0)%K_QUANTS_PER_ITERATION;  // 0 or 0,1
-
-    const int n  = K_QUANTS_PER_ITERATION;               // iterations in the inner loop
-    const int step = 16/K_QUANTS_PER_ITERATION;
-    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
-    const int in = tid - step*im;                        // 0....15 or 0...7
-
-    const uint8_t m = 1 << (4*im);
-
-    const int l0 = n*in;                                 // 0...15 or 0...14 in steps of 2
-    const int q_offset =  32*im + l0;
-    const int y_offset = 128*im + l0;
-
-    uint16_t utmp[4];
-    const int8_t * s = (const int8_t *)utmp;
-
-    const uint16_t s_shift = 4*im;
-
-    tmp[16 * ix + tid] = 0;
-
-    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
-
-        __global const float   * y  = yy + i * QK_K + y_offset;
-        __global const uint8_t * q = x[i].qs + q_offset;
-        __global const uint8_t * h = x[i].hmask + l0;
-
-        __global const uint16_t * a = (__global const uint16_t *)x[i].scales;
-        utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
-        utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
-        utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
-        utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
-
-        const float d = vload_half(0, &x[i].d);
-
-        float sum = 0;
-        for (int l = 0; l < n; ++l) {
-            sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
-                 + y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
-                 + y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
-                 + y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
-            sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
-                 + y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
-                 + y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
-                + y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
-        }
-        tmp[16 * ix + tid] += d * sum;
-
-    }
-
-    // sum up partial sums and write back result
-    barrier(CLK_LOCAL_MEM_FENCE);
-    for (int s=16; s>0; s>>=1) {
-        if (tid < s) {
-            tmp[tid] += tmp[tid + s];
-        }
-        barrier(CLK_LOCAL_MEM_FENCE);
-    }
-    if (tid == 0) {
-        dst[row] = tmp[0];
-    }
-}
-
-__kernel void dequantize_mul_mat_vec_q4_K(__global const struct block_q4_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
-
-    //to rename it later, just to test now
-    const uint16_t kmask1 = 0x3f3f;
-    const uint16_t kmask2 = 0x0f0f;
-    const uint16_t kmask3 = 0xc0c0;
-
-    const int row = get_group_id(0);
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
-
-    const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION;  // 0...15
-    const int ix  = get_local_id(0)%K_QUANTS_PER_ITERATION;
-
-    const int step = 8/K_QUANTS_PER_ITERATION;
-
-    const int il  = tid/step;     // 0...3
-    const int ir  = tid - step*il;// 0...3
-    const int n   = 2*K_QUANTS_PER_ITERATION;
-
-    const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
-    const int in = il%2;
-
-    const int l0 = n*(2*ir + in);
-    const int q_offset = 32*im + l0;
-    const int y_offset = 64*im + l0;
-
-    uint16_t aux[4];
-    const uint8_t * sc = (const uint8_t *)aux;
-
-    __global const struct block_q4_K * x = xx + ib0;
-
-    tmp[16 * ix + tid] = 0;
-
-    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
-
-        __global const uint8_t * q1 = x[i].qs + q_offset;
-        __global const uint8_t * q2 = q1 + 64;
-        __global const float   * y1 = yy + i*QK_K + y_offset;
-        __global const float   * y2 = y1 + 128;
-
-        const float dall = vload_half(0, &x[i].d);
-        const float dmin = vload_half(0, &x[i].dmin);
-
-        __global const uint16_t * a = (__global const uint16_t *)x[i].scales;
-        aux[0] = a[im+0] & kmask1;
-        aux[1] = a[im+2] & kmask1;
-        aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
-        aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
-
-        float4 s = (float4)(0.f);
-        float smin = 0;
-        for (int l = 0; l < n; ++l) {
-            s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4);
-            s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4);
-            smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
-        }
-        tmp[16 * ix + tid] += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin;
-
-    }
-
-    // sum up partial sums and write back result
-    barrier(CLK_LOCAL_MEM_FENCE);
-    for (int s=16; s>0; s>>=1) {
-        if (tid < s) {
-            tmp[tid] += tmp[tid + s];
-        }
-        barrier(CLK_LOCAL_MEM_FENCE);
-    }
-    if (tid == 0) {
-        dst[row] = tmp[0];
-    }
-}
-
-__kernel void dequantize_mul_mat_vec_q5_K(__global const struct block_q5_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
-
-    const uint16_t kmask1 = 0x3f3f;
-    const uint16_t kmask2 = 0x0f0f;
-    const uint16_t kmask3 = 0xc0c0;
-
-    const int row = get_group_id(0);
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
-
-    const int tid = get_local_id(0)/2;  // 0...15
-    const int ix  = get_local_id(0)%2;
-
-    const int il  = tid/4;     // 0...3
-    const int ir  = tid - 4*il;// 0...3
-    const int n   = 2;
-
-    const int im = il/2;  // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
-    const int in = il%2;
-
-    const int l0 = n*(2*ir + in);
-    const int q_offset = 32*im + l0;
-    const int y_offset = 64*im + l0;
-
-    const uint8_t hm1  = 1 << (2*im);
-    const uint8_t hm2  = hm1 << 4;
-
-    uint16_t aux[4];
-    const uint8_t * sc = (const uint8_t *)aux;
-
-    __global const struct block_q5_K * x = xx + ib0;
-
-    tmp[16 * ix + tid] = 0;
-
-    for (int i = ix; i < num_blocks_per_row; i += 2) {
-
-        __global const uint8_t * ql1 = x[i].qs + q_offset;
-        __global const uint8_t * ql2 = ql1 + 64;
-        __global const uint8_t * qh  = x[i].qh + l0;
-        __global const float   * y1  = yy + i*QK_K + y_offset;
-        __global const float   * y2  = y1 + 128;
-
-        const float dall = vload_half(0, &x[i].d);
-        const float dmin = vload_half(0, &x[i].dmin);
-
-        __global const uint16_t * a = (__global const uint16_t *)x[i].scales;
-        aux[0] = a[im+0] & kmask1;
-        aux[1] = a[im+2] & kmask1;
-        aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
-        aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
-
-        float4 sum = (float4)(0.f);
-        float smin = 0;
-        for (int l = 0; l < n; ++l) {
-            sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
-                   + y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0));
-            sum.y += y1[l+32] * ((ql1[l+ 0] >>  4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
-                   + y1[l+48] * ((ql1[l+16] >>  4) + (qh[l+16] & (hm1 << 1) ? 16 : 0));
-            sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
-                   + y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0));
-            sum.w += y2[l+32] * ((ql2[l+ 0] >>  4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
-                   + y2[l+48] * ((ql2[l+16] >>  4) + (qh[l+16] & (hm2 << 1) ? 16 : 0));
-            smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
-                  + (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
-        }
-        tmp[16 * ix + tid] += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
-
-    }
-
-    // sum up partial sums and write back result
-    barrier(CLK_LOCAL_MEM_FENCE);
-    for (int s=16; s>0; s>>=1) {
-        if (tid < s) {
-            tmp[tid] += tmp[tid + s];
-        }
-        barrier(CLK_LOCAL_MEM_FENCE);
-    }
-    if (tid == 0) {
-        dst[row] = tmp[0];
-    }
-}
-
-__kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx, __local float* tmp, __global const float * yy, __global float * dst, const int ncols) {
-
-    const int row = get_group_id(0);
-
-    const int num_blocks_per_row = ncols / QK_K;
-    const int ib0 = row*num_blocks_per_row;
-
-    __global const struct block_q6_K * x = xx + ib0;
-
-    const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION;  // 0...31 or 0...16
-    const int ix  = get_local_id(0)%K_QUANTS_PER_ITERATION;  // 0 or 0, 1
-
-    const int step = 16/K_QUANTS_PER_ITERATION;          // 16 or 8
-
-    const int im = tid/step;                             // 0 or 1. 0 computes 0..., 1 computes 128...
-    const int in = tid - step*im;                        // 0...15 or 0...7
-
-\n#if K_QUANTS_PER_ITERATION == 1\n
-    const int l0 = K_QUANTS_PER_ITERATION*in;            // 0...15
-    const int is = 0;
-
-\n#else\n
-
-    const int l0 = 4 * in;                               // 0, 4, 8, ..., 28
-    const int is = in / 4;
-
-\n#endif\n
-
-    const int ql_offset = 64*im + l0;
-    const int qh_offset = 32*im + l0;
-    const int s_offset  =  8*im + is;
-    const int y_offset = 128*im + l0;
-
-    tmp[16 * ix + tid] = 0; // partial sum for thread in warp
-
-    for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
-
-        __global const float   * y  = yy + i * QK_K + y_offset;
-        __global const uint8_t * ql = x[i].ql + ql_offset;
-        __global const uint8_t * qh = x[i].qh + qh_offset;
-        __global const int8_t  * s  = x[i].scales + s_offset;
-
-        const float d = vload_half(0, &x[i].d);
-
-\n#if K_QUANTS_PER_ITERATION == 1\n
-        float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
-                  + y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
-                  + y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
-                  + y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
-                  + y[64] * s[4] * d * ((int8_t)((ql[ 0]  >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
-                  + y[80] * s[5] * d * ((int8_t)((ql[16]  >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
-                  + y[96] * s[6] * d * ((int8_t)((ql[32]  >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
-                  +y[112] * s[7] * d * ((int8_t)((ql[48]  >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
-        tmp[16 * ix + tid] += sum;
-\n#else\n
-        float sum = 0;
-        for (int l = 0; l < 4; ++l) {
-            sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
-                 + y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
-                 + y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
-                 + y[l+96] * s[6] * d * ((int8_t)((ql[l+32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
-        }
-        tmp[16 * ix + tid] += sum;
-\n#endif\n
-
-    }
-
-    // sum up partial sums and write back result
-    barrier(CLK_LOCAL_MEM_FENCE);
-    for (int s=16; s>0; s>>=1) {
-        if (tid < s) {
-            tmp[tid] += tmp[tid + s];
-        }
-        barrier(CLK_LOCAL_MEM_FENCE);
-    }
-    if (tid == 0) {
-        dst[row] = tmp[0];
-    }
-}
-
-);
-
-
-std::string dequant_template = MULTILINE_QUOTE(
-__kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
-    const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
-
-    if (i >= get_global_size(0)) {
-        return;
-    }
-
-    const uint qk = QUANT_K;
-    const uint qr = QUANT_R;
-
-    const int ib = i/qk; // block index
-    const int iqs = (i%qk)/qr; // quant index
-    const int iybs = i - i%qk; // y block start index
-    const int y_offset = qr == 1 ? 1 : qk/2;
-
-    // dequantize
-    float v0, v1;
-    DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
-    y[iybs + iqs + 0] = v0;
-    y[iybs + iqs + y_offset] = v1;
-}
-);
-
-std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
-__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
-    const int block_size = get_local_size(0);
-    const int row = get_group_id(0);
-    const int tid = get_local_id(0);
-
-    const uint qk = QUANT_K;
-    const uint qr = QUANT_R;
-
-    const int y_offset = qr == 1 ? 1 : qk/2;
-
-    tmp[tid] = 0;
-
-    for (int i = 0; i < ncols/block_size; i += 2) {
-        const int col = i*block_size + 2*tid;
-        const int ib = (row*ncols + col)/qk; // block index
-        const int iqs = (col%qk)/qr; // quant index
-        const int iybs = col - col%qk; // y block start index
-
-        // dequantize
-        float v0, v1;
-        DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
-
-        // matrix multiplication
-        tmp[tid] += v0 * y[iybs + iqs + 0];
-        tmp[tid] += v1 * y[iybs + iqs + y_offset];
-    }
-
-    // sum up partial sums and write back result
-    barrier(CLK_LOCAL_MEM_FENCE);
-    for (int s=block_size/2; s>0; s>>=1) {
-        if (tid < s) {
-            tmp[tid] += tmp[tid + s];
-        }
-        barrier(CLK_LOCAL_MEM_FENCE);
-    }
-    if (tid == 0) {
-        dst[row] = tmp[0];
-    }
-}
-);
-
-
-std::string mul_template = MULTILINE_QUOTE(
-__kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) {
-    const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
-
-    if (i >= get_global_size(0)) {
-        return;
-    }
-
-    dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky];
-}
-);
-
-#define CL_CHECK(err)                                               \
-    do {                                                            \
-        cl_int err_ = (err);                                        \
-        if (err_ != CL_SUCCESS) {                                   \
-            fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n",  \
-                #err, err_, __FILE__, __LINE__);                    \
-            exit(1);                                                \
-        }                                                           \
-    } while (0)
-
-#define CLBLAST_CHECK(err)                                          \
-    do {                                                            \
-        CLBlastStatusCode err_ = (err);                             \
-        if (err_ != CLBlastSuccess) {                               \
-            fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n",  \
-                #err, err_, __FILE__, __LINE__);                    \
-            exit(1);                                                \
-        }                                                           \
-    } while (0)
-
-std::array<std::string, 5> dequant_str_keys = {
-    "KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC"
-};
-
-std::array<std::string, 30> dequant_str_values = {
-    "dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
-    "dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
-    "dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
-    "dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
-    "dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
-    "convert_row_f16", "half", "1", "1", "convert_f16"
-};
-
-std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
-    "dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
-    "dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
-    "dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
-    "dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
-    "dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
-    "convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
-};
-
-std::array<std::string, 2> mul_str_keys = {
-    "KERNEL_NAME", "TYPE"
-};
-std::array<std::string, 2> mul_str_values = {
-    "mul_f32", "float"
-};
-
-std::string& replace(std::string& s, const std::string& from, const std::string& to) {
-    size_t pos = 0;
-    while ((pos = s.find(from, pos)) != std::string::npos) {
-         s.replace(pos, from.length(), to);
-         pos += to.length();
-    }
-    return s;
-}
-
-std::string generate_kernels() {
-    std::stringstream src;
-    src << program_source << '\n';
-    src << k_quants_source << '\n';
-    for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) {
-        std::string dequant_kernel = dequant_template;
-        std::string dmmv_kernel = dequant_mul_mat_vec_template;
-        for (size_t j = 0; j < dequant_str_keys.size(); j++) {
-            replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]);
-            replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]);
-        }
-        src << dequant_kernel << '\n';
-        src << dmmv_kernel << '\n';
-    }
-    for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) {
-        std::string mul_kernel = mul_template;
-        for (size_t j = 0; j < mul_str_keys.size(); j++) {
-            replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]);
-        }
-        src << mul_kernel << '\n';
-    }
-
-    return src.str();
-}
-
-static cl_platform_id platform;
-static cl_device_id device;
-static cl_context context;
-static cl_command_queue queue;
-static cl_program program;
-static cl_kernel convert_row_f16_cl;
-static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
-static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
-static cl_kernel dequantize_block_q2_k_cl, dequantize_block_q3_k_cl, dequantize_block_q4_k_cl, dequantize_block_q5_k_cl, dequantize_block_q6_k_cl;
-static cl_kernel dequantize_mul_mat_vec_q2_K_cl, dequantize_mul_mat_vec_q3_K_cl, dequantize_mul_mat_vec_q4_K_cl, dequantize_mul_mat_vec_q5_K_cl, dequantize_mul_mat_vec_q6_K_cl;
-static cl_kernel mul_f32_cl;
-static bool fp16_support;
-
-static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
-    cl_program p;
-    char *program_log;
-    size_t program_size;
-    size_t log_size;
-    int err;
-
-    program_size = strlen(program_buffer);
-
-    p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
-    if(err < 0) {
-        fprintf(stderr, "OpenCL error creating program");
-        exit(1);
-    }
-
-    std::string compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math "
-                               "-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1 "
-                               "-DQK_K=256 -DK_QUANTS_PER_ITERATION=" + std::to_string(K_QUANTS_PER_ITERATION);
-
-    err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
-    if(err < 0) {
-
-        clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
-        program_log = (char*) malloc(log_size + 1);
-        program_log[log_size] = '\0';
-        clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
-        fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log);
-        free(program_log);
-        exit(1);
-    }
-
-    return p;
-}
-
-void ggml_cl_init(void) {
-    cl_int err;
-
-    struct cl_device;
-    struct cl_platform {
-        cl_platform_id id;
-        unsigned number;
-        char name[128];
-        char vendor[128];
-        struct cl_device * devices;
-        unsigned n_devices;
-        struct cl_device * default_device;
-    };
-
-    struct cl_device {
-        struct cl_platform * platform;
-        cl_device_id id;
-        unsigned number;
-        cl_device_type type;
-        char name[128];
-    };
-
-    enum { NPLAT = 16, NDEV = 16 };
-
-    struct cl_platform platforms[NPLAT];
-    unsigned n_platforms = 0;
-    struct cl_device devices[NDEV];
-    unsigned n_devices = 0;
-    struct cl_device * default_device = NULL;
-
-    platform = NULL;
-    device = NULL;
-
-    cl_platform_id platform_ids[NPLAT];
-    CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms));
-
-    for (unsigned i = 0; i < n_platforms; i++) {
-        struct cl_platform * p = &platforms[i];
-        p->number = i;
-        p->id = platform_ids[i];
-        CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
-        CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
-
-        cl_device_id device_ids[NDEV];
-        cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
-        if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
-            p->n_devices = 0;
-        } else {
-            CL_CHECK(clGetDeviceIDsError);
-        }
-        p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
-        p->default_device = NULL;
-
-        for (unsigned j = 0; j < p->n_devices; j++) {
-            struct cl_device * d = &devices[n_devices];
-            d->number = n_devices++;
-            d->id = device_ids[j];
-            d->platform = p;
-            CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
-            CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
-
-            if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
-                p->default_device = d;
-            }
-        }
-
-        if (default_device == NULL && p->default_device != NULL) {
-            default_device = p->default_device;
-        }
-    }
-
-    if (n_devices == 0) {
-        fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n");
-        exit(1);
-    }
-
-    char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
-    char * user_device_string = getenv("GGML_OPENCL_DEVICE");
-    int user_platform_number = -1;
-    int user_device_number = -1;
-
-    unsigned n;
-    if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
-        user_platform_number = (int)n;
-    }
-    if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
-        user_device_number = (int)n;
-    }
-    if (user_platform_number != -1 && user_device_number != -1) {
-        cl_platform* platform = &platforms[user_platform_number];
-        if ((unsigned)user_device_number >= platform->n_devices) {
-            fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number);
-            exit(1);
-        }
-        default_device = &platform->devices[user_device_number];
-    } else {
-
-        struct cl_device * selected_devices = devices;
-        unsigned n_selected_devices = n_devices;
-
-        if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
-            for (unsigned i = 0; i < n_platforms; i++) {
-                struct cl_platform * p = &platforms[i];
-                if (strstr(p->name, user_platform_string) != NULL ||
-                    strstr(p->vendor, user_platform_string) != NULL) {
-                    user_platform_number = (int)i;
-                    break;
-                }
-            }
-            if (user_platform_number == -1) {
-                fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
-                exit(1);
-            }
-        }
-        if (user_platform_number != -1) {
-            struct cl_platform * p = &platforms[user_platform_number];
-            selected_devices = p->devices;
-            n_selected_devices = p->n_devices;
-            default_device = p->default_device;
-            if (n_selected_devices == 0) {
-                fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
-                exit(1);
-            }
-        }
-
-        if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
-            for (unsigned i = 0; i < n_selected_devices; i++) {
-                struct cl_device * d = &selected_devices[i];
-                if (strstr(d->name, user_device_string) != NULL) {
-                    user_device_number = d->number;
-                    break;
-                }
-            }
-            if (user_device_number == -1) {
-                fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string);
-                exit(1);
-            }
-        }
-        if (user_device_number != -1) {
-            selected_devices = &devices[user_device_number];
-            n_selected_devices = 1;
-            default_device = &selected_devices[0];
-        }
-
-        GGML_ASSERT(n_selected_devices > 0);
-
-        if (default_device == NULL) {
-            default_device = &selected_devices[0];
-        }
-    }
-
-    fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
-    fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name);
-    if (default_device->type != CL_DEVICE_TYPE_GPU) {
-        fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
-    }
-
-    platform = default_device->platform->id;
-    device = default_device->id;
-
-    size_t ext_str_size;
-    clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
-    char *ext_buffer = (char *)alloca(ext_str_size + 1);
-    clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
-    ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
-    // Check if ext_buffer contains cl_khr_fp16
-    fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
-    fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false");
-
-    cl_context_properties properties[] = {
-        (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0
-    };
-
-    CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
-
-    CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
-        (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
-        (queue = clCreateCommandQueue(context, device, 0, &err), err)
-    )));
-
-    const std::string kernel_src = generate_kernels();
-
-    program = build_program_from_source(context, device, kernel_src.c_str());
-
-    // FP16 to FP32 kernel
-    CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err));
-
-    // Dequantize kernels
-    CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err));
-    CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err));
-    CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err));
-    CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err));
-    CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
-    CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
-    CL_CHECK((dequantize_block_q2_k_cl = clCreateKernel(program, "dequantize_block_q2_K", &err), err));
-    CL_CHECK((dequantize_block_q3_k_cl = clCreateKernel(program, "dequantize_block_q3_K", &err), err));
-    CL_CHECK((dequantize_block_q4_k_cl = clCreateKernel(program, "dequantize_block_q4_K", &err), err));
-    CL_CHECK((dequantize_block_q5_k_cl = clCreateKernel(program, "dequantize_block_q5_K", &err), err));
-    CL_CHECK((dequantize_block_q6_k_cl = clCreateKernel(program, "dequantize_block_q6_K", &err), err));
-
-    // dequant mul mat kernel
-    CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err));
-    CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err));
-    CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err));
-    CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
-    CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
-    CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
-    CL_CHECK((dequantize_mul_mat_vec_q2_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q2_K", &err), err));
-    CL_CHECK((dequantize_mul_mat_vec_q3_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q3_K", &err), err));
-    CL_CHECK((dequantize_mul_mat_vec_q4_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_K", &err), err));
-    CL_CHECK((dequantize_mul_mat_vec_q5_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_K", &err), err));
-    CL_CHECK((dequantize_mul_mat_vec_q6_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q6_K", &err), err));
-
-    // mul kernel
-    CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err));
-}
-
-static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
-    switch (type) {
-        case GGML_TYPE_Q4_0:
-            return &dequantize_row_q4_0_cl;
-        case GGML_TYPE_Q4_1:
-            return &dequantize_row_q4_1_cl;
-        case GGML_TYPE_Q5_0:
-            return &dequantize_row_q5_0_cl;
-        case GGML_TYPE_Q5_1:
-            return &dequantize_row_q5_1_cl;
-        case GGML_TYPE_Q8_0:
-            return &dequantize_row_q8_0_cl;
-        case GGML_TYPE_Q2_K:
-            return &dequantize_block_q2_k_cl;
-        case GGML_TYPE_Q3_K:
-            return &dequantize_block_q3_k_cl;
-        case GGML_TYPE_Q4_K:
-            return &dequantize_block_q4_k_cl;
-        case GGML_TYPE_Q5_K:
-            return &dequantize_block_q5_k_cl;
-        case GGML_TYPE_Q6_K:
-            return &dequantize_block_q6_k_cl;
-        case GGML_TYPE_F16:
-            return &convert_row_f16_cl;
-        default:
-            return nullptr;
-    }
-}
-
-static size_t ggml_cl_global_denom(ggml_type type) {
-    switch (type) {
-        case GGML_TYPE_Q4_0:
-        case GGML_TYPE_Q4_1:
-        case GGML_TYPE_Q5_0:
-        case GGML_TYPE_Q5_1:
-        case GGML_TYPE_Q8_0:
-            return 1;
-        case GGML_TYPE_Q2_K:
-        case GGML_TYPE_Q3_K:
-            return 4;
-        case GGML_TYPE_Q4_K:
-            return 8;
-        case GGML_TYPE_Q5_K:
-        case GGML_TYPE_Q6_K:
-            return 4;
-        case GGML_TYPE_F16:
-        default:
-            return 1;
-    }
-}
-
-static size_t ggml_cl_local_size(ggml_type type) {
-    switch (type) {
-        case GGML_TYPE_Q4_0:
-        case GGML_TYPE_Q4_1:
-        case GGML_TYPE_Q5_0:
-        case GGML_TYPE_Q5_1:
-        case GGML_TYPE_Q8_0:
-            return 0;
-        case GGML_TYPE_Q2_K:
-        case GGML_TYPE_Q3_K:
-            return 64;
-        case GGML_TYPE_Q4_K:
-            return 32;
-        case GGML_TYPE_Q5_K:
-        case GGML_TYPE_Q6_K:
-            return 64;
-        case GGML_TYPE_F16:
-        default:
-            return 0;
-    }
-}
-
-static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
-    switch (type) {
-        case GGML_TYPE_Q4_0:
-            return &dequantize_mul_mat_vec_q4_0_cl;
-        case GGML_TYPE_Q4_1:
-            return &dequantize_mul_mat_vec_q4_1_cl;
-        case GGML_TYPE_Q5_0:
-            return &dequantize_mul_mat_vec_q5_0_cl;
-        case GGML_TYPE_Q5_1:
-            return &dequantize_mul_mat_vec_q5_1_cl;
-        case GGML_TYPE_Q8_0:
-            return &dequantize_mul_mat_vec_q8_0_cl;
-        case GGML_TYPE_F16:
-            return &convert_mul_mat_vec_f16_cl;
-        case GGML_TYPE_Q2_K:
-            return &dequantize_mul_mat_vec_q2_K_cl;
-        case GGML_TYPE_Q3_K:
-            return &dequantize_mul_mat_vec_q3_K_cl;
-        case GGML_TYPE_Q4_K:
-            return &dequantize_mul_mat_vec_q4_K_cl;
-        case GGML_TYPE_Q5_K:
-            return &dequantize_mul_mat_vec_q5_K_cl;
-        case GGML_TYPE_Q6_K:
-            return &dequantize_mul_mat_vec_q6_K_cl;
-        default:
-            return nullptr;
-    }
-}
-
-// buffer pool for cl
-#define MAX_CL_BUFFERS 256
-
-struct scoped_spin_lock {
-    std::atomic_flag& lock;
-    scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
-        while (lock.test_and_set(std::memory_order_acquire)) {
-            ; // spin
-        }
-    }
-    ~scoped_spin_lock() {
-        lock.clear(std::memory_order_release);
-    }
-    scoped_spin_lock(const scoped_spin_lock&) = delete;
-    scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
-};
-
-struct cl_buffer {
-    cl_mem mem;
-    size_t size = 0;
-};
-
-static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
-static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
-
-static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) {
-    scoped_spin_lock lock(g_cl_pool_lock);
-    cl_int err;
-
-    int best_i = -1;
-    size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
-    int worst_i = -1;
-    size_t worst_size = 0; //largest unused buffer seen so far
-    for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
-        cl_buffer &b = g_cl_buffer_pool[i];
-        if (b.size > 0 && b.size >= size && b.size < best_size)
-        {
-            best_i = i;
-            best_size = b.size;
-        }
-        if (b.size > 0 && b.size > worst_size)
-        {
-            worst_i = i;
-            worst_size = b.size;
-        }
-    }
-    if(best_i!=-1) //found the smallest buffer that fits our needs
-    {
-        cl_buffer& b = g_cl_buffer_pool[best_i];
-        cl_mem mem = b.mem;
-        *actual_size = b.size;
-        b.size = 0;
-        return mem;
-    }
-    if(worst_i!=-1) //no buffer that fits our needs, resize largest one to save memory
-    {
-         cl_buffer& b = g_cl_buffer_pool[worst_i];
-         cl_mem mem = b.mem;
-         b.size = 0;
-         clReleaseMemObject(mem);
-    }
-    cl_mem mem;
-    CL_CHECK((mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err));
-    *actual_size = size;
-    return mem;
-}
-
-static void ggml_cl_pool_free(cl_mem mem, size_t size) {
-    scoped_spin_lock lock(g_cl_pool_lock);
-
-    for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
-        cl_buffer& b = g_cl_buffer_pool[i];
-        if (b.size == 0) {
-            b.mem = mem;
-            b.size = size;
-            return;
-        }
-    }
-    fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
-    clReleaseMemObject(mem);
-}
-
-void ggml_cl_free_data(const struct ggml_tensor* tensor) {
-    if (tensor->backend != GGML_BACKEND_GPU) {
-        return;
-    }
-
-    cl_mem mem = (cl_mem)tensor->data;
-    clReleaseMemObject(mem);
-}
-
-static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
-    cl_int err;
-    const uint64_t ne0 = src->ne[0];
-    const uint64_t ne1 = src->ne[1];
-    const uint64_t nb0 = src->nb[0];
-    const uint64_t nb1 = src->nb[1];
-    const uint64_t nb2 = src->nb[2];
-    const uint64_t nb3 = src->nb[3];
-    const enum ggml_type type = src->type;
-    const size_t ts = ggml_type_size(type);
-    const size_t bs = ggml_blck_size(type);
-
-    const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3);
-    if (nb0 == ts && nb1 == ts*ne0/bs) {
-        err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev);
-        return err;
-    }
-    if (nb0 == ts) {
-        const size_t buffer_origin[3] = { offset, 0, 0 };
-        const size_t host_origin[3] = { 0, 0, 0 };
-        const size_t region[3] = { ts*ne0/bs, ne1, 1 };
-        err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev);
-        return err;
-    }
-    for (uint64_t i1 = 0; i1 < ne1; i1++) {
-        // pretend the row is a matrix with cols=1
-        const size_t buffer_origin[3] = { offset, i1, 0 };
-        const size_t host_origin[3] = { 0, 0, 0 };
-        const size_t region[3] = { ts/bs, ne0, 1 };
-        err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev);
-        if (err != CL_SUCCESS) {
-            break;
-        }
-    }
-    return err;
-}
-
-static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t ne02 = src0->ne[2];
-    const int64_t ne03 = src0->ne[3];
-    const int64_t ne0 = ne00 * ne01 * ne02 * ne03;
-    const int64_t ne10 = src1->ne[0];
-    const int64_t ne11 = src1->ne[1];
-    const int64_t ne12 = src1->ne[2];
-    const int64_t ne13 = src1->ne[3];
-    const int64_t nb10 = src1->nb[0];
-    const int nb2  = dst->nb[2];
-    const int nb3  = dst->nb[3];
-    size_t x_size;
-    size_t d_size;
-
-    cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0
-    cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted.
-    cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst
-
-
-    for (int64_t i03 = 0; i03 < ne03; i03++) {
-        for (int64_t i02 = 0; i02 < ne02; i02++) {
-            const int i0 = i03*ne02 + i02;
-
-            cl_event ev;
-
-            // copy src0 to device
-            CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev));
-
-            if (nb10 == sizeof(float)) {
-                // Contiguous, avoid overhead from queueing many kernel runs
-                const int64_t i13 = i03%ne13;
-                const int64_t i12 = i02%ne12;
-                const int i1 = i13*ne12*ne11 + i12*ne11;
-
-                cl_int x_offset = 0;
-                cl_int y_offset = i1*ne10;
-                cl_int d_offset = 0;
-
-                size_t global = ne00 * ne01;
-                cl_int ky = ne10;
-                CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
-                CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
-                CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
-                CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
-                CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
-                CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
-                CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
-                CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
-            } else {
-                for (int64_t i01 = 0; i01 < ne01; i01++) {
-                    const int64_t i13 = i03%ne13;
-                    const int64_t i12 = i02%ne12;
-                    const int64_t i11 = i01%ne11;
-                    const int i1 = i13*ne12*ne11 + i12*ne11 + i11;
-
-                    cl_int x_offset = i01*ne00;
-                    cl_int y_offset = i1*ne10;
-                    cl_int d_offset = i01*ne00;
-
-                    // compute
-                    size_t global = ne00;
-                    cl_int ky = ne10;
-                    CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
-                    CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
-                    CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
-                    CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
-                    CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
-                    CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
-                    CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
-                    CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
-                }
-            }
-
-            CL_CHECK(clReleaseEvent(ev));
-            CL_CHECK(clFinish(queue));
-
-            // copy dst to host
-            float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
-            CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
-        }
-    }
-    ggml_cl_pool_free(d_X, x_size);
-    ggml_cl_pool_free(d_D, d_size);
-}
-
-void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
-    ggml_cl_mul_f32(src0, src1, dst);
-}
-
-static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t ne02 = src0->ne[2];
-    const int64_t ne03 = src0->ne[3];
-
-    const int64_t ne10 = src1->ne[0];
-    const int64_t ne11 = src1->ne[1];
-
-    const int nb2  = dst->nb[2];
-    const int nb3  = dst->nb[3];
-
-    const float alpha = 1.0f;
-    const float beta = 0.0f;
-    const int x_ne = ne01 * ne00;
-    const int y_ne = ne11 * ne10;
-    const int d_ne = ne11 * ne01;
-
-    size_t x_size;
-    size_t y_size;
-    size_t d_size;
-    cl_mem d_X;
-    if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
-        d_X = (cl_mem) src0->data;
-    } else {
-        d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
-    }
-    cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
-    cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
-
-    for (int64_t i03 = 0; i03 < ne03; i03++) {
-        for (int64_t i02 = 0; i02 < ne02; i02++) {
-            // copy data to device
-            if (src0->backend != GGML_BACKEND_GPU) {
-                CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
-            }
-            CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
-
-            CL_CHECK(clFinish(queue));
-
-            // compute
-            cl_event ev_sgemm;
-            clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
-                                                       clblast::Transpose::kYes, clblast::Transpose::kNo,
-                                                       ne01, ne11, ne10,
-                                                       alpha,
-                                                       d_X, 0, ne00,
-                                                       d_Y, 0, ne10,
-                                                       beta,
-                                                       d_D, 0, ne01,
-                                                       &queue, &ev_sgemm);
-
-            if (status != clblast::StatusCode::kSuccess) {
-                GGML_ASSERT(false);
-            }
-
-            // copy dst to host
-            float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
-            CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
-        }
-    }
-
-    if (src0->backend != GGML_BACKEND_GPU) {
-        ggml_cl_pool_free(d_X, x_size);
-    }
-    ggml_cl_pool_free(d_Y, y_size);
-    ggml_cl_pool_free(d_D, d_size);
-}
-
-static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) {
-    GGML_ASSERT(fp16_support);
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t ne02 = src0->ne[2];
-    const int64_t ne03 = src0->ne[3];
-
-    const int64_t ne10 = src1->ne[0];
-    const int64_t ne11 = src1->ne[1];
-
-    const int nb10 = src1->nb[0];
-    const int nb11 = src1->nb[1];
-    const int nb12 = src1->nb[2];
-    const int nb13 = src1->nb[3];
-
-    const int nb2  = dst->nb[2];
-    const int nb3  = dst->nb[3];
-
-    const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
-    const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
-    const int x_ne = ne01 * ne00;
-    const int y_ne = ne11 * ne10;
-    const int d_ne = ne11 * ne01;
-
-    size_t x_size;
-    size_t y_size;
-    size_t d_size;
-    cl_mem d_X;
-    if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
-        d_X = (cl_mem) src0->data;
-    } else {
-        d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
-    }
-    cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size);
-    cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size);
-
-    bool src1_cont_rows = nb10 == sizeof(float);
-    bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
-
-    for (int64_t i03 = 0; i03 < ne03; i03++) {
-        for (int64_t i02 = 0; i02 < ne02; i02++) {
-            // copy src0 to device
-            if (src0->backend != GGML_BACKEND_GPU) {
-                CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
-            }
-
-            // convert src1 to fp16
-            // TODO: use multiple threads
-            ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
-            char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
-            if (src1_cont_rows) {
-                if (src1_cont_cols) {
-                    ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
-                }
-                else {
-                    for (int64_t i01 = 0; i01 < ne11; i01++) {
-                        ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
-                    }
-                }
-            }
-            else {
-                for (int64_t i01 = 0; i01 < ne11; i01++) {
-                    for (int64_t i00 = 0; i00 < ne10; i00++) {
-                        // very slow due to no inlining
-                        tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
-                    }
-                }
-            }
-
-            // copy src1 to device
-            CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
-
-            CL_CHECK(clFinish(queue));
-
-            // compute
-            cl_event ev_sgemm;
-            clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
-                                                       clblast::Transpose::kYes, clblast::Transpose::kNo,
-                                                       ne01, ne11, ne10,
-                                                       alpha,
-                                                       d_X, 0, ne00,
-                                                       d_Y, 0, ne10,
-                                                       beta,
-                                                       d_D, 0, ne01,
-                                                       &queue, &ev_sgemm);
-
-            if (status != clblast::StatusCode::kSuccess) {
-                GGML_ASSERT(false);
-            }
-
-            // copy dst to host, then convert to float
-            CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
-
-            float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
-
-            ggml_fp16_to_fp32_row(tmp, d, d_ne);
-        }
-    }
-
-    if (src0->backend != GGML_BACKEND_GPU) {
-        ggml_cl_pool_free(d_X, x_size);
-    }
-    ggml_cl_pool_free(d_Y, y_size);
-    ggml_cl_pool_free(d_D, d_size);
-}
-
-static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-    const int64_t ne02 = src0->ne[2];
-    const int64_t ne03 = src0->ne[3];
-
-    const int64_t ne10 = src1->ne[0];
-    const int64_t ne11 = src1->ne[1];
-
-    const int nb2  = dst->nb[2];
-    const int nb3  = dst->nb[3];
-    const ggml_type type = src0->type;
-    const bool mul_mat_vec = ne11 == 1;
-
-    const float alpha = 1.0f;
-    const float beta = 0.0f;
-    const int x_ne = ne01 * ne00;
-    const int y_ne = ne11 * ne10;
-    const int d_ne = ne11 * ne01;
-    const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type);
-
-    size_t x_size;
-    size_t y_size;
-    size_t d_size;
-    size_t q_size;
-    cl_mem d_X;
-    if (!mul_mat_vec) {
-        d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
-    }
-    cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
-    cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
-    cl_mem d_Q;
-    if (src0->backend == GGML_BACKEND_CPU) {
-        d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
-    }
-
-    cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type);
-    cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
-    GGML_ASSERT(to_fp32_cl != nullptr);
-
-    const size_t global_denom = ggml_cl_global_denom(type);
-    const size_t local = ggml_cl_local_size(type);
-
-    size_t ev_idx = 0;
-    std::vector<cl_event> events;
-
-    for (int64_t i03 = 0; i03 < ne03; i03++) {
-        for (int64_t i02 = 0; i02 < ne02; i02++) {
-            // copy src0 to device if necessary
-            if (src0->backend == GGML_BACKEND_CPU) {
-                events.emplace_back();
-                CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
-            } else if (src0->backend == GGML_BACKEND_GPU) {
-                d_Q = (cl_mem) src0->data;
-            } else {
-                GGML_ASSERT(false);
-            }
-            if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
-                // copy src1 to device
-                events.emplace_back();
-                CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
-
-                // compute
-                const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
-                const size_t local = CL_DMMV_BLOCK_SIZE;
-                const cl_int ncols = ne00;
-                events.emplace_back();
-                CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
-                CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
-                CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
-                CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
-                CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
-                CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
-            } else { // general dequantization kernel + CLBlast matrix matrix multiplication
-                // convert src0 to fp32 on device
-                const size_t global = x_ne / global_denom;
-                CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
-                CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
-                CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
-
-                // copy src1 to device
-                CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
-
-                events.emplace_back();
-
-                // wait for conversion
-                CL_CHECK(clFinish(queue));
-
-                // compute
-                clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
-                                                           clblast::Transpose::kYes, clblast::Transpose::kNo,
-                                                           ne01, ne11, ne10,
-                                                           alpha,
-                                                           d_X, 0, ne00,
-                                                           d_Y, 0, ne10,
-                                                           beta,
-                                                           d_D, 0, ne01,
-                                                           &queue, events.data() + ev_idx++);
-
-                if (status != clblast::StatusCode::kSuccess) {
-                    GGML_ASSERT(false);
-                }
-            }
-
-            // copy dst to host
-            float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
-            CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
-            for (auto *event : events) {
-                clReleaseEvent(event);
-            }
-
-            ev_idx = 0;
-            events.clear();
-        }
-    }
-
-    if (!mul_mat_vec) {
-        ggml_cl_pool_free(d_X, x_size);
-    }
-    ggml_cl_pool_free(d_Y, y_size);
-    ggml_cl_pool_free(d_D, d_size);
-    if (src0->backend == GGML_BACKEND_CPU) {
-        ggml_cl_pool_free(d_Q, q_size);
-    }
-}
-
-
-bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
-    const int64_t ne10 = src1->ne[0];
-
-    const int64_t ne0 = dst->ne[0];
-    const int64_t ne1 = dst->ne[1];
-
-    // TODO: find the optimal values for these
-    if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
-        src1->type == GGML_TYPE_F32 &&
-        dst->type == GGML_TYPE_F32 &&
-        ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) {
-        return true;
-    }
-
-    return false;
-}
-
-bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
-    // If device doesn't support FP16
-    if (!fp16_support) {
-        return false;
-    }
-
-    size_t src0_sz = ggml_nbytes(src0);
-    size_t src1_sz = ggml_nbytes(src1);
-
-    // mul_mat_q: src0 is converted to fp32 on device
-    size_t mul_mat_q_transfer = src0_sz + src1_sz;
-
-    // mul_mat_f16: src1 is converted to fp16 on cpu
-    size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1);
-
-    // choose the smaller one to transfer to the device
-    // TODO: this is not always the best choice due to the overhead of converting to fp16
-    return mul_mat_f16_transfer < mul_mat_q_transfer;
-}
-
-void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) {
-    GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst));
-
-    if (src0->type == GGML_TYPE_F32) {
-        ggml_cl_mul_mat_f32(src0, src1, dst);
-    }
-    else if (src0->type == GGML_TYPE_F16) {
-        if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
-            ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize);
-        }
-        else {
-            ggml_cl_mul_mat_q_f32(src0, src1, dst);
-        }
-    }
-    else if (ggml_is_quantized(src0->type)) {
-        ggml_cl_mul_mat_q_f32(src0, src1, dst);
-    }
-    else {
-        GGML_ASSERT(false);
-    }
-}
-
-size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
-    if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
-        return ggml_nelements(src1) * sizeof(ggml_fp16_t);
-    }
-    return 0;
-}
-
-void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
-    const int64_t ne0 = tensor->ne[0];
-    const int64_t ne1 = tensor->ne[1];
-    const int64_t ne2 = tensor->ne[2];
-    const int64_t ne3 = tensor->ne[3];
-
-    const ggml_type type = tensor->type;
-    const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type);
-
-    size_t q_size;
-    cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
-
-    tensor->data = data;
-    // copy tensor to device
-    for (int64_t i3 = 0; i3 < ne3; i3++) {
-        for (int64_t i2 = 0; i2 < ne2; i2++) {
-            int i = i3*ne2 + i2;
-            CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, i*ne0*ne1, tensor, i3, i2, NULL));
-        }
-    }
-
-    CL_CHECK(clFinish(queue));
-
-    tensor->data = dst;
-    GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
-}

+ 0 - 53
llm/ggml-opencl.h

@@ -1,53 +0,0 @@
-//go:build opencl
-
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#pragma once
-
-#include "ggml.h"
-
-#ifdef  __cplusplus
-extern "C" {
-#endif
-
-void ggml_cl_init(void);
-
-void   ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
-bool   ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
-size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
-void   ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize);
-
-void * ggml_cl_host_malloc(size_t size);
-void   ggml_cl_host_free(void * ptr);
-
-void ggml_cl_free_data(const struct ggml_tensor* tensor);
-
-void ggml_cl_transform_tensor(void * data, struct ggml_tensor * tensor);
-
-#ifdef  __cplusplus
-}
-#endif

+ 0 - 18722
llm/ggml.c

@@ -1,18722 +0,0 @@
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
-#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
-
-#include "ggml.h"
-
-#ifdef GGML_USE_K_QUANTS
-#include "k_quants.h"
-#endif
-
-#if defined(_MSC_VER) || defined(__MINGW32__)
-#include <malloc.h> // using malloc.h with MSC/MINGW
-#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
-#include <alloca.h>
-#endif
-
-#include <assert.h>
-#include <errno.h>
-#include <time.h>
-#include <math.h>
-#include <stdlib.h>
-#include <string.h>
-#include <stdint.h>
-#include <inttypes.h>
-#include <stdio.h>
-#include <float.h>
-#include <limits.h>
-#include <stdarg.h>
-#include <signal.h>
-
-#ifdef GGML_USE_METAL
-#include <unistd.h>
-#endif
-
-// static_assert should be a #define, but if it's not,
-// fall back to the _Static_assert C11 keyword.
-// if C99 - static_assert is noop
-// ref: https://stackoverflow.com/a/53923785/4039976
-#ifndef static_assert
-#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
-#define static_assert(cond, msg) _Static_assert(cond, msg)
-#else
-#define static_assert(cond, msg) struct global_scope_noop_trick
-#endif
-#endif
-
-#if defined(_MSC_VER)
-// disable "possible loss of data" to avoid hundreds of casts
-// we should just be careful :)
-#pragma warning(disable: 4244 4267)
-#endif
-
-#if defined(_WIN32)
-
-#include <windows.h>
-
-typedef volatile LONG atomic_int;
-typedef atomic_int atomic_bool;
-
-static void atomic_store(atomic_int * ptr, LONG val) {
-    InterlockedExchange(ptr, val);
-}
-static LONG atomic_load(atomic_int * ptr) {
-    return InterlockedCompareExchange(ptr, 0, 0);
-}
-static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
-    return InterlockedExchangeAdd(ptr, inc);
-}
-static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
-    return atomic_fetch_add(ptr, -(dec));
-}
-
-typedef HANDLE pthread_t;
-
-typedef DWORD thread_ret_t;
-static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
-    (void) unused;
-    HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
-    if (handle == NULL)
-    {
-        return EAGAIN;
-    }
-
-    *out = handle;
-    return 0;
-}
-
-static int pthread_join(pthread_t thread, void * unused) {
-    (void) unused;
-    return (int) WaitForSingleObject(thread, INFINITE);
-}
-
-static int sched_yield (void) {
-    Sleep (0);
-    return 0;
-}
-#else
-#include <pthread.h>
-#include <stdatomic.h>
-
-typedef void * thread_ret_t;
-
-#include <sys/types.h>
-#include <sys/stat.h>
-#include <unistd.h>
-
-#endif
-
-// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
-#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
-#ifndef __FMA__
-#define __FMA__
-#endif
-#ifndef __F16C__
-#define __F16C__
-#endif
-#ifndef __SSE3__
-#define __SSE3__
-#endif
-#endif
-
-/*#define GGML_PERF*/
-#define GGML_DEBUG 0
-#define GGML_GELU_FP16
-#define GGML_GELU_QUICK_FP16
-#define GGML_SILU_FP16
-
-#define GGML_SOFT_MAX_UNROLL 4
-#define GGML_VEC_DOT_UNROLL  2
-
-//
-// logging
-//
-
-#if (GGML_DEBUG >= 1)
-#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
-#else
-#define GGML_PRINT_DEBUG(...)
-#endif
-
-#if (GGML_DEBUG >= 5)
-#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
-#else
-#define GGML_PRINT_DEBUG_5(...)
-#endif
-
-#if (GGML_DEBUG >= 10)
-#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
-#else
-#define GGML_PRINT_DEBUG_10(...)
-#endif
-
-#define GGML_PRINT(...) printf(__VA_ARGS__)
-
-#ifdef GGML_USE_ACCELERATE
-// uncomment to use vDSP for soft max computation
-// note: not sure if it is actually faster
-//#define GGML_SOFT_MAX_ACCELERATE
-#endif
-
-#if UINTPTR_MAX == 0xFFFFFFFF
-    #define GGML_MEM_ALIGN 4
-#else
-    #define GGML_MEM_ALIGN 16
-#endif
-
-//
-// logging
-//
-
-#if (GGML_DEBUG >= 1)
-#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
-#else
-#define GGML_PRINT_DEBUG(...)
-#endif
-
-#if (GGML_DEBUG >= 5)
-#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
-#else
-#define GGML_PRINT_DEBUG_5(...)
-#endif
-
-#if (GGML_DEBUG >= 10)
-#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
-#else
-#define GGML_PRINT_DEBUG_10(...)
-#endif
-
-#define GGML_PRINT(...) printf(__VA_ARGS__)
-
-//
-// end of logging block
-//
-
-#if defined(_MSC_VER) || defined(__MINGW32__)
-#define GGML_ALIGNED_MALLOC(size)  _aligned_malloc(size, GGML_MEM_ALIGN)
-#define GGML_ALIGNED_FREE(ptr)     _aligned_free(ptr)
-#else
-inline static void * ggml_aligned_malloc(size_t size) {
-    void * aligned_memory = NULL;
-#ifdef GGML_USE_METAL
-    int result = posix_memalign(&aligned_memory, getpagesize(), size);
-#else
-    int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
-#endif
-    if (result != 0) {
-        // Handle allocation failure
-        const char *error_desc = "unknown allocation error";
-        switch (result) {
-            case EINVAL:
-                error_desc = "invalid alignment value";
-                break;
-            case ENOMEM:
-                error_desc = "insufficient memory";
-                break;
-        }
-        GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
-            __func__, error_desc, size/(1024.0*1024.0));
-        return NULL;
-    }
-    return aligned_memory;
-}
-#define GGML_ALIGNED_MALLOC(size)  ggml_aligned_malloc(size)
-#define GGML_ALIGNED_FREE(ptr)     free(ptr)
-#endif
-
-#define UNUSED GGML_UNUSED
-#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
-
-//
-// tensor access macros
-//
-
-#define GGML_TENSOR_UNARY_OP_LOCALS \
-    GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
-    GGML_TENSOR_LOCALS(size_t,  nb0, src0, nb); \
-    GGML_TENSOR_LOCALS(int64_t, ne,  dst,  ne); \
-    GGML_TENSOR_LOCALS(size_t,  nb,  dst,  nb);
-
-#define GGML_TENSOR_BINARY_OP_LOCALS \
-    GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
-    GGML_TENSOR_LOCALS(size_t,  nb0, src0, nb); \
-    GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
-    GGML_TENSOR_LOCALS(size_t,  nb1, src1, nb); \
-    GGML_TENSOR_LOCALS(int64_t, ne,  dst,  ne); \
-    GGML_TENSOR_LOCALS(size_t,  nb,  dst,  nb);
-
-#if defined(GGML_USE_ACCELERATE)
-#include <Accelerate/Accelerate.h>
-#if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
-#include "ggml-opencl.h"
-#endif
-#elif defined(GGML_USE_OPENBLAS)
-#if defined(GGML_BLAS_USE_MKL)
-#include <mkl.h>
-#else
-#include <cblas.h>
-#endif
-#elif defined(GGML_USE_CUBLAS)
-#include "ggml-cuda.h"
-#elif defined(GGML_USE_CLBLAST)
-#include "ggml-opencl.h"
-#endif
-
-#undef MIN
-#undef MAX
-#define MIN(a, b) ((a) < (b) ? (a) : (b))
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
-
-// floating point type used to accumulate sums
-typedef double ggml_float;
-
-// 16-bit float
-// on Arm, we use __fp16
-// on x86, we use uint16_t
-#ifdef __ARM_NEON
-
-// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
-//
-//   $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
-//
-#include <arm_neon.h>
-
-#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
-#define GGML_COMPUTE_FP32_TO_FP16(x) (x)
-
-#define GGML_FP16_TO_FP32(x) ((float) (x))
-#define GGML_FP32_TO_FP16(x) (x)
-
-#else
-
-#ifdef __wasm_simd128__
-#include <wasm_simd128.h>
-#else
-#ifdef __POWER9_VECTOR__
-#include <altivec.h>
-#undef bool
-#define bool _Bool
-#else
-#if defined(_MSC_VER) || defined(__MINGW32__)
-#include <intrin.h>
-#else
-#if !defined(__riscv)
-#include <immintrin.h>
-#endif
-#endif
-#endif
-#endif
-
-#ifdef __F16C__
-
-#ifdef _MSC_VER
-#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
-#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
-#else
-#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
-#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
-#endif
-
-#elif defined(__POWER9_VECTOR__)
-
-#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
-#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
-/* the inline asm below is about 12% faster than the lookup method */
-#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
-#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
-
-static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
-    register float f;
-    register double d;
-    __asm__(
-        "mtfprd %0,%2\n"
-        "xscvhpdp %0,%0\n"
-        "frsp %1,%0\n" :
-        /* temp */ "=d"(d),
-        /* out */  "=f"(f):
-        /* in */   "r"(h));
-    return f;
-}
-
-static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
-    register double d;
-    register ggml_fp16_t r;
-    __asm__( /* xscvdphp can work on double or single precision */
-        "xscvdphp %0,%2\n"
-        "mffprd %1,%0\n" :
-        /* temp */ "=d"(d),
-        /* out */  "=r"(r):
-        /* in */   "f"(f));
-    return r;
-}
-
-#else
-
-// FP16 <-> FP32
-// ref: https://github.com/Maratyszcza/FP16
-
-static inline float fp32_from_bits(uint32_t w) {
-    union {
-        uint32_t as_bits;
-        float as_value;
-    } fp32;
-    fp32.as_bits = w;
-    return fp32.as_value;
-}
-
-static inline uint32_t fp32_to_bits(float f) {
-    union {
-        float as_value;
-        uint32_t as_bits;
-    } fp32;
-    fp32.as_value = f;
-    return fp32.as_bits;
-}
-
-static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
-    const uint32_t w = (uint32_t) h << 16;
-    const uint32_t sign = w & UINT32_C(0x80000000);
-    const uint32_t two_w = w + w;
-
-    const uint32_t exp_offset = UINT32_C(0xE0) << 23;
-#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
-    const float exp_scale = 0x1.0p-112f;
-#else
-    const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
-#endif
-    const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
-
-    const uint32_t magic_mask = UINT32_C(126) << 23;
-    const float magic_bias = 0.5f;
-    const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
-
-    const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
-    const uint32_t result = sign |
-        (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
-    return fp32_from_bits(result);
-}
-
-static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
-#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
-    const float scale_to_inf = 0x1.0p+112f;
-    const float scale_to_zero = 0x1.0p-110f;
-#else
-    const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
-    const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
-#endif
-    float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
-
-    const uint32_t w = fp32_to_bits(f);
-    const uint32_t shl1_w = w + w;
-    const uint32_t sign = w & UINT32_C(0x80000000);
-    uint32_t bias = shl1_w & UINT32_C(0xFF000000);
-    if (bias < UINT32_C(0x71000000)) {
-        bias = UINT32_C(0x71000000);
-    }
-
-    base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
-    const uint32_t bits = fp32_to_bits(base);
-    const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
-    const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
-    const uint32_t nonsign = exp_bits + mantissa_bits;
-    return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
-}
-
-#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
-#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
-
-#endif // __F16C__
-
-#endif // __ARM_NEON
-
-//
-// global data
-//
-
-// precomputed gelu table for f16 (128 KB)
-static ggml_fp16_t table_gelu_f16[1 << 16];
-
-// precomputed quick gelu table for f16 (128 KB)
-static ggml_fp16_t table_gelu_quick_f16[1 << 16];
-
-// precomputed silu table for f16 (128 KB)
-static ggml_fp16_t table_silu_f16[1 << 16];
-
-// precomputed exp table for f16 (128 KB)
-static ggml_fp16_t table_exp_f16[1 << 16];
-
-// precomputed f32 table for f16 (256 KB)
-static float table_f32_f16[1 << 16];
-
-#if defined(__ARM_NEON) || defined(__wasm_simd128__)
-#define B1(c,s,n)  0x ## n ## c ,  0x ## n ## s
-#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
-#define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
-#define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
-#define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
-#define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
-#define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
-#define B8(c,s  ) B7(c,s,     c), B7(c,s,     s)
-
-// precomputed tables for expanding 8bits to 8 bytes:
-static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
-static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
-#endif
-
-// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
-// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
-// This is also true for POWER9.
-#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
-
-inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
-    uint16_t s;
-    memcpy(&s, &f, sizeof(uint16_t));
-    return table_f32_f16[s];
-}
-
-#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
-#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
-
-#endif
-
-// note: do not use these inside ggml.c
-// these are meant to be used via the ggml.h API
-float ggml_fp16_to_fp32(ggml_fp16_t x) {
-    return (float) GGML_FP16_TO_FP32(x);
-}
-
-ggml_fp16_t ggml_fp32_to_fp16(float x) {
-    return GGML_FP32_TO_FP16(x);
-}
-
-void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
-    for (int i = 0; i < n; i++) {
-        y[i] = GGML_FP16_TO_FP32(x[i]);
-    }
-}
-
-void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
-    int i = 0;
-#if defined(__F16C__)
-    for (; i + 7 < n; i += 8) {
-        __m256 x_vec = _mm256_loadu_ps(x + i);
-        __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
-        _mm_storeu_si128((__m128i *)(y + i), y_vec);
-    }
-    for(; i + 3 < n; i += 4) {
-        __m128 x_vec = _mm_loadu_ps(x + i);
-        __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
-        _mm_storel_epi64((__m128i *)(y + i), y_vec);
-    }
-#endif
-    for (; i < n; i++) {
-        y[i] = GGML_FP32_TO_FP16(x[i]);
-    }
-}
-
-//
-// timing
-//
-
-#if defined(_MSC_VER) || defined(__MINGW32__)
-static int64_t timer_freq, timer_start;
-void ggml_time_init(void) {
-    LARGE_INTEGER t;
-    QueryPerformanceFrequency(&t);
-    timer_freq = t.QuadPart;
-
-    // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
-    // and the uptime is high enough.
-    // We subtract the program start time to reduce the likelihood of that happening.
-    QueryPerformanceCounter(&t);
-    timer_start = t.QuadPart;
-}
-int64_t ggml_time_ms(void) {
-    LARGE_INTEGER t;
-    QueryPerformanceCounter(&t);
-    return ((t.QuadPart-timer_start) * 1000) / timer_freq;
-}
-int64_t ggml_time_us(void) {
-    LARGE_INTEGER t;
-    QueryPerformanceCounter(&t);
-    return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
-}
-#else
-void ggml_time_init(void) {}
-int64_t ggml_time_ms(void) {
-    struct timespec ts;
-    clock_gettime(CLOCK_MONOTONIC, &ts);
-    return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
-}
-
-int64_t ggml_time_us(void) {
-    struct timespec ts;
-    clock_gettime(CLOCK_MONOTONIC, &ts);
-    return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
-}
-#endif
-
-int64_t ggml_cycles(void) {
-    return clock();
-}
-
-int64_t ggml_cycles_per_ms(void) {
-    return CLOCKS_PER_SEC/1000;
-}
-
-#ifdef GGML_PERF
-#define ggml_perf_time_ms()       ggml_time_ms()
-#define ggml_perf_time_us()       ggml_time_us()
-#define ggml_perf_cycles()        ggml_cycles()
-#define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
-#else
-#define ggml_perf_time_ms()       0
-#define ggml_perf_time_us()       0
-#define ggml_perf_cycles()        0
-#define ggml_perf_cycles_per_ms() 0
-#endif
-
-
-//
-// cache line
-//
-
-#if defined(__cpp_lib_hardware_interference_size)
-#define CACHE_LINE_SIZE hardware_destructive_interference_size
-#else
-#if defined(__POWER9_VECTOR__)
-#define CACHE_LINE_SIZE 128
-#else
-#define CACHE_LINE_SIZE 64
-#endif
-#endif
-
-static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
-
-//
-// quantization
-//
-
-#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
-
-#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
-// multiply int8_t, add results pairwise twice
-static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
-    // Get absolute values of x vectors
-    const __m128i ax = _mm_sign_epi8(x, x);
-    // Sign the values of the y vectors
-    const __m128i sy = _mm_sign_epi8(y, x);
-    // Perform multiplication and create 16-bit values
-    const __m128i dot = _mm_maddubs_epi16(ax, sy);
-    const __m128i ones = _mm_set1_epi16(1);
-    return _mm_madd_epi16(ones, dot);
-}
-
-#if __AVX__ || __AVX2__ || __AVX512F__
-// horizontally add 8 floats
-static inline float hsum_float_8(const __m256 x) {
-    __m128 res = _mm256_extractf128_ps(x, 1);
-    res = _mm_add_ps(res, _mm256_castps256_ps128(x));
-    res = _mm_add_ps(res, _mm_movehl_ps(res, res));
-    res = _mm_add_ss(res, _mm_movehdup_ps(res));
-    return _mm_cvtss_f32(res);
-}
-
-// horizontally add 8 int32_t
-static inline int hsum_i32_8(const __m256i a) {
-    const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
-    const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
-    const __m128i sum64 = _mm_add_epi32(hi64, sum128);
-    const __m128i hi32  = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
-    return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
-}
-
-// horizontally add 4 int32_t
-static inline int hsum_i32_4(const __m128i a) {
-    const __m128i hi64 = _mm_unpackhi_epi64(a, a);
-    const __m128i sum64 = _mm_add_epi32(hi64, a);
-    const __m128i hi32  = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
-    return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
-}
-
-#if defined(__AVX2__) || defined(__AVX512F__)
-// spread 32 bits to 32 bytes { 0x00, 0xFF }
-static inline __m256i bytes_from_bits_32(const uint8_t * x) {
-    uint32_t x32;
-    memcpy(&x32, x, sizeof(uint32_t));
-    const __m256i shuf_mask = _mm256_set_epi64x(
-            0x0303030303030303, 0x0202020202020202,
-            0x0101010101010101, 0x0000000000000000);
-    __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
-    const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
-    bytes = _mm256_or_si256(bytes, bit_mask);
-    return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
-}
-
-// Unpack 32 4-bit fields into 32 bytes
-// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
-static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
-{
-    const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
-    const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
-    const __m256i lowMask = _mm256_set1_epi8( 0xF );
-    return _mm256_and_si256(lowMask, bytes);
-}
-
-// add int16_t pairwise and return as float vector
-static inline __m256 sum_i16_pairs_float(const __m256i x) {
-    const __m256i ones = _mm256_set1_epi16(1);
-    const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
-    return _mm256_cvtepi32_ps(summed_pairs);
-}
-
-static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
-#if __AVXVNNI__
-    const __m256i zero = _mm256_setzero_si256();
-    const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
-    return _mm256_cvtepi32_ps(summed_pairs);
-#else
-    // Perform multiplication and create 16-bit values
-    const __m256i dot = _mm256_maddubs_epi16(ax, sy);
-    return sum_i16_pairs_float(dot);
-#endif
-}
-
-// multiply int8_t, add results pairwise twice and return as float vector
-static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
-#if __AVXVNNIINT8__
-    const __m256i zero = _mm256_setzero_si256();
-    const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
-    return _mm256_cvtepi32_ps(summed_pairs);
-#else
-    // Get absolute values of x vectors
-    const __m256i ax = _mm256_sign_epi8(x, x);
-    // Sign the values of the y vectors
-    const __m256i sy = _mm256_sign_epi8(y, x);
-    return mul_sum_us8_pairs_float(ax, sy);
-#endif
-}
-
-static inline __m128i packNibbles( __m256i bytes )
-{
-    // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
-#if __AVX512F__
-    const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4);   // 0000_0000_abcd_0000
-    bytes = _mm256_or_si256(bytes, bytes_srli_4);               // 0000_abcd_abcd_efgh
-    return _mm256_cvtepi16_epi8(bytes);                         // abcd_efgh
-#else
-    const __m256i lowByte = _mm256_set1_epi16( 0xFF );
-    __m256i high = _mm256_andnot_si256( lowByte, bytes );
-    __m256i low = _mm256_and_si256( lowByte, bytes );
-    high = _mm256_srli_epi16( high, 4 );
-    bytes = _mm256_or_si256( low, high );
-
-    // Compress uint16_t lanes into bytes
-    __m128i r0 = _mm256_castsi256_si128( bytes );
-    __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
-    return _mm_packus_epi16( r0, r1 );
-#endif
-}
-#elif defined(__AVX__)
-// spread 32 bits to 32 bytes { 0x00, 0xFF }
-static inline __m256i bytes_from_bits_32(const uint8_t * x) {
-    uint32_t x32;
-    memcpy(&x32, x, sizeof(uint32_t));
-    const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
-    const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
-    __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
-    __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
-    const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
-    bytesl = _mm_or_si128(bytesl, bit_mask);
-    bytesh = _mm_or_si128(bytesh, bit_mask);
-    bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
-    bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
-    return MM256_SET_M128I(bytesh, bytesl);
-}
-
-// Unpack 32 4-bit fields into 32 bytes
-// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
-static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
-{
-    // Load 16 bytes from memory
-    __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
-    __m128i tmph = _mm_srli_epi16(tmpl, 4);
-    const __m128i lowMask = _mm_set1_epi8(0xF);
-    tmpl = _mm_and_si128(lowMask, tmpl);
-    tmph = _mm_and_si128(lowMask, tmph);
-    return MM256_SET_M128I(tmph, tmpl);
-}
-
-// add int16_t pairwise and return as float vector
-static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
-    const __m128i ones = _mm_set1_epi16(1);
-    const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
-    const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
-    const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
-    return _mm256_cvtepi32_ps(summed_pairs);
-}
-
-static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
-    const __m128i axl = _mm256_castsi256_si128(ax);
-    const __m128i axh = _mm256_extractf128_si256(ax, 1);
-    const __m128i syl = _mm256_castsi256_si128(sy);
-    const __m128i syh = _mm256_extractf128_si256(sy, 1);
-    // Perform multiplication and create 16-bit values
-    const __m128i dotl = _mm_maddubs_epi16(axl, syl);
-    const __m128i doth = _mm_maddubs_epi16(axh, syh);
-    return sum_i16_pairs_float(doth, dotl);
-}
-
-// multiply int8_t, add results pairwise twice and return as float vector
-static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
-    const __m128i xl = _mm256_castsi256_si128(x);
-    const __m128i xh = _mm256_extractf128_si256(x, 1);
-    const __m128i yl = _mm256_castsi256_si128(y);
-    const __m128i yh = _mm256_extractf128_si256(y, 1);
-    // Get absolute values of x vectors
-    const __m128i axl = _mm_sign_epi8(xl, xl);
-    const __m128i axh = _mm_sign_epi8(xh, xh);
-    // Sign the values of the y vectors
-    const __m128i syl = _mm_sign_epi8(yl, xl);
-    const __m128i syh = _mm_sign_epi8(yh, xh);
-    // Perform multiplication and create 16-bit values
-    const __m128i dotl = _mm_maddubs_epi16(axl, syl);
-    const __m128i doth = _mm_maddubs_epi16(axh, syh);
-    return sum_i16_pairs_float(doth, dotl);
-}
-
-static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
-{
-    // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
-    const __m128i lowByte = _mm_set1_epi16( 0xFF );
-    __m128i high = _mm_andnot_si128( lowByte, bytes1 );
-    __m128i low = _mm_and_si128( lowByte, bytes1 );
-    high = _mm_srli_epi16( high, 4 );
-    bytes1 = _mm_or_si128( low, high );
-    high = _mm_andnot_si128( lowByte, bytes2 );
-    low = _mm_and_si128( lowByte, bytes2 );
-    high = _mm_srli_epi16( high, 4 );
-    bytes2 = _mm_or_si128( low, high );
-
-    return _mm_packus_epi16( bytes1, bytes2);
-}
-#endif
-#elif defined(__SSSE3__)
-// horizontally add 4x4 floats
-static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
-    __m128 res_0 =_mm_hadd_ps(a, b);
-    __m128 res_1 =_mm_hadd_ps(c, d);
-    __m128 res =_mm_hadd_ps(res_0, res_1);
-    res =_mm_hadd_ps(res, res);
-    res =_mm_hadd_ps(res, res);
-
-    return _mm_cvtss_f32(res);
-}
-#endif // __AVX__ || __AVX2__ || __AVX512F__
-#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
-
-#if defined(__ARM_NEON)
-
-#if !defined(__aarch64__)
-
-inline static uint16_t vaddvq_u8(uint8x16_t v) {
-    return
-        (uint16_t)vgetq_lane_u8(v, 0)  + (uint16_t)vgetq_lane_u8(v, 1)  +
-        (uint16_t)vgetq_lane_u8(v, 2)  + (uint16_t)vgetq_lane_u8(v, 3)  +
-        (uint16_t)vgetq_lane_u8(v, 4)  + (uint16_t)vgetq_lane_u8(v, 5)  +
-        (uint16_t)vgetq_lane_u8(v, 6)  + (uint16_t)vgetq_lane_u8(v, 7)  +
-        (uint16_t)vgetq_lane_u8(v, 8)  + (uint16_t)vgetq_lane_u8(v, 9)  +
-        (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
-        (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
-        (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
-}
-
-inline static int16_t vaddvq_s8(int8x16_t v) {
-    return
-        (int16_t)vgetq_lane_s8(v, 0)  + (int16_t)vgetq_lane_s8(v, 1)  +
-        (int16_t)vgetq_lane_s8(v, 2)  + (int16_t)vgetq_lane_s8(v, 3)  +
-        (int16_t)vgetq_lane_s8(v, 4)  + (int16_t)vgetq_lane_s8(v, 5)  +
-        (int16_t)vgetq_lane_s8(v, 6)  + (int16_t)vgetq_lane_s8(v, 7)  +
-        (int16_t)vgetq_lane_s8(v, 8)  + (int16_t)vgetq_lane_s8(v, 9)  +
-        (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
-        (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
-        (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
-}
-
-inline static int32_t vaddvq_s16(int16x8_t v) {
-    return
-        (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
-        (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
-        (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
-        (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
-}
-
-inline static uint32_t vaddvq_u16(uint16x8_t v) {
-    return
-        (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
-        (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
-        (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
-        (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
-}
-
-inline static int32_t vaddvq_s32(int32x4_t v) {
-    return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
-}
-
-inline static float vaddvq_f32(float32x4_t v) {
-    return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
-}
-
-inline static float vminvq_f32(float32x4_t v) {
-    return
-        MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
-            MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
-}
-
-inline static float vmaxvq_f32(float32x4_t v) {
-    return
-        MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
-            MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
-}
-
-inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
-    int32x4_t res;
-
-    res[0] = roundf(vgetq_lane_f32(v, 0));
-    res[1] = roundf(vgetq_lane_f32(v, 1));
-    res[2] = roundf(vgetq_lane_f32(v, 2));
-    res[3] = roundf(vgetq_lane_f32(v, 3));
-
-    return res;
-}
-
-#endif
-#endif
-
-#define QK4_0 32
-typedef struct {
-    ggml_fp16_t d;          // delta
-    uint8_t qs[QK4_0 / 2];  // nibbles / quants
-} block_q4_0;
-static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
-
-#define QK4_1 32
-typedef struct {
-    ggml_fp16_t d;          // delta
-    ggml_fp16_t m;          // min
-    uint8_t qs[QK4_1 / 2];  // nibbles / quants
-} block_q4_1;
-static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
-
-#define QK5_0 32
-typedef struct {
-    ggml_fp16_t d;         // delta
-    uint8_t qh[4];         // 5-th bit of quants
-    uint8_t qs[QK5_0 / 2]; // nibbles / quants
-} block_q5_0;
-static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
-
-#define QK5_1 32
-typedef struct {
-    ggml_fp16_t d;         // delta
-    ggml_fp16_t m;         // min
-    uint8_t qh[4];         // 5-th bit of quants
-    uint8_t qs[QK5_1 / 2]; // nibbles / quants
-} block_q5_1;
-static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
-
-#define QK8_0 32
-typedef struct {
-    ggml_fp16_t d;         // delta
-    int8_t  qs[QK8_0];     // quants
-} block_q8_0;
-static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
-
-#define QK8_1 32
-typedef struct {
-    float d;               // delta
-    float s;               // d * sum(qs[i])
-    int8_t  qs[QK8_1];     // quants
-} block_q8_1;
-static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
-
-// reference implementation for deterministic creation of model files
-static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
-    static const int qk = QK4_0;
-
-    assert(k % qk == 0);
-
-    const int nb = k / qk;
-
-    for (int i = 0; i < nb; i++) {
-        float amax = 0.0f; // absolute max
-        float max  = 0.0f;
-
-        for (int j = 0; j < qk; j++) {
-            const float v = x[i*qk + j];
-            if (amax < fabsf(v)) {
-                amax = fabsf(v);
-                max  = v;
-            }
-        }
-
-        const float d  = max / -8;
-        const float id = d ? 1.0f/d : 0.0f;
-
-        y[i].d = GGML_FP32_TO_FP16(d);
-
-        for (int j = 0; j < qk/2; ++j) {
-            const float x0 = x[i*qk + 0    + j]*id;
-            const float x1 = x[i*qk + qk/2 + j]*id;
-
-            const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
-            const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
-
-            y[i].qs[j]  = xi0;
-            y[i].qs[j] |= xi1 << 4;
-        }
-    }
-}
-
-static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
-    quantize_row_q4_0_reference(x, y, k);
-}
-
-static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
-    const int qk = QK4_1;
-
-    assert(k % qk == 0);
-
-    const int nb = k / qk;
-
-    for (int i = 0; i < nb; i++) {
-        float min = FLT_MAX;
-        float max = -FLT_MAX;
-
-        for (int j = 0; j < qk; j++) {
-            const float v = x[i*qk + j];
-
-            if (v < min) min = v;
-            if (v > max) max = v;
-        }
-
-        const float d  = (max - min) / ((1 << 4) - 1);
-        const float id = d ? 1.0f/d : 0.0f;
-
-        y[i].d = GGML_FP32_TO_FP16(d);
-        y[i].m = GGML_FP32_TO_FP16(min);
-
-        for (int j = 0; j < qk/2; ++j) {
-            const float x0 = (x[i*qk + 0    + j] - min)*id;
-            const float x1 = (x[i*qk + qk/2 + j] - min)*id;
-
-            const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
-            const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
-
-            y[i].qs[j]  = xi0;
-            y[i].qs[j] |= xi1 << 4;
-        }
-    }
-}
-
-static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
-    quantize_row_q4_1_reference(x, y, k);
-}
-
-static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
-    static const int qk = QK5_0;
-
-    assert(k % qk == 0);
-
-    const int nb = k / qk;
-
-    for (int i = 0; i < nb; i++) {
-        float amax = 0.0f; // absolute max
-        float max  = 0.0f;
-
-        for (int j = 0; j < qk; j++) {
-            const float v = x[i*qk + j];
-            if (amax < fabsf(v)) {
-                amax = fabsf(v);
-                max  = v;
-            }
-        }
-
-        const float d  = max / -16;
-        const float id = d ? 1.0f/d : 0.0f;
-
-        y[i].d = GGML_FP32_TO_FP16(d);
-
-        uint32_t qh = 0;
-
-        for (int j = 0; j < qk/2; ++j) {
-            const float x0 = x[i*qk + 0    + j]*id;
-            const float x1 = x[i*qk + qk/2 + j]*id;
-
-            const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
-            const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
-
-            y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
-
-            // get the 5-th bit and store it in qh at the right position
-            qh |= ((xi0 & 0x10) >> 4) << (j + 0);
-            qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
-        }
-
-        memcpy(&y[i].qh, &qh, sizeof(qh));
-    }
-}
-
-static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
-    quantize_row_q5_0_reference(x, y, k);
-}
-
-static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
-    const int qk = QK5_1;
-
-    assert(k % qk == 0);
-
-    const int nb = k / qk;
-
-    for (int i = 0; i < nb; i++) {
-        float min = FLT_MAX;
-        float max = -FLT_MAX;
-
-        for (int j = 0; j < qk; j++) {
-            const float v = x[i*qk + j];
-
-            if (v < min) min = v;
-            if (v > max) max = v;
-        }
-
-        const float d  = (max - min) / ((1 << 5) - 1);
-        const float id = d ? 1.0f/d : 0.0f;
-
-        y[i].d = GGML_FP32_TO_FP16(d);
-        y[i].m = GGML_FP32_TO_FP16(min);
-
-        uint32_t qh = 0;
-
-        for (int j = 0; j < qk/2; ++j) {
-            const float x0 = (x[i*qk + 0    + j] - min)*id;
-            const float x1 = (x[i*qk + qk/2 + j] - min)*id;
-
-            const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
-            const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
-
-            y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
-
-            // get the 5-th bit and store it in qh at the right position
-            qh |= ((xi0 & 0x10) >> 4) << (j + 0);
-            qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
-        }
-
-        memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
-    }
-}
-
-static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
-    quantize_row_q5_1_reference(x, y, k);
-}
-
-// reference implementation for deterministic creation of model files
-static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
-    assert(k % QK8_0 == 0);
-    const int nb = k / QK8_0;
-
-    for (int i = 0; i < nb; i++) {
-        float amax = 0.0f; // absolute max
-
-        for (int j = 0; j < QK8_0; j++) {
-            const float v = x[i*QK8_0 + j];
-            amax = MAX(amax, fabsf(v));
-        }
-
-        const float d = amax / ((1 << 7) - 1);
-        const float id = d ? 1.0f/d : 0.0f;
-
-        y[i].d = GGML_FP32_TO_FP16(d);
-
-        for (int j = 0; j < QK8_0; ++j) {
-            const float x0 = x[i*QK8_0 + j]*id;
-
-            y[i].qs[j] = roundf(x0);
-        }
-    }
-}
-
-static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
-    assert(QK8_0 == 32);
-    assert(k % QK8_0 == 0);
-    const int nb = k / QK8_0;
-
-    block_q8_0 * restrict y = vy;
-
-#if defined(__ARM_NEON)
-    for (int i = 0; i < nb; i++) {
-        float32x4_t srcv [8];
-        float32x4_t asrcv[8];
-        float32x4_t amaxv[8];
-
-        for (int j = 0; j < 8; j++) srcv[j]  = vld1q_f32(x + i*32 + 4*j);
-        for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
-
-        for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
-        for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
-        for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
-
-        const float amax = vmaxvq_f32(amaxv[0]);
-
-        const float d = amax / ((1 << 7) - 1);
-        const float id = d ? 1.0f/d : 0.0f;
-
-        y[i].d = GGML_FP32_TO_FP16(d);
-
-        for (int j = 0; j < 8; j++) {
-            const float32x4_t v  = vmulq_n_f32(srcv[j], id);
-            const int32x4_t   vi = vcvtnq_s32_f32(v);
-
-            y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
-            y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
-            y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
-            y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
-        }
-    }
-#elif defined(__wasm_simd128__)
-    for (int i = 0; i < nb; i++) {
-        v128_t srcv [8];
-        v128_t asrcv[8];
-        v128_t amaxv[8];
-
-        for (int j = 0; j < 8; j++) srcv[j]  = wasm_v128_load(x + i*32 + 4*j);
-        for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
-
-        for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
-        for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
-        for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
-
-        const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
-                                   wasm_f32x4_extract_lane(amaxv[0], 1)),
-                               MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
-                                   wasm_f32x4_extract_lane(amaxv[0], 3)));
-
-        const float d = amax / ((1 << 7) - 1);
-        const float id = d ? 1.0f/d : 0.0f;
-
-        y[i].d = GGML_FP32_TO_FP16(d);
-
-        for (int j = 0; j < 8; j++) {
-            const v128_t v  = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
-            const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
-
-            y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
-            y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
-            y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
-            y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
-        }
-    }
-#elif defined(__AVX2__) || defined(__AVX__)
-    for (int i = 0; i < nb; i++) {
-        // Load elements into 4 AVX vectors
-        __m256 v0 = _mm256_loadu_ps( x );
-        __m256 v1 = _mm256_loadu_ps( x + 8 );
-        __m256 v2 = _mm256_loadu_ps( x + 16 );
-        __m256 v3 = _mm256_loadu_ps( x + 24 );
-        x += 32;
-
-        // Compute max(abs(e)) for the block
-        const __m256 signBit = _mm256_set1_ps( -0.0f );
-        __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
-        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
-        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
-        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
-
-        __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
-        max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
-        max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
-        const float maxScalar = _mm_cvtss_f32( max4 );
-
-        // Quantize these floats
-        const float d = maxScalar / 127.f;
-        y[i].d = GGML_FP32_TO_FP16(d);
-        const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
-        const __m256 mul = _mm256_set1_ps( id );
-
-        // Apply the multiplier
-        v0 = _mm256_mul_ps( v0, mul );
-        v1 = _mm256_mul_ps( v1, mul );
-        v2 = _mm256_mul_ps( v2, mul );
-        v3 = _mm256_mul_ps( v3, mul );
-
-        // Round to nearest integer
-        v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
-        v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
-        v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
-        v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
-
-        // Convert floats to integers
-        __m256i i0 = _mm256_cvtps_epi32( v0 );
-        __m256i i1 = _mm256_cvtps_epi32( v1 );
-        __m256i i2 = _mm256_cvtps_epi32( v2 );
-        __m256i i3 = _mm256_cvtps_epi32( v3 );
-
-#if defined(__AVX2__)
-        // Convert int32 to int16
-        i0 = _mm256_packs_epi32( i0, i1 );	// 0, 1, 2, 3,  8, 9, 10, 11,  4, 5, 6, 7, 12, 13, 14, 15
-        i2 = _mm256_packs_epi32( i2, i3 );	// 16, 17, 18, 19,  24, 25, 26, 27,  20, 21, 22, 23, 28, 29, 30, 31
-                                            // Convert int16 to int8
-        i0 = _mm256_packs_epi16( i0, i2 );	// 0, 1, 2, 3,  8, 9, 10, 11,  16, 17, 18, 19,  24, 25, 26, 27,  4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
-
-        // We got our precious signed bytes, but the order is now wrong
-        // These AVX2 pack instructions process 16-byte pieces independently
-        // The following instruction is fixing the order
-        const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
-        i0 = _mm256_permutevar8x32_epi32( i0, perm );
-
-        _mm256_storeu_si256((__m256i *)y[i].qs, i0);
-#else
-        // Since we don't have in AVX some necessary functions,
-        // we split the registers in half and call AVX2 analogs from SSE
-        __m128i ni0 = _mm256_castsi256_si128( i0 );
-        __m128i ni1 = _mm256_extractf128_si256( i0, 1);
-        __m128i ni2 = _mm256_castsi256_si128( i1 );
-        __m128i ni3 = _mm256_extractf128_si256( i1, 1);
-        __m128i ni4 = _mm256_castsi256_si128( i2 );
-        __m128i ni5 = _mm256_extractf128_si256( i2, 1);
-        __m128i ni6 = _mm256_castsi256_si128( i3 );
-        __m128i ni7 = _mm256_extractf128_si256( i3, 1);
-
-        // Convert int32 to int16
-        ni0 = _mm_packs_epi32( ni0, ni1 );
-        ni2 = _mm_packs_epi32( ni2, ni3 );
-        ni4 = _mm_packs_epi32( ni4, ni5 );
-        ni6 = _mm_packs_epi32( ni6, ni7 );
-        // Convert int16 to int8
-        ni0 = _mm_packs_epi16( ni0, ni2 );
-        ni4 = _mm_packs_epi16( ni4, ni6 );
-
-        _mm_storeu_si128((__m128i *)(y[i].qs +  0), ni0);
-        _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
-#endif
-    }
-#else
-    // scalar
-    quantize_row_q8_0_reference(x, y, k);
-#endif
-}
-
-// reference implementation for deterministic creation of model files
-static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
-    assert(QK8_1 == 32);
-    assert(k % QK8_1 == 0);
-    const int nb = k / QK8_1;
-
-    for (int i = 0; i < nb; i++) {
-        float amax = 0.0f; // absolute max
-
-        for (int j = 0; j < QK8_1; j++) {
-            const float v = x[i*QK8_1 + j];
-            amax = MAX(amax, fabsf(v));
-        }
-
-        const float d = amax / ((1 << 7) - 1);
-        const float id = d ? 1.0f/d : 0.0f;
-
-        y[i].d = d;
-
-        int sum = 0;
-
-        for (int j = 0; j < QK8_1/2; ++j) {
-            const float v0 = x[i*QK8_1           + j]*id;
-            const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
-
-            y[i].qs[          j] = roundf(v0);
-            y[i].qs[QK8_1/2 + j] = roundf(v1);
-
-            sum += y[i].qs[          j];
-            sum += y[i].qs[QK8_1/2 + j];
-        }
-
-        y[i].s = sum*d;
-    }
-}
-
-static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
-    assert(k % QK8_1 == 0);
-    const int nb = k / QK8_1;
-
-    block_q8_1 * restrict y = vy;
-
-#if defined(__ARM_NEON)
-    for (int i = 0; i < nb; i++) {
-        float32x4_t srcv [8];
-        float32x4_t asrcv[8];
-        float32x4_t amaxv[8];
-
-        for (int j = 0; j < 8; j++) srcv[j]  = vld1q_f32(x + i*32 + 4*j);
-        for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
-
-        for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
-        for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
-        for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
-
-        const float amax = vmaxvq_f32(amaxv[0]);
-
-        const float d = amax / ((1 << 7) - 1);
-        const float id = d ? 1.0f/d : 0.0f;
-
-        y[i].d = d;
-
-        int32x4_t accv = vdupq_n_s32(0);
-
-        for (int j = 0; j < 8; j++) {
-            const float32x4_t v  = vmulq_n_f32(srcv[j], id);
-            const int32x4_t   vi = vcvtnq_s32_f32(v);
-
-            y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
-            y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
-            y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
-            y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
-
-            accv = vaddq_s32(accv, vi);
-        }
-
-        y[i].s = d * vaddvq_s32(accv);
-    }
-#elif defined(__wasm_simd128__)
-    for (int i = 0; i < nb; i++) {
-        v128_t srcv [8];
-        v128_t asrcv[8];
-        v128_t amaxv[8];
-
-        for (int j = 0; j < 8; j++) srcv[j]  = wasm_v128_load(x + i*32 + 4*j);
-        for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
-
-        for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
-        for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
-        for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
-
-        const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
-                                   wasm_f32x4_extract_lane(amaxv[0], 1)),
-                               MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
-                                   wasm_f32x4_extract_lane(amaxv[0], 3)));
-
-        const float d = amax / ((1 << 7) - 1);
-        const float id = d ? 1.0f/d : 0.0f;
-
-        y[i].d = d;
-
-        v128_t accv = wasm_i32x4_splat(0);
-
-        for (int j = 0; j < 8; j++) {
-            const v128_t v  = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
-            const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
-
-            y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
-            y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
-            y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
-            y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
-
-            accv = wasm_i32x4_add(accv, vi);
-        }
-
-        y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
-                      wasm_i32x4_extract_lane(accv, 1) +
-                      wasm_i32x4_extract_lane(accv, 2) +
-                      wasm_i32x4_extract_lane(accv, 3));
-    }
-#elif defined(__AVX2__) || defined(__AVX__)
-    for (int i = 0; i < nb; i++) {
-        // Load elements into 4 AVX vectors
-        __m256 v0 = _mm256_loadu_ps( x );
-        __m256 v1 = _mm256_loadu_ps( x + 8 );
-        __m256 v2 = _mm256_loadu_ps( x + 16 );
-        __m256 v3 = _mm256_loadu_ps( x + 24 );
-        x += 32;
-
-        // Compute max(abs(e)) for the block
-        const __m256 signBit = _mm256_set1_ps( -0.0f );
-        __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
-        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
-        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
-        maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
-
-        __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
-        max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
-        max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
-        const float maxScalar = _mm_cvtss_f32( max4 );
-
-        // Quantize these floats
-        const float d = maxScalar / 127.f;
-        y[i].d = d;
-        const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
-        const __m256 mul = _mm256_set1_ps( id );
-
-        // Apply the multiplier
-        v0 = _mm256_mul_ps( v0, mul );
-        v1 = _mm256_mul_ps( v1, mul );
-        v2 = _mm256_mul_ps( v2, mul );
-        v3 = _mm256_mul_ps( v3, mul );
-
-        // Round to nearest integer
-        v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
-        v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
-        v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
-        v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
-
-        // Convert floats to integers
-        __m256i i0 = _mm256_cvtps_epi32( v0 );
-        __m256i i1 = _mm256_cvtps_epi32( v1 );
-        __m256i i2 = _mm256_cvtps_epi32( v2 );
-        __m256i i3 = _mm256_cvtps_epi32( v3 );
-
-#if defined(__AVX2__)
-        // Compute the sum of the quants and set y[i].s
-        y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
-
-        // Convert int32 to int16
-        i0 = _mm256_packs_epi32( i0, i1 );	// 0, 1, 2, 3,  8, 9, 10, 11,  4, 5, 6, 7, 12, 13, 14, 15
-        i2 = _mm256_packs_epi32( i2, i3 );	// 16, 17, 18, 19,  24, 25, 26, 27,  20, 21, 22, 23, 28, 29, 30, 31
-                                            // Convert int16 to int8
-        i0 = _mm256_packs_epi16( i0, i2 );	// 0, 1, 2, 3,  8, 9, 10, 11,  16, 17, 18, 19,  24, 25, 26, 27,  4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
-
-        // We got our precious signed bytes, but the order is now wrong
-        // These AVX2 pack instructions process 16-byte pieces independently
-        // The following instruction is fixing the order
-        const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
-        i0 = _mm256_permutevar8x32_epi32( i0, perm );
-
-        _mm256_storeu_si256((__m256i *)y[i].qs, i0);
-#else
-        // Since we don't have in AVX some necessary functions,
-        // we split the registers in half and call AVX2 analogs from SSE
-        __m128i ni0 = _mm256_castsi256_si128( i0 );
-        __m128i ni1 = _mm256_extractf128_si256( i0, 1);
-        __m128i ni2 = _mm256_castsi256_si128( i1 );
-        __m128i ni3 = _mm256_extractf128_si256( i1, 1);
-        __m128i ni4 = _mm256_castsi256_si128( i2 );
-        __m128i ni5 = _mm256_extractf128_si256( i2, 1);
-        __m128i ni6 = _mm256_castsi256_si128( i3 );
-        __m128i ni7 = _mm256_extractf128_si256( i3, 1);
-
-        // Compute the sum of the quants and set y[i].s
-        const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
-        const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
-        y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
-
-        // Convert int32 to int16
-        ni0 = _mm_packs_epi32( ni0, ni1 );
-        ni2 = _mm_packs_epi32( ni2, ni3 );
-        ni4 = _mm_packs_epi32( ni4, ni5 );
-        ni6 = _mm_packs_epi32( ni6, ni7 );
-        // Convert int16 to int8
-        ni0 = _mm_packs_epi16( ni0, ni2 );
-        ni4 = _mm_packs_epi16( ni4, ni6 );
-
-        _mm_storeu_si128((__m128i *)(y[i].qs +  0), ni0);
-        _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
-#endif
-    }
-#else
-    // scalar
-    quantize_row_q8_1_reference(x, y, k);
-#endif
-}
-
-static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
-    static const int qk = QK4_0;
-
-    assert(k % qk == 0);
-
-    const int nb = k / qk;
-
-    for (int i = 0; i < nb; i++) {
-        const float d = GGML_FP16_TO_FP32(x[i].d);
-
-        for (int j = 0; j < qk/2; ++j) {
-            const int x0 = (x[i].qs[j] & 0x0F) - 8;
-            const int x1 = (x[i].qs[j] >>   4) - 8;
-
-            y[i*qk + j + 0   ] = x0*d;
-            y[i*qk + j + qk/2] = x1*d;
-        }
-    }
-}
-
-static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
-    static const int qk = QK4_1;
-
-    assert(k % qk == 0);
-
-    const int nb = k / qk;
-
-    for (int i = 0; i < nb; i++) {
-        const float d = GGML_FP16_TO_FP32(x[i].d);
-        const float m = GGML_FP16_TO_FP32(x[i].m);
-
-        for (int j = 0; j < qk/2; ++j) {
-            const int x0 = (x[i].qs[j] & 0x0F);
-            const int x1 = (x[i].qs[j] >>   4);
-
-            y[i*qk + j + 0   ] = x0*d + m;
-            y[i*qk + j + qk/2] = x1*d + m;
-        }
-    }
-}
-
-static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
-    static const int qk = QK5_0;
-
-    assert(k % qk == 0);
-
-    const int nb = k / qk;
-
-    for (int i = 0; i < nb; i++) {
-        const float d = GGML_FP16_TO_FP32(x[i].d);
-
-        uint32_t qh;
-        memcpy(&qh, x[i].qh, sizeof(qh));
-
-        for (int j = 0; j < qk/2; ++j) {
-            const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
-            const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;
-
-            const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
-            const int32_t x1 = ((x[i].qs[j] >>   4) | xh_1) - 16;
-
-            y[i*qk + j + 0   ] = x0*d;
-            y[i*qk + j + qk/2] = x1*d;
-        }
-    }
-}
-
-static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
-    static const int qk = QK5_1;
-
-    assert(k % qk == 0);
-
-    const int nb = k / qk;
-
-    for (int i = 0; i < nb; i++) {
-        const float d = GGML_FP16_TO_FP32(x[i].d);
-        const float m = GGML_FP16_TO_FP32(x[i].m);
-
-        uint32_t qh;
-        memcpy(&qh, x[i].qh, sizeof(qh));
-
-        for (int j = 0; j < qk/2; ++j) {
-            const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
-            const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;
-
-            const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
-            const int x1 = (x[i].qs[j] >>   4) | xh_1;
-
-            y[i*qk + j + 0   ] = x0*d + m;
-            y[i*qk + j + qk/2] = x1*d + m;
-        }
-    }
-}
-
-static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
-    static const int qk = QK8_0;
-
-    assert(k % qk == 0);
-
-    const int nb = k / qk;
-
-    const block_q8_0 * restrict x = vx;
-
-    for (int i = 0; i < nb; i++) {
-        const float d = GGML_FP16_TO_FP32(x[i].d);
-
-        for (int j = 0; j < qk; ++j) {
-            y[i*qk + j] = x[i].qs[j]*d;
-        }
-    }
-}
-
-static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
-static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
-static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-
-static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
-    [GGML_TYPE_F32] = {
-        .vec_dot                  = (ggml_vec_dot_t) ggml_vec_dot_f32,
-        .vec_dot_type             = GGML_TYPE_F32,
-    },
-    [GGML_TYPE_F16] = {
-        .to_float                 = (ggml_to_float_t) ggml_fp16_to_fp32_row,
-        .from_float               = (ggml_from_float_t) ggml_fp32_to_fp16_row,
-        .from_float_reference     = (ggml_from_float_t) ggml_fp32_to_fp16_row,
-        .vec_dot                  = (ggml_vec_dot_t) ggml_vec_dot_f16,
-        .vec_dot_type             = GGML_TYPE_F16,
-    },
-    [GGML_TYPE_Q4_0] = {
-        .to_float                 = (ggml_to_float_t) dequantize_row_q4_0,
-        .from_float               = quantize_row_q4_0,
-        .from_float_reference     = (ggml_from_float_t) quantize_row_q4_0_reference,
-        .vec_dot                  = ggml_vec_dot_q4_0_q8_0,
-        .vec_dot_type             = GGML_TYPE_Q8_0,
-    },
-    [GGML_TYPE_Q4_1] = {
-        .to_float                 = (ggml_to_float_t) dequantize_row_q4_1,
-        .from_float               = quantize_row_q4_1,
-        .from_float_reference     = (ggml_from_float_t) quantize_row_q4_1_reference,
-        .vec_dot                  = ggml_vec_dot_q4_1_q8_1,
-        .vec_dot_type             = GGML_TYPE_Q8_1,
-    },
-    [GGML_TYPE_Q5_0] = {
-        .to_float                 = (ggml_to_float_t) dequantize_row_q5_0,
-        .from_float               = quantize_row_q5_0,
-        .from_float_reference     = (ggml_from_float_t) quantize_row_q5_0_reference,
-        .vec_dot                  = ggml_vec_dot_q5_0_q8_0,
-        .vec_dot_type             = GGML_TYPE_Q8_0,
-    },
-    [GGML_TYPE_Q5_1] = {
-        .to_float                 = (ggml_to_float_t) dequantize_row_q5_1,
-        .from_float               = quantize_row_q5_1,
-        .from_float_reference     = (ggml_from_float_t) quantize_row_q5_1_reference,
-        .vec_dot                  = ggml_vec_dot_q5_1_q8_1,
-        .vec_dot_type             = GGML_TYPE_Q8_1,
-    },
-    [GGML_TYPE_Q8_0] = {
-        .to_float                 = dequantize_row_q8_0,
-        .from_float               = quantize_row_q8_0,
-        .from_float_reference     = (ggml_from_float_t) quantize_row_q8_0_reference,
-        .vec_dot                  = ggml_vec_dot_q8_0_q8_0,
-        .vec_dot_type             = GGML_TYPE_Q8_0,
-    },
-    [GGML_TYPE_Q8_1] = {
-        .from_float               = quantize_row_q8_1,
-        .from_float_reference     = (ggml_from_float_t) quantize_row_q8_1_reference,
-        .vec_dot_type             = GGML_TYPE_Q8_1,
-    },
-#ifdef GGML_USE_K_QUANTS
-    [GGML_TYPE_Q2_K] = {
-        .to_float                 = (ggml_to_float_t) dequantize_row_q2_K,
-        .from_float               = quantize_row_q2_K,
-        .from_float_reference     = (ggml_from_float_t) quantize_row_q2_K_reference,
-        .vec_dot                  = ggml_vec_dot_q2_K_q8_K,
-        .vec_dot_type             = GGML_TYPE_Q8_K,
-    },
-    [GGML_TYPE_Q3_K] = {
-        .to_float                 = (ggml_to_float_t) dequantize_row_q3_K,
-        .from_float               = quantize_row_q3_K,
-        .from_float_reference     = (ggml_from_float_t) quantize_row_q3_K_reference,
-        .vec_dot                  = ggml_vec_dot_q3_K_q8_K,
-        .vec_dot_type             = GGML_TYPE_Q8_K,
-    },
-    [GGML_TYPE_Q4_K] = {
-        .to_float                 = (ggml_to_float_t) dequantize_row_q4_K,
-        .from_float               = quantize_row_q4_K,
-        .from_float_reference     = (ggml_from_float_t) quantize_row_q4_K_reference,
-        .vec_dot                  = ggml_vec_dot_q4_K_q8_K,
-        .vec_dot_type             = GGML_TYPE_Q8_K,
-    },
-    [GGML_TYPE_Q5_K] = {
-        .to_float                 = (ggml_to_float_t) dequantize_row_q5_K,
-        .from_float               = quantize_row_q5_K,
-        .from_float_reference     = (ggml_from_float_t) quantize_row_q5_K_reference,
-        .vec_dot                  = ggml_vec_dot_q5_K_q8_K,
-        .vec_dot_type             = GGML_TYPE_Q8_K,
-    },
-    [GGML_TYPE_Q6_K] = {
-        .to_float                 = (ggml_to_float_t) dequantize_row_q6_K,
-        .from_float               = quantize_row_q6_K,
-        .from_float_reference     = (ggml_from_float_t) quantize_row_q6_K_reference,
-        .vec_dot                  = ggml_vec_dot_q6_K_q8_K,
-        .vec_dot_type             = GGML_TYPE_Q8_K,
-    },
-    [GGML_TYPE_Q8_K] = {
-        .from_float               = quantize_row_q8_K,
-    }
-#endif
-};
-
-// For internal test use
-ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
-    GGML_ASSERT(i < GGML_TYPE_COUNT);
-    return type_traits[i];
-}
-
-
-//
-// simd mappings
-//
-
-// we define a common set of C macros which map to specific intrinsics based on the current architecture
-// we then implement the fundamental computation operations below using only these macros
-// adding support for new architectures requires to define the corresponding SIMD macros
-//
-// GGML_F32_STEP / GGML_F16_STEP
-//   number of elements to process in a single step
-//
-// GGML_F32_EPR / GGML_F16_EPR
-//   number of elements to fit in a single register
-//
-
-#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
-
-#define GGML_SIMD
-
-// F32 NEON
-
-#define GGML_F32_STEP 16
-#define GGML_F32_EPR  4
-
-#define GGML_F32x4              float32x4_t
-#define GGML_F32x4_ZERO         vdupq_n_f32(0.0f)
-#define GGML_F32x4_SET1(x)      vdupq_n_f32(x)
-#define GGML_F32x4_LOAD         vld1q_f32
-#define GGML_F32x4_STORE        vst1q_f32
-#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
-#define GGML_F32x4_ADD          vaddq_f32
-#define GGML_F32x4_MUL          vmulq_f32
-#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
-#define GGML_F32x4_REDUCE(res, x)              \
-{                                              \
-    int offset = GGML_F32_ARR >> 1;            \
-    for (int i = 0; i < offset; ++i) {         \
-        x[i] = vaddq_f32(x[i], x[offset+i]);   \
-    }                                          \
-    offset >>= 1;                              \
-    for (int i = 0; i < offset; ++i) {         \
-        x[i] = vaddq_f32(x[i], x[offset+i]);   \
-    }                                          \
-    offset >>= 1;                              \
-    for (int i = 0; i < offset; ++i) {         \
-        x[i] = vaddq_f32(x[i], x[offset+i]);   \
-    }                                          \
-    res = GGML_F32x4_REDUCE_ONE(x[0]);         \
-}
-
-#define GGML_F32_VEC        GGML_F32x4
-#define GGML_F32_VEC_ZERO   GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1   GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD   GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE  GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA    GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD    GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL    GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 NEON
-
-#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
-    #define GGML_F16_STEP 32
-    #define GGML_F16_EPR  8
-
-    #define GGML_F16x8              float16x8_t
-    #define GGML_F16x8_ZERO         vdupq_n_f16(0.0f)
-    #define GGML_F16x8_SET1(x)      vdupq_n_f16(x)
-    #define GGML_F16x8_LOAD         vld1q_f16
-    #define GGML_F16x8_STORE        vst1q_f16
-    #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
-    #define GGML_F16x8_ADD          vaddq_f16
-    #define GGML_F16x8_MUL          vmulq_f16
-    #define GGML_F16x8_REDUCE(res, x)                             \
-    {                                                             \
-        int offset = GGML_F16_ARR >> 1;                           \
-        for (int i = 0; i < offset; ++i) {                        \
-            x[i] = vaddq_f16(x[i], x[offset+i]);                  \
-        }                                                         \
-        offset >>= 1;                                             \
-        for (int i = 0; i < offset; ++i) {                        \
-            x[i] = vaddq_f16(x[i], x[offset+i]);                  \
-        }                                                         \
-        offset >>= 1;                                             \
-        for (int i = 0; i < offset; ++i) {                        \
-            x[i] = vaddq_f16(x[i], x[offset+i]);                  \
-        }                                                         \
-        const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
-        const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
-        res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1));         \
-    }
-
-    #define GGML_F16_VEC                GGML_F16x8
-    #define GGML_F16_VEC_ZERO           GGML_F16x8_ZERO
-    #define GGML_F16_VEC_SET1           GGML_F16x8_SET1
-    #define GGML_F16_VEC_LOAD(p, i)     GGML_F16x8_LOAD(p)
-    #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
-    #define GGML_F16_VEC_FMA            GGML_F16x8_FMA
-    #define GGML_F16_VEC_ADD            GGML_F16x8_ADD
-    #define GGML_F16_VEC_MUL            GGML_F16x8_MUL
-    #define GGML_F16_VEC_REDUCE         GGML_F16x8_REDUCE
-#else
-    // if FP16 vector arithmetic is not supported, we use FP32 instead
-    // and take advantage of the vcvt_ functions to convert to/from FP16
-
-    #define GGML_F16_STEP 16
-    #define GGML_F16_EPR  4
-
-    #define GGML_F32Cx4              float32x4_t
-    #define GGML_F32Cx4_ZERO         vdupq_n_f32(0.0f)
-    #define GGML_F32Cx4_SET1(x)      vdupq_n_f32(x)
-    #define GGML_F32Cx4_LOAD(x)      vcvt_f32_f16(vld1_f16(x))
-    #define GGML_F32Cx4_STORE(x, y)  vst1_f16(x, vcvt_f16_f32(y))
-    #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
-    #define GGML_F32Cx4_ADD          vaddq_f32
-    #define GGML_F32Cx4_MUL          vmulq_f32
-    #define GGML_F32Cx4_REDUCE       GGML_F32x4_REDUCE
-
-    #define GGML_F16_VEC                GGML_F32Cx4
-    #define GGML_F16_VEC_ZERO           GGML_F32Cx4_ZERO
-    #define GGML_F16_VEC_SET1           GGML_F32Cx4_SET1
-    #define GGML_F16_VEC_LOAD(p, i)     GGML_F32Cx4_LOAD(p)
-    #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
-    #define GGML_F16_VEC_FMA            GGML_F32Cx4_FMA
-    #define GGML_F16_VEC_ADD            GGML_F32Cx4_ADD
-    #define GGML_F16_VEC_MUL            GGML_F32Cx4_MUL
-    #define GGML_F16_VEC_REDUCE         GGML_F32Cx4_REDUCE
-#endif
-
-#elif defined(__AVX__)
-
-#define GGML_SIMD
-
-// F32 AVX
-
-#define GGML_F32_STEP 32
-#define GGML_F32_EPR  8
-
-#define GGML_F32x8         __m256
-#define GGML_F32x8_ZERO    _mm256_setzero_ps()
-#define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
-#define GGML_F32x8_LOAD    _mm256_loadu_ps
-#define GGML_F32x8_STORE   _mm256_storeu_ps
-#if defined(__FMA__)
-    #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
-#else
-    #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
-#endif
-#define GGML_F32x8_ADD     _mm256_add_ps
-#define GGML_F32x8_MUL     _mm256_mul_ps
-#define GGML_F32x8_REDUCE(res, x)                                 \
-{                                                                 \
-    int offset = GGML_F32_ARR >> 1;                               \
-    for (int i = 0; i < offset; ++i) {                            \
-        x[i] = _mm256_add_ps(x[i], x[offset+i]);                  \
-    }                                                             \
-    offset >>= 1;                                                 \
-    for (int i = 0; i < offset; ++i) {                            \
-        x[i] = _mm256_add_ps(x[i], x[offset+i]);                  \
-    }                                                             \
-    offset >>= 1;                                                 \
-    for (int i = 0; i < offset; ++i) {                            \
-        x[i] = _mm256_add_ps(x[i], x[offset+i]);                  \
-    }                                                             \
-    const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]),    \
-                                 _mm256_extractf128_ps(x[0], 1)); \
-    const __m128 t1 = _mm_hadd_ps(t0, t0);                        \
-    res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1));                     \
-}
-// TODO: is this optimal ?
-
-#define GGML_F32_VEC        GGML_F32x8
-#define GGML_F32_VEC_ZERO   GGML_F32x8_ZERO
-#define GGML_F32_VEC_SET1   GGML_F32x8_SET1
-#define GGML_F32_VEC_LOAD   GGML_F32x8_LOAD
-#define GGML_F32_VEC_STORE  GGML_F32x8_STORE
-#define GGML_F32_VEC_FMA    GGML_F32x8_FMA
-#define GGML_F32_VEC_ADD    GGML_F32x8_ADD
-#define GGML_F32_VEC_MUL    GGML_F32x8_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
-
-// F16 AVX
-
-#define GGML_F16_STEP 32
-#define GGML_F16_EPR  8
-
-// F16 arithmetic is not supported by AVX, so we use F32 instead
-
-#define GGML_F32Cx8             __m256
-#define GGML_F32Cx8_ZERO        _mm256_setzero_ps()
-#define GGML_F32Cx8_SET1(x)     _mm256_set1_ps(x)
-
-#if defined(__F16C__)
-// the  _mm256_cvt intrinsics require F16C
-#define GGML_F32Cx8_LOAD(x)     _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
-#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
-#else
-static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
-    float tmp[8];
-
-    for (int i = 0; i < 8; i++) {
-        tmp[i] = GGML_FP16_TO_FP32(x[i]);
-    }
-
-    return _mm256_loadu_ps(tmp);
-}
-static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
-    float arr[8];
-
-    _mm256_storeu_ps(arr, y);
-
-    for (int i = 0; i < 8; i++)
-        x[i] = GGML_FP32_TO_FP16(arr[i]);
-}
-#define GGML_F32Cx8_LOAD(x)     __avx_f32cx8_load(x)
-#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
-#endif
-
-#define GGML_F32Cx8_FMA         GGML_F32x8_FMA
-#define GGML_F32Cx8_ADD         _mm256_add_ps
-#define GGML_F32Cx8_MUL         _mm256_mul_ps
-#define GGML_F32Cx8_REDUCE      GGML_F32x8_REDUCE
-
-#define GGML_F16_VEC                GGML_F32Cx8
-#define GGML_F16_VEC_ZERO           GGML_F32Cx8_ZERO
-#define GGML_F16_VEC_SET1           GGML_F32Cx8_SET1
-#define GGML_F16_VEC_LOAD(p, i)     GGML_F32Cx8_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
-#define GGML_F16_VEC_FMA            GGML_F32Cx8_FMA
-#define GGML_F16_VEC_ADD            GGML_F32Cx8_ADD
-#define GGML_F16_VEC_MUL            GGML_F32Cx8_MUL
-#define GGML_F16_VEC_REDUCE         GGML_F32Cx8_REDUCE
-
-#elif defined(__POWER9_VECTOR__)
-
-#define GGML_SIMD
-
-// F32 POWER9
-
-#define GGML_F32_STEP 32
-#define GGML_F32_EPR  4
-
-#define GGML_F32x4              vector float
-#define GGML_F32x4_ZERO         0.0f
-#define GGML_F32x4_SET1         vec_splats
-#define GGML_F32x4_LOAD(p)      vec_xl(0, p)
-#define GGML_F32x4_STORE(p, r)  vec_xst(r, 0, p)
-#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
-#define GGML_F32x4_ADD          vec_add
-#define GGML_F32x4_MUL          vec_mul
-#define GGML_F32x4_REDUCE(res, x)              \
-{                                              \
-    int offset = GGML_F32_ARR >> 1;            \
-    for (int i = 0; i < offset; ++i) {         \
-        x[i] = vec_add(x[i], x[offset+i]);     \
-    }                                          \
-    offset >>= 1;                              \
-    for (int i = 0; i < offset; ++i) {         \
-        x[i] = vec_add(x[i], x[offset+i]);     \
-    }                                          \
-    offset >>= 1;                              \
-    for (int i = 0; i < offset; ++i) {         \
-        x[i] = vec_add(x[i], x[offset+i]);     \
-    }                                          \
-    res = vec_extract(x[0], 0) +               \
-          vec_extract(x[0], 1) +               \
-          vec_extract(x[0], 2) +               \
-          vec_extract(x[0], 3);                \
-}
-
-#define GGML_F32_VEC        GGML_F32x4
-#define GGML_F32_VEC_ZERO   GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1   GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD   GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE  GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA    GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD    GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL    GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 POWER9
-#define GGML_F16_STEP       GGML_F32_STEP
-#define GGML_F16_EPR        GGML_F32_EPR
-#define GGML_F16_VEC        GGML_F32x4
-#define GGML_F16_VEC_ZERO   GGML_F32x4_ZERO
-#define GGML_F16_VEC_SET1   GGML_F32x4_SET1
-#define GGML_F16_VEC_FMA    GGML_F32x4_FMA
-#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
-// Use vec_xl, not vec_ld, in case the load address is not aligned.
-#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ?                   \
-  vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
-  vec_extract_fp32_from_shortl(vec_xl(0, p))
-#define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
-#define GGML_F16_VEC_STORE(p, r, i)                             \
-  if (i & 0x1)                                                  \
-    vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)],  \
-                                   r[i - GGML_ENDIAN_BYTE(0)]), \
-            0, p - GGML_F16_EPR)
-
-#elif defined(__wasm_simd128__)
-
-#define GGML_SIMD
-
-// F32 WASM
-
-#define GGML_F32_STEP 16
-#define GGML_F32_EPR  4
-
-#define GGML_F32x4              v128_t
-#define GGML_F32x4_ZERO         wasm_f32x4_splat(0.0f)
-#define GGML_F32x4_SET1(x)      wasm_f32x4_splat(x)
-#define GGML_F32x4_LOAD         wasm_v128_load
-#define GGML_F32x4_STORE        wasm_v128_store
-#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
-#define GGML_F32x4_ADD          wasm_f32x4_add
-#define GGML_F32x4_MUL          wasm_f32x4_mul
-#define GGML_F32x4_REDUCE(res, x)                  \
-{                                                  \
-    int offset = GGML_F32_ARR >> 1;                \
-    for (int i = 0; i < offset; ++i) {             \
-        x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
-    }                                              \
-    offset >>= 1;                                  \
-    for (int i = 0; i < offset; ++i) {             \
-        x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
-    }                                              \
-    offset >>= 1;                                  \
-    for (int i = 0; i < offset; ++i) {             \
-        x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
-    }                                              \
-    res = wasm_f32x4_extract_lane(x[0], 0) +       \
-          wasm_f32x4_extract_lane(x[0], 1) +       \
-          wasm_f32x4_extract_lane(x[0], 2) +       \
-          wasm_f32x4_extract_lane(x[0], 3);        \
-}
-
-#define GGML_F32_VEC        GGML_F32x4
-#define GGML_F32_VEC_ZERO   GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1   GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD   GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE  GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA    GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD    GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL    GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 WASM
-
-#define GGML_F16_STEP 16
-#define GGML_F16_EPR  4
-
-inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
-    float tmp[4];
-
-    tmp[0] = GGML_FP16_TO_FP32(p[0]);
-    tmp[1] = GGML_FP16_TO_FP32(p[1]);
-    tmp[2] = GGML_FP16_TO_FP32(p[2]);
-    tmp[3] = GGML_FP16_TO_FP32(p[3]);
-
-    return wasm_v128_load(tmp);
-}
-
-inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
-    float tmp[4];
-
-    wasm_v128_store(tmp, x);
-
-    p[0] = GGML_FP32_TO_FP16(tmp[0]);
-    p[1] = GGML_FP32_TO_FP16(tmp[1]);
-    p[2] = GGML_FP32_TO_FP16(tmp[2]);
-    p[3] = GGML_FP32_TO_FP16(tmp[3]);
-}
-
-#define GGML_F16x4             v128_t
-#define GGML_F16x4_ZERO        wasm_f32x4_splat(0.0f)
-#define GGML_F16x4_SET1(x)     wasm_f32x4_splat(x)
-#define GGML_F16x4_LOAD(x)     __wasm_f16x4_load(x)
-#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
-#define GGML_F16x4_FMA         GGML_F32x4_FMA
-#define GGML_F16x4_ADD         wasm_f32x4_add
-#define GGML_F16x4_MUL         wasm_f32x4_mul
-#define GGML_F16x4_REDUCE(res, x)                  \
-{                                                  \
-    int offset = GGML_F16_ARR >> 1;                \
-    for (int i = 0; i < offset; ++i) {             \
-        x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
-    }                                              \
-    offset >>= 1;                                  \
-    for (int i = 0; i < offset; ++i) {             \
-        x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
-    }                                              \
-    offset >>= 1;                                  \
-    for (int i = 0; i < offset; ++i) {             \
-        x[i] = wasm_f32x4_add(x[i], x[offset+i]);  \
-    }                                              \
-    res = wasm_f32x4_extract_lane(x[0], 0) +       \
-          wasm_f32x4_extract_lane(x[0], 1) +       \
-          wasm_f32x4_extract_lane(x[0], 2) +       \
-          wasm_f32x4_extract_lane(x[0], 3);        \
-}
-
-#define GGML_F16_VEC                GGML_F16x4
-#define GGML_F16_VEC_ZERO           GGML_F16x4_ZERO
-#define GGML_F16_VEC_SET1           GGML_F16x4_SET1
-#define GGML_F16_VEC_LOAD(p, i)     GGML_F16x4_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
-#define GGML_F16_VEC_FMA            GGML_F16x4_FMA
-#define GGML_F16_VEC_ADD            GGML_F16x4_ADD
-#define GGML_F16_VEC_MUL            GGML_F16x4_MUL
-#define GGML_F16_VEC_REDUCE         GGML_F16x4_REDUCE
-
-#elif defined(__SSE3__)
-
-#define GGML_SIMD
-
-// F32 SSE
-
-#define GGML_F32_STEP 32
-#define GGML_F32_EPR  4
-
-#define GGML_F32x4         __m128
-#define GGML_F32x4_ZERO    _mm_setzero_ps()
-#define GGML_F32x4_SET1(x) _mm_set1_ps(x)
-#define GGML_F32x4_LOAD    _mm_loadu_ps
-#define GGML_F32x4_STORE   _mm_storeu_ps
-#if defined(__FMA__)
-    // TODO: Does this work?
-    #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
-#else
-    #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
-#endif
-#define GGML_F32x4_ADD     _mm_add_ps
-#define GGML_F32x4_MUL     _mm_mul_ps
-#define GGML_F32x4_REDUCE(res, x)                                 \
-{                                                                 \
-    int offset = GGML_F32_ARR >> 1;                               \
-    for (int i = 0; i < offset; ++i) {                            \
-        x[i] = _mm_add_ps(x[i], x[offset+i]);                     \
-    }                                                             \
-    offset >>= 1;                                                 \
-    for (int i = 0; i < offset; ++i) {                            \
-        x[i] = _mm_add_ps(x[i], x[offset+i]);                     \
-    }                                                             \
-    offset >>= 1;                                                 \
-    for (int i = 0; i < offset; ++i) {                            \
-        x[i] = _mm_add_ps(x[i], x[offset+i]);                     \
-    }                                                             \
-    const __m128 t0 = _mm_hadd_ps(x[0], x[0]);                    \
-    res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0));                     \
-}
-// TODO: is this optimal ?
-
-#define GGML_F32_VEC        GGML_F32x4
-#define GGML_F32_VEC_ZERO   GGML_F32x4_ZERO
-#define GGML_F32_VEC_SET1   GGML_F32x4_SET1
-#define GGML_F32_VEC_LOAD   GGML_F32x4_LOAD
-#define GGML_F32_VEC_STORE  GGML_F32x4_STORE
-#define GGML_F32_VEC_FMA    GGML_F32x4_FMA
-#define GGML_F32_VEC_ADD    GGML_F32x4_ADD
-#define GGML_F32_VEC_MUL    GGML_F32x4_MUL
-#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
-
-// F16 SSE
-
-#define GGML_F16_STEP 32
-#define GGML_F16_EPR  4
-
-static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
-    float tmp[4];
-
-    tmp[0] = GGML_FP16_TO_FP32(x[0]);
-    tmp[1] = GGML_FP16_TO_FP32(x[1]);
-    tmp[2] = GGML_FP16_TO_FP32(x[2]);
-    tmp[3] = GGML_FP16_TO_FP32(x[3]);
-
-    return _mm_loadu_ps(tmp);
-}
-
-static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
-    float arr[4];
-
-    _mm_storeu_ps(arr, y);
-
-    x[0] = GGML_FP32_TO_FP16(arr[0]);
-    x[1] = GGML_FP32_TO_FP16(arr[1]);
-    x[2] = GGML_FP32_TO_FP16(arr[2]);
-    x[3] = GGML_FP32_TO_FP16(arr[3]);
-}
-
-#define GGML_F32Cx4             __m128
-#define GGML_F32Cx4_ZERO        _mm_setzero_ps()
-#define GGML_F32Cx4_SET1(x)     _mm_set1_ps(x)
-#define GGML_F32Cx4_LOAD(x)     __sse_f16x4_load(x)
-#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
-#define GGML_F32Cx4_FMA         GGML_F32x4_FMA
-#define GGML_F32Cx4_ADD         _mm_add_ps
-#define GGML_F32Cx4_MUL         _mm_mul_ps
-#define GGML_F32Cx4_REDUCE      GGML_F32x4_REDUCE
-
-#define GGML_F16_VEC                 GGML_F32Cx4
-#define GGML_F16_VEC_ZERO            GGML_F32Cx4_ZERO
-#define GGML_F16_VEC_SET1            GGML_F32Cx4_SET1
-#define GGML_F16_VEC_LOAD(p, i)      GGML_F32Cx4_LOAD(p)
-#define GGML_F16_VEC_STORE(p, r, i)  GGML_F32Cx4_STORE(p, r[i])
-#define GGML_F16_VEC_FMA             GGML_F32Cx4_FMA
-#define GGML_F16_VEC_ADD             GGML_F32Cx4_ADD
-#define GGML_F16_VEC_MUL             GGML_F32Cx4_MUL
-#define GGML_F16_VEC_REDUCE          GGML_F32Cx4_REDUCE
-
-#endif
-
-// GGML_F32_ARR / GGML_F16_ARR
-//   number of registers to use per step
-#ifdef GGML_SIMD
-#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
-#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
-#endif
-
-//
-// fundamental operations
-//
-
-inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-
-inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-
-inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-
-inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
-
-inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i]  = x[i] + y[i]; }
-inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float   v) { for (int i = 0; i < n; ++i) z[i]  = x[i] + v;    }
-inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x)                  { for (int i = 0; i < n; ++i) y[i] += x[i];        }
-inline static void ggml_vec_acc1_f32(const int n, float * y, const float   v)                  { for (int i = 0; i < n; ++i) y[i] += v;           }
-inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i]  = x[i] - y[i]; }
-inline static void ggml_vec_set_f32 (const int n, float * x, const float   v)                  { for (int i = 0; i < n; ++i) x[i]  = v;           }
-inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x)                  { for (int i = 0; i < n; ++i) y[i]  = x[i];        }
-inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x)                  { for (int i = 0; i < n; ++i) y[i]  = -x[i];       }
-inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i]  = x[i]*y[i];   }
-inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i]  = x[i]/y[i];   }
-
-static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
-#ifdef GGML_SIMD
-    float sumf = 0.0f;
-    const int np = (n & ~(GGML_F32_STEP - 1));
-
-    GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
-
-    GGML_F32_VEC ax[GGML_F32_ARR];
-    GGML_F32_VEC ay[GGML_F32_ARR];
-
-    for (int i = 0; i < np; i += GGML_F32_STEP) {
-        for (int j = 0; j < GGML_F32_ARR; j++) {
-            ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
-            ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
-
-            sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
-        }
-    }
-
-    // reduce sum0..sum3 to sum0
-    GGML_F32_VEC_REDUCE(sumf, sum);
-
-    // leftovers
-    for (int i = np; i < n; ++i) {
-        sumf += x[i]*y[i];
-    }
-#else
-    // scalar
-    ggml_float sumf = 0.0;
-    for (int i = 0; i < n; ++i) {
-        sumf += (ggml_float)(x[i]*y[i]);
-    }
-#endif
-
-    *s = sumf;
-}
-
-static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
-    ggml_float sumf = 0.0;
-
-#if defined(GGML_SIMD)
-    const int np = (n & ~(GGML_F16_STEP - 1));
-
-    GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
-
-    GGML_F16_VEC ax[GGML_F16_ARR];
-    GGML_F16_VEC ay[GGML_F16_ARR];
-
-    for (int i = 0; i < np; i += GGML_F16_STEP) {
-        for (int j = 0; j < GGML_F16_ARR; j++) {
-            ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
-            ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
-
-            sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
-        }
-    }
-
-    // reduce sum0..sum3 to sum0
-    GGML_F16_VEC_REDUCE(sumf, sum);
-
-    // leftovers
-    for (int i = np; i < n; ++i) {
-        sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
-    }
-#else
-    for (int i = 0; i < n; ++i) {
-        sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
-    }
-#endif
-
-    *s = sumf;
-}
-
-static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-    const int qk = QK8_0;
-    const int nb = n / qk;
-
-    assert(n % qk == 0);
-    assert(nb % 2 == 0);
-
-    const block_q4_0 * restrict x = vx;
-    const block_q8_0 * restrict y = vy;
-
-#if defined(__ARM_NEON)
-    float32x4_t sumv0 = vdupq_n_f32(0.0f);
-    float32x4_t sumv1 = vdupq_n_f32(0.0f);
-
-    for (int i = 0; i < nb; i += 2) {
-        const block_q4_0 * restrict x0 = &x[i + 0];
-        const block_q4_0 * restrict x1 = &x[i + 1];
-        const block_q8_0 * restrict y0 = &y[i + 0];
-        const block_q8_0 * restrict y1 = &y[i + 1];
-
-        const uint8x16_t m4b = vdupq_n_u8(0x0F);
-        const int8x16_t  s8b = vdupq_n_s8(0x8);
-
-        const uint8x16_t v0_0 = vld1q_u8(x0->qs);
-        const uint8x16_t v0_1 = vld1q_u8(x1->qs);
-
-        // 4-bit -> 8-bit
-        const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
-        const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
-        const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
-        const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
-
-        // sub 8
-        const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
-        const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
-        const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
-        const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
-
-        // load y
-        const int8x16_t v1_0l = vld1q_s8(y0->qs);
-        const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
-        const int8x16_t v1_1l = vld1q_s8(y1->qs);
-        const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
-
-#if defined(__ARM_FEATURE_DOTPROD)
-        // dot product into int32x4_t
-        const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
-        const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
-
-        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
-        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
-#else
-        const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
-        const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
-        const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
-        const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
-
-        const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
-        const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
-        const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
-        const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
-
-        const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
-        const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
-        const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
-        const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
-
-        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
-        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
-#endif
-    }
-
-    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
-#elif defined(__AVX2__)
-    // Initialize accumulator with zeros
-    __m256 acc = _mm256_setzero_ps();
-
-    // Main loop
-    for (int i = 0; i < nb; ++i) {
-        /* Compute combined scale for the block */
-        const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
-
-        __m256i bx = bytes_from_nibbles_32(x[i].qs);
-
-        // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
-        const __m256i off = _mm256_set1_epi8( 8 );
-        bx = _mm256_sub_epi8( bx, off );
-
-        __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
-
-        const __m256 q = mul_sum_i8_pairs_float(bx, by);
-
-        /* Multiply q with scale and accumulate */
-        acc = _mm256_fmadd_ps( d, q, acc );
-    }
-
-    *s = hsum_float_8(acc);
-#elif defined(__AVX__)
-    // Initialize accumulator with zeros
-    __m256 acc = _mm256_setzero_ps();
-
-    // Main loop
-    for (int i = 0; i < nb; ++i) {
-        // Compute combined scale for the block
-        const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
-
-        const __m128i lowMask = _mm_set1_epi8(0xF);
-        const __m128i off = _mm_set1_epi8(8);
-
-        const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
-
-        __m128i bx = _mm_and_si128(lowMask, tmp);
-        __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
-        bx = _mm_sub_epi8(bx, off);
-        const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
-
-        bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
-        by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
-        bx = _mm_sub_epi8(bx, off);
-        const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
-
-        // Convert int32_t to float
-        __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
-
-        // Apply the scale, and accumulate
-        acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
-    }
-
-    *s = hsum_float_8(acc);
-#elif defined(__SSSE3__)
-    // set constants
-    const __m128i lowMask = _mm_set1_epi8(0xF);
-    const __m128i off = _mm_set1_epi8(8);
-
-    // Initialize accumulator with zeros
-    __m128 acc_0 = _mm_setzero_ps();
-    __m128 acc_1 = _mm_setzero_ps();
-    __m128 acc_2 = _mm_setzero_ps();
-    __m128 acc_3 = _mm_setzero_ps();
-
-    // First round without accumulation
-    {
-        _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
-        _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
-
-        // Compute combined scale for the block 0 and 1
-        const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
-
-        const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
-
-        __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
-        __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
-        bx_0 = _mm_sub_epi8(bx_0, off);
-        const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
-
-        __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
-        __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
-        bx_1 = _mm_sub_epi8(bx_1, off);
-        const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
-
-        _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
-        _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
-
-        // Compute combined scale for the block 2 and 3
-        const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
-
-        const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
-
-        __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
-        __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
-        bx_2 = _mm_sub_epi8(bx_2, off);
-        const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
-
-        __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
-        __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
-        bx_3 = _mm_sub_epi8(bx_3, off);
-        const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
-
-        // Convert int32_t to float
-        __m128 p0 = _mm_cvtepi32_ps(i32_0);
-        __m128 p1 = _mm_cvtepi32_ps(i32_1);
-        __m128 p2 = _mm_cvtepi32_ps(i32_2);
-        __m128 p3 = _mm_cvtepi32_ps(i32_3);
-
-        // Apply the scale
-        acc_0 = _mm_mul_ps( d_0_1, p0 );
-        acc_1 = _mm_mul_ps( d_0_1, p1 );
-        acc_2 = _mm_mul_ps( d_2_3, p2 );
-        acc_3 = _mm_mul_ps( d_2_3, p3 );
-    }
-
-    // Main loop
-    for (int i = 2; i < nb; i+=2) {
-        _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
-        _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
-
-        // Compute combined scale for the block 0 and 1
-        const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
-
-        const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
-
-        __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
-        __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
-        bx_0 = _mm_sub_epi8(bx_0, off);
-        const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
-
-        __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
-        __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
-        bx_1 = _mm_sub_epi8(bx_1, off);
-        const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
-
-        _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
-        _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
-
-        // Compute combined scale for the block 2 and 3
-        const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
-
-        const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
-
-        __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
-        __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
-        bx_2 = _mm_sub_epi8(bx_2, off);
-        const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
-
-        __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
-        __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
-        bx_3 = _mm_sub_epi8(bx_3, off);
-        const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
-
-        // Convert int32_t to float
-        __m128 p0 = _mm_cvtepi32_ps(i32_0);
-        __m128 p1 = _mm_cvtepi32_ps(i32_1);
-        __m128 p2 = _mm_cvtepi32_ps(i32_2);
-        __m128 p3 = _mm_cvtepi32_ps(i32_3);
-
-        // Apply the scale
-        __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
-        __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
-        __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
-        __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
-
-        // Acummulate
-        acc_0 = _mm_add_ps(p0_d, acc_0);
-        acc_1 = _mm_add_ps(p1_d, acc_1);
-        acc_2 = _mm_add_ps(p2_d, acc_2);
-        acc_3 = _mm_add_ps(p3_d, acc_3);
-    }
-
-    *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
-#else
-    // scalar
-    float sumf = 0.0;
-
-    for (int i = 0; i < nb; i++) {
-        int sumi = 0;
-
-        for (int j = 0; j < qk/2; ++j) {
-            const int v0 = (x[i].qs[j] & 0x0F) - 8;
-            const int v1 = (x[i].qs[j] >>   4) - 8;
-
-            sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
-        }
-
-        sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
-    }
-
-    *s = sumf;
-#endif
-}
-
-static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-    const int qk = QK8_1;
-    const int nb = n / qk;
-
-    assert(n % qk == 0);
-    assert(nb % 2 == 0);
-
-    const block_q4_1 * restrict x = vx;
-    const block_q8_1 * restrict y = vy;
-
-    // TODO: add WASM SIMD
-#if defined(__ARM_NEON)
-    float32x4_t sumv0 = vdupq_n_f32(0.0f);
-    float32x4_t sumv1 = vdupq_n_f32(0.0f);
-
-    float summs = 0;
-
-    for (int i = 0; i < nb; i += 2) {
-        const block_q4_1 * restrict x0 = &x[i + 0];
-        const block_q4_1 * restrict x1 = &x[i + 1];
-        const block_q8_1 * restrict y0 = &y[i + 0];
-        const block_q8_1 * restrict y1 = &y[i + 1];
-
-        summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
-
-        const uint8x16_t m4b = vdupq_n_u8(0x0F);
-
-        const uint8x16_t v0_0 = vld1q_u8(x0->qs);
-        const uint8x16_t v0_1 = vld1q_u8(x1->qs);
-
-        // 4-bit -> 8-bit
-        const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
-        const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
-        const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
-        const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
-
-        // load y
-        const int8x16_t v1_0l = vld1q_s8(y0->qs);
-        const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
-        const int8x16_t v1_1l = vld1q_s8(y1->qs);
-        const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
-
-#if defined(__ARM_FEATURE_DOTPROD)
-        // dot product into int32x4_t
-        const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
-        const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
-
-        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
-        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
-#else
-        const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
-        const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
-        const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
-        const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
-
-        const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
-        const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
-        const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
-        const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
-
-        const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
-        const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
-        const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
-        const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
-
-        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
-        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
-#endif
-    }
-
-    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
-#elif defined(__AVX2__) || defined(__AVX__)
-    // Initialize accumulator with zeros
-    __m256 acc = _mm256_setzero_ps();
-
-    float summs = 0;
-
-    // Main loop
-    for (int i = 0; i < nb; ++i) {
-        const float d0 = GGML_FP16_TO_FP32(x[i].d);
-        const float d1 = y[i].d;
-
-        summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
-
-        const __m256 d0v = _mm256_set1_ps( d0 );
-        const __m256 d1v = _mm256_set1_ps( d1 );
-
-        // Compute combined scales
-        const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
-
-        // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
-        const __m256i bx = bytes_from_nibbles_32(x[i].qs);
-        const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
-
-        const __m256 xy = mul_sum_us8_pairs_float(bx, by);
-
-        // Accumulate d0*d1*x*y
-#if defined(__AVX2__)
-        acc = _mm256_fmadd_ps( d0d1, xy, acc );
-#else
-        acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
-#endif
-    }
-
-    *s = hsum_float_8(acc) + summs;
-#else
-    // scalar
-    float sumf = 0.0;
-
-    for (int i = 0; i < nb; i++) {
-        int sumi = 0;
-
-        for (int j = 0; j < qk/2; ++j) {
-            const int v0 = (x[i].qs[j] & 0x0F);
-            const int v1 = (x[i].qs[j] >>   4);
-
-            sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
-        }
-
-        sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
-    }
-
-    *s = sumf;
-#endif
-}
-
-static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-    const int qk = QK8_0;
-    const int nb = n / qk;
-
-    assert(n % qk == 0);
-    assert(nb % 2 == 0);
-    assert(qk == QK5_0);
-
-    const block_q5_0 * restrict x = vx;
-    const block_q8_0 * restrict y = vy;
-
-#if defined(__ARM_NEON)
-    float32x4_t sumv0 = vdupq_n_f32(0.0f);
-    float32x4_t sumv1 = vdupq_n_f32(0.0f);
-
-    uint32_t qh0;
-    uint32_t qh1;
-
-    uint64_t tmp0[4];
-    uint64_t tmp1[4];
-
-    for (int i = 0; i < nb; i += 2) {
-        const block_q5_0 * restrict x0 = &x[i];
-        const block_q5_0 * restrict x1 = &x[i + 1];
-        const block_q8_0 * restrict y0 = &y[i];
-        const block_q8_0 * restrict y1 = &y[i + 1];
-
-        const uint8x16_t m4b = vdupq_n_u8(0x0F);
-
-        // extract the 5th bit via lookup table ((!b) << 4)
-        memcpy(&qh0, x0->qh, sizeof(qh0));
-        memcpy(&qh1, x1->qh, sizeof(qh1));
-
-        tmp0[0] = table_b2b_1[(qh0 >>  0) & 0xFF];
-        tmp0[1] = table_b2b_1[(qh0 >>  8) & 0xFF];
-        tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
-        tmp0[3] = table_b2b_1[(qh0 >> 24)       ];
-
-        tmp1[0] = table_b2b_1[(qh1 >>  0) & 0xFF];
-        tmp1[1] = table_b2b_1[(qh1 >>  8) & 0xFF];
-        tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
-        tmp1[3] = table_b2b_1[(qh1 >> 24)       ];
-
-        const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
-        const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
-        const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
-        const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
-
-        const uint8x16_t v0_0 = vld1q_u8(x0->qs);
-        const uint8x16_t v0_1 = vld1q_u8(x1->qs);
-
-        // 4-bit -> 8-bit
-        int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
-        int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
-        int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
-        int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
-
-        // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
-        const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
-        const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
-        const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
-        const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
-
-        // load y
-        const int8x16_t v1_0l = vld1q_s8(y0->qs);
-        const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
-        const int8x16_t v1_1l = vld1q_s8(y1->qs);
-        const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
-
-#if defined(__ARM_FEATURE_DOTPROD)
-        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
-                        vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
-                        vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
-        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
-                        vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
-                        vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
-#else
-        const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
-        const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
-        const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
-        const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
-
-        const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
-        const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
-        const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
-        const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
-
-        const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
-        const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
-        const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
-        const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
-
-        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
-        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
-#endif
-    }
-
-    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
-#elif defined(__wasm_simd128__)
-    v128_t sumv = wasm_f32x4_splat(0.0f);
-
-    uint32_t qh;
-    uint64_t tmp[4];
-
-    // TODO: check if unrolling this is better
-    for (int i = 0; i < nb; ++i) {
-        const block_q5_0 * restrict x0 = &x[i];
-        const block_q8_0 * restrict y0 = &y[i];
-
-        const v128_t m4b  = wasm_i8x16_splat(0x0F);
-
-        // extract the 5th bit
-        memcpy(&qh, x0->qh, sizeof(qh));
-
-        tmp[0] = table_b2b_1[(qh >>  0) & 0xFF];
-        tmp[1] = table_b2b_1[(qh >>  8) & 0xFF];
-        tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
-        tmp[3] = table_b2b_1[(qh >> 24)       ];
-
-        const v128_t qhl = wasm_v128_load(tmp + 0);
-        const v128_t qhh = wasm_v128_load(tmp + 2);
-
-        const v128_t v0 = wasm_v128_load(x0->qs);
-
-        // 4-bit -> 8-bit
-        const v128_t v0l = wasm_v128_and (v0, m4b);
-        const v128_t v0h = wasm_u8x16_shr(v0, 4);
-
-        // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
-        const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
-        const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
-
-        // load y
-        const v128_t v1l = wasm_v128_load(y0->qs);
-        const v128_t v1h = wasm_v128_load(y0->qs + 16);
-
-        // int8x16 -> int16x8
-        const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
-        const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
-        const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
-        const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
-
-        const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
-        const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
-        const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
-        const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
-
-        // dot product
-        sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
-                        wasm_i32x4_add(
-                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
-                                           wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
-                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
-                                           wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
-                    wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
-    }
-
-    *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
-         wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
-#elif defined(__AVX2__)
-    // Initialize accumulator with zeros
-    __m256 acc = _mm256_setzero_ps();
-
-    // Main loop
-    for (int i = 0; i < nb; i++) {
-        /* Compute combined scale for the block */
-        const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
-
-        __m256i bx = bytes_from_nibbles_32(x[i].qs);
-        __m256i bxhi = bytes_from_bits_32(x[i].qh);
-        bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
-        bx = _mm256_or_si256(bx, bxhi);
-
-        __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
-
-        const __m256 q = mul_sum_i8_pairs_float(bx, by);
-
-        /* Multiply q with scale and accumulate */
-        acc = _mm256_fmadd_ps(d, q, acc);
-    }
-
-    *s = hsum_float_8(acc);
-#elif defined(__AVX__)
-    // Initialize accumulator with zeros
-    __m256 acc = _mm256_setzero_ps();
-    __m128i mask = _mm_set1_epi8((char)0xF0);
-
-    // Main loop
-    for (int i = 0; i < nb; i++) {
-        /* Compute combined scale for the block */
-        const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
-
-        __m256i bx = bytes_from_nibbles_32(x[i].qs);
-        const __m256i bxhi = bytes_from_bits_32(x[i].qh);
-        __m128i bxhil = _mm256_castsi256_si128(bxhi);
-        __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
-        bxhil = _mm_andnot_si128(bxhil, mask);
-        bxhih = _mm_andnot_si128(bxhih, mask);
-        __m128i bxl = _mm256_castsi256_si128(bx);
-        __m128i bxh = _mm256_extractf128_si256(bx, 1);
-        bxl = _mm_or_si128(bxl, bxhil);
-        bxh = _mm_or_si128(bxh, bxhih);
-        bx = MM256_SET_M128I(bxh, bxl);
-
-        const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
-
-        const __m256 q = mul_sum_i8_pairs_float(bx, by);
-
-        /* Multiply q with scale and accumulate */
-        acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
-    }
-
-    *s = hsum_float_8(acc);
-#else
-    // scalar
-    float sumf = 0.0;
-
-    for (int i = 0; i < nb; i++) {
-        uint32_t qh;
-        memcpy(&qh, x[i].qh, sizeof(qh));
-
-        int sumi = 0;
-
-        for (int j = 0; j < qk/2; ++j) {
-            const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
-            const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
-
-            const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
-            const int32_t x1 = ((x[i].qs[j] >>   4) | xh_1) - 16;
-
-            sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
-        }
-
-        sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
-    }
-
-    *s = sumf;
-#endif
-}
-
-static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-    const int qk = QK8_1;
-    const int nb = n / qk;
-
-    assert(n % qk == 0);
-    assert(nb % 2 == 0);
-    assert(qk == QK5_1);
-
-    const block_q5_1 * restrict x = vx;
-    const block_q8_1 * restrict y = vy;
-
-#if defined(__ARM_NEON)
-    float32x4_t sumv0 = vdupq_n_f32(0.0f);
-    float32x4_t sumv1 = vdupq_n_f32(0.0f);
-
-    float summs0 = 0.0f;
-    float summs1 = 0.0f;
-
-    uint32_t qh0;
-    uint32_t qh1;
-
-    uint64_t tmp0[4];
-    uint64_t tmp1[4];
-
-    for (int i = 0; i < nb; i += 2) {
-        const block_q5_1 * restrict x0 = &x[i];
-        const block_q5_1 * restrict x1 = &x[i + 1];
-        const block_q8_1 * restrict y0 = &y[i];
-        const block_q8_1 * restrict y1 = &y[i + 1];
-
-        const uint8x16_t m4b = vdupq_n_u8(0x0F);
-
-        summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
-        summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
-
-        // extract the 5th bit via lookup table ((b) << 4)
-        memcpy(&qh0, x0->qh, sizeof(qh0));
-        memcpy(&qh1, x1->qh, sizeof(qh1));
-
-        tmp0[0] = table_b2b_0[(qh0 >>  0) & 0xFF];
-        tmp0[1] = table_b2b_0[(qh0 >>  8) & 0xFF];
-        tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
-        tmp0[3] = table_b2b_0[(qh0 >> 24)       ];
-
-        tmp1[0] = table_b2b_0[(qh1 >>  0) & 0xFF];
-        tmp1[1] = table_b2b_0[(qh1 >>  8) & 0xFF];
-        tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
-        tmp1[3] = table_b2b_0[(qh1 >> 24)       ];
-
-        const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
-        const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
-        const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
-        const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
-
-        const uint8x16_t v0_0 = vld1q_u8(x0->qs);
-        const uint8x16_t v0_1 = vld1q_u8(x1->qs);
-
-        // 4-bit -> 8-bit
-        const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8  (v0_0, m4b));
-        const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
-        const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8  (v0_1, m4b));
-        const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
-
-        // add high bit
-        const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
-        const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
-        const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
-        const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
-
-        // load y
-        const int8x16_t v1_0l = vld1q_s8(y0->qs);
-        const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
-        const int8x16_t v1_1l = vld1q_s8(y1->qs);
-        const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
-
-#if defined(__ARM_FEATURE_DOTPROD)
-        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
-                        vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
-                        vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
-        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
-                        vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
-                        vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
-#else
-        const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
-        const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
-        const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
-        const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
-
-        const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
-        const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
-        const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
-        const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
-
-        const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
-        const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
-        const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
-        const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
-
-        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
-        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
-#endif
-    }
-
-    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
-#elif defined(__wasm_simd128__)
-    v128_t sumv = wasm_f32x4_splat(0.0f);
-
-    float summs = 0.0f;
-
-    uint32_t qh;
-    uint64_t tmp[4];
-
-    // TODO: check if unrolling this is better
-    for (int i = 0; i < nb; ++i) {
-        const block_q5_1 * restrict x0 = &x[i];
-        const block_q8_1 * restrict y0 = &y[i];
-
-        summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
-
-        const v128_t m4b = wasm_i8x16_splat(0x0F);
-
-        // extract the 5th bit
-        memcpy(&qh, x0->qh, sizeof(qh));
-
-        tmp[0] = table_b2b_0[(qh >>  0) & 0xFF];
-        tmp[1] = table_b2b_0[(qh >>  8) & 0xFF];
-        tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
-        tmp[3] = table_b2b_0[(qh >> 24)       ];
-
-        const v128_t qhl = wasm_v128_load(tmp + 0);
-        const v128_t qhh = wasm_v128_load(tmp + 2);
-
-        const v128_t v0 = wasm_v128_load(x0->qs);
-
-        // 4-bit -> 8-bit
-        const v128_t v0l = wasm_v128_and (v0, m4b);
-        const v128_t v0h = wasm_u8x16_shr(v0, 4);
-
-        // add high bit
-        const v128_t v0lf = wasm_v128_or(v0l, qhl);
-        const v128_t v0hf = wasm_v128_or(v0h, qhh);
-
-        // load y
-        const v128_t v1l = wasm_v128_load(y0->qs);
-        const v128_t v1h = wasm_v128_load(y0->qs + 16);
-
-        // int8x16 -> int16x8
-        const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
-        const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
-        const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
-        const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
-
-        const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
-        const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
-        const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
-        const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
-
-        // dot product
-        sumv = wasm_f32x4_add(sumv,
-                wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
-                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
-                                           wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
-                            wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
-                                           wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
-                    wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
-    }
-
-    *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
-         wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
-#elif defined(__AVX2__)
-    // Initialize accumulator with zeros
-    __m256 acc = _mm256_setzero_ps();
-
-    float summs = 0.0f;
-
-    // Main loop
-    for (int i = 0; i < nb; i++) {
-        const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
-
-        summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
-
-        __m256i bx = bytes_from_nibbles_32(x[i].qs);
-        __m256i bxhi = bytes_from_bits_32(x[i].qh);
-        bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
-        bx = _mm256_or_si256(bx, bxhi);
-
-        const __m256 dy = _mm256_set1_ps(y[i].d);
-        const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
-
-        const __m256 q = mul_sum_us8_pairs_float(bx, by);
-
-        acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
-    }
-
-    *s = hsum_float_8(acc) + summs;
-#elif defined(__AVX__)
-    // Initialize accumulator with zeros
-    __m256 acc = _mm256_setzero_ps();
-    __m128i mask = _mm_set1_epi8(0x10);
-
-    float summs = 0.0f;
-
-    // Main loop
-    for (int i = 0; i < nb; i++) {
-        const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
-
-        summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
-
-        __m256i bx = bytes_from_nibbles_32(x[i].qs);
-        const __m256i bxhi = bytes_from_bits_32(x[i].qh);
-        __m128i bxhil = _mm256_castsi256_si128(bxhi);
-        __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
-        bxhil = _mm_and_si128(bxhil, mask);
-        bxhih = _mm_and_si128(bxhih, mask);
-        __m128i bxl = _mm256_castsi256_si128(bx);
-        __m128i bxh = _mm256_extractf128_si256(bx, 1);
-        bxl = _mm_or_si128(bxl, bxhil);
-        bxh = _mm_or_si128(bxh, bxhih);
-        bx = MM256_SET_M128I(bxh, bxl);
-
-        const __m256 dy = _mm256_set1_ps(y[i].d);
-        const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
-
-        const __m256 q = mul_sum_us8_pairs_float(bx, by);
-
-        acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
-    }
-
-    *s = hsum_float_8(acc) + summs;
-#else
-    // scalar
-    float sumf = 0.0;
-
-    for (int i = 0; i < nb; i++) {
-        uint32_t qh;
-        memcpy(&qh, x[i].qh, sizeof(qh));
-
-        int sumi = 0;
-
-        for (int j = 0; j < qk/2; ++j) {
-            const uint8_t xh_0 = ((qh >> (j +  0)) << 4) & 0x10;
-            const uint8_t xh_1 = ((qh >> (j + 12))     ) & 0x10;
-
-            const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
-            const int32_t x1 = (x[i].qs[j] >>  4) | xh_1;
-
-            sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
-        }
-
-        sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
-    }
-
-    *s = sumf;
-#endif
-}
-
-static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-    const int qk = QK8_0;
-    const int nb = n / qk;
-
-    assert(n % qk == 0);
-    assert(nb % 2 == 0);
-
-    const block_q8_0 * restrict x = vx;
-    const block_q8_0 * restrict y = vy;
-
-#if defined(__ARM_NEON)
-    float32x4_t sumv0 = vdupq_n_f32(0.0f);
-    float32x4_t sumv1 = vdupq_n_f32(0.0f);
-
-    for (int i = 0; i < nb; i += 2) {
-        const block_q8_0 * restrict x0 = &x[i + 0];
-        const block_q8_0 * restrict x1 = &x[i + 1];
-        const block_q8_0 * restrict y0 = &y[i + 0];
-        const block_q8_0 * restrict y1 = &y[i + 1];
-
-        const int8x16_t x0_0 = vld1q_s8(x0->qs);
-        const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
-        const int8x16_t x1_0 = vld1q_s8(x1->qs);
-        const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
-
-        // load y
-        const int8x16_t y0_0 = vld1q_s8(y0->qs);
-        const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
-        const int8x16_t y1_0 = vld1q_s8(y1->qs);
-        const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
-
-#if defined(__ARM_FEATURE_DOTPROD)
-        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
-                        vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
-                        vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
-
-        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
-                        vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
-                        vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
-
-#else
-        const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
-        const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
-        const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
-        const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
-
-        const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
-        const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
-        const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
-        const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
-
-        const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
-        const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
-        const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
-        const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
-
-        sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
-        sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
-#endif
-    }
-
-    *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
-#elif defined(__AVX2__) || defined(__AVX__)
-    // Initialize accumulator with zeros
-    __m256 acc = _mm256_setzero_ps();
-
-    // Main loop
-    for (int i = 0; i < nb; ++i) {
-        // Compute combined scale for the block
-        const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
-        __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
-        __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
-
-        const __m256 q = mul_sum_i8_pairs_float(bx, by);
-
-        // Multiply q with scale and accumulate
-#if defined(__AVX2__)
-        acc = _mm256_fmadd_ps( d, q, acc );
-#else
-        acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
-#endif
-    }
-
-    *s = hsum_float_8(acc);
-#else
-    // scalar
-    float sumf = 0.0;
-
-    for (int i = 0; i < nb; i++) {
-        int sumi = 0;
-
-        for (int j = 0; j < qk; j++) {
-            sumi += x[i].qs[j]*y[i].qs[j];
-        }
-
-        sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
-    }
-
-    *s = sumf;
-#endif
-}
-
-// compute GGML_VEC_DOT_UNROLL dot products at once
-// xs - x row stride in bytes
-inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
-    ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
-
-    ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
-
-    for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
-        x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
-    }
-
-#if defined(GGML_SIMD)
-    const int np = (n & ~(GGML_F16_STEP - 1));
-
-    GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
-
-    GGML_F16_VEC ax[GGML_F16_ARR];
-    GGML_F16_VEC ay[GGML_F16_ARR];
-
-    for (int i = 0; i < np; i += GGML_F16_STEP) {
-        for (int j = 0; j < GGML_F16_ARR; j++) {
-            ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
-
-            for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
-                ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
-
-                sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
-            }
-        }
-    }
-
-    // reduce sum0..sum3 to sum0
-    for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
-        GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
-    }
-
-    // leftovers
-    for (int i = np; i < n; ++i) {
-        for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
-            sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
-        }
-    }
-#else
-    for (int i = 0; i < n; ++i) {
-        for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
-            sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
-        }
-    }
-#endif
-
-    for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
-        s[i] = sumf[i];
-    }
-}
-
-inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
-#if defined(GGML_SIMD)
-    const int np = (n & ~(GGML_F32_STEP - 1));
-
-    GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
-
-    GGML_F32_VEC ax[GGML_F32_ARR];
-    GGML_F32_VEC ay[GGML_F32_ARR];
-
-    for (int i = 0; i < np; i += GGML_F32_STEP) {
-        for (int j = 0; j < GGML_F32_ARR; j++) {
-            ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
-            ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
-            ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
-
-            GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
-        }
-    }
-
-    // leftovers
-    for (int i = np; i < n; ++i) {
-        y[i] += x[i]*v;
-    }
-#else
-    // scalar
-    for (int i = 0; i < n; ++i) {
-        y[i] += x[i]*v;
-    }
-#endif
-}
-
-//inline static void ggml_vec_scale_f32(const int n, float * y, const float   v) { for (int i = 0; i < n; ++i) y[i] *= v;          }
-inline static void ggml_vec_scale_f32(const int n, float * y, const float   v) {
-#if defined(GGML_USE_ACCELERATE)
-    vDSP_vsmul(y, 1, &v, y, 1, n);
-#elif defined(GGML_SIMD)
-    const int np = (n & ~(GGML_F32_STEP - 1));
-
-    GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
-
-    GGML_F32_VEC ay[GGML_F32_ARR];
-
-    for (int i = 0; i < np; i += GGML_F32_STEP) {
-        for (int j = 0; j < GGML_F32_ARR; j++) {
-            ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
-            ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
-
-            GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
-        }
-    }
-
-    // leftovers
-    for (int i = np; i < n; ++i) {
-        y[i] *= v;
-    }
-#else
-    // scalar
-    for (int i = 0; i < n; ++i) {
-        y[i] *= v;
-    }
-#endif
-}
-
-inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s);   }
-inline static void ggml_vec_sqr_f32  (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i];   }
-inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
-inline static void ggml_vec_log_f32  (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]);   }
-inline static void ggml_vec_abs_f32  (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
-inline static void ggml_vec_sgn_f32  (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
-inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
-inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]);  }
-inline static void ggml_vec_elu_f32  (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
-inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
-
-static const float GELU_COEF_A    = 0.044715f;
-static const float GELU_QUICK_COEF    = -1.702f;
-static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
-
-inline static float ggml_gelu_f32(float x) {
-    return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
-}
-
-inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
-    const uint16_t * i16 = (const uint16_t *) x;
-    for (int i = 0; i < n; ++i) {
-        y[i] = table_gelu_f16[i16[i]];
-    }
-}
-
-#ifdef GGML_GELU_FP16
-inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
-    uint16_t t;
-    for (int i = 0; i < n; ++i) {
-        ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
-        memcpy(&t, &fp16, sizeof(uint16_t));
-        y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
-    }
-}
-#else
-inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
-    for (int i = 0; i < n; ++i) {
-        y[i] = ggml_gelu_f32(x[i]);
-    }
-}
-#endif
-
-inline static float ggml_gelu_quick_f32(float x) {
-    return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
-}
-
-//inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
-//    const uint16_t * i16 = (const uint16_t *) x;
-//    for (int i = 0; i < n; ++i) {
-//        y[i] = table_gelu_quick_f16[i16[i]];
-//    }
-//}
-
-#ifdef GGML_GELU_QUICK_FP16
-inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
-    uint16_t t;
-    for (int i = 0; i < n; ++i) {
-        ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
-        memcpy(&t, &fp16, sizeof(uint16_t));
-        y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
-    }
-}
-#else
-inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
-    for (int i = 0; i < n; ++i) {
-        y[i] = ggml_gelu_quick_f32(x[i]);
-    }
-}
-#endif
-
-// Sigmoid Linear Unit (SiLU) function
-inline static float ggml_silu_f32(float x) {
-    return x/(1.0f + expf(-x));
-}
-
-//inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
-//    const uint16_t * i16 = (const uint16_t *) x;
-//    for (int i = 0; i < n; ++i) {
-//        y[i] = table_silu_f16[i16[i]];
-//    }
-//}
-
-#ifdef GGML_SILU_FP16
-inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
-    uint16_t t;
-    for (int i = 0; i < n; ++i) {
-        ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
-        memcpy(&t, &fp16, sizeof(uint16_t));
-        y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
-    }
-}
-#else
-inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
-    for (int i = 0; i < n; ++i) {
-        y[i] = ggml_silu_f32(x[i]);
-    }
-}
-#endif
-
-inline static float ggml_silu_backward_f32(float x, float dy) {
-    const float s = 1.0f/(1.0f + expf(-x));
-    return dy*s*(1.0f + x*(1.0f - s));
-}
-
-#ifdef GGML_SILU_FP16
-inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
-    for (int i = 0; i < n; ++i) {
-        // we did not use x[i] to compute forward silu but its f16 equivalent
-        // take derivative at f16 of x[i]:
-        ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
-        float usedx = GGML_FP16_TO_FP32(fp16);
-        dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
-    }
-}
-#else
-inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
-    for (int i = 0; i < n; ++i) {
-        dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
-    }
-}
-#endif
-
-inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
-#ifndef GGML_USE_ACCELERATE
-    ggml_float sum = 0.0;
-    for (int i = 0; i < n; ++i) {
-        sum += (ggml_float)x[i];
-    }
-    *s = sum;
-#else
-    vDSP_sve(x, 1, s, n);
-#endif
-}
-
-inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
-    ggml_float sum = 0.0;
-    for (int i = 0; i < n; ++i) {
-        sum += (ggml_float)x[i];
-    }
-    *s = sum;
-}
-
-inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
-    float sum = 0.0f;
-    for (int i = 0; i < n; ++i) {
-        sum += GGML_FP16_TO_FP32(x[i]);
-    }
-    *s = sum;
-}
-
-inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
-#ifndef GGML_USE_ACCELERATE
-    float max = -INFINITY;
-    for (int i = 0; i < n; ++i) {
-        max = MAX(max, x[i]);
-    }
-    *s = max;
-#else
-    vDSP_maxv(x, 1, s, n);
-#endif
-}
-
-inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
-    ggml_vec_norm_f32(n, s, x);
-    *s = 1.f/(*s);
-}
-
-inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
-    float max = -INFINITY;
-    int idx = 0;
-    for (int i = 0; i < n; ++i) {
-        max = MAX(max, x[i]);
-        if (max == x[i]) { idx = i; }
-    }
-    *s = idx;
-}
-
-//
-// data types
-//
-
-static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
-    [GGML_TYPE_F32]  = 1,
-    [GGML_TYPE_F16]  = 1,
-    [GGML_TYPE_Q4_0] = QK4_0,
-    [GGML_TYPE_Q4_1] = QK4_1,
-    [GGML_TYPE_Q5_0] = QK5_0,
-    [GGML_TYPE_Q5_1] = QK5_1,
-    [GGML_TYPE_Q8_0] = QK8_0,
-    [GGML_TYPE_Q8_1] = QK8_1,
-#ifdef GGML_USE_K_QUANTS
-    [GGML_TYPE_Q2_K] = QK_K,
-    [GGML_TYPE_Q3_K] = QK_K,
-    [GGML_TYPE_Q4_K] = QK_K,
-    [GGML_TYPE_Q5_K] = QK_K,
-    [GGML_TYPE_Q6_K] = QK_K,
-    [GGML_TYPE_Q8_K] = QK_K,
-#endif
-    [GGML_TYPE_I8]   = 1,
-    [GGML_TYPE_I16]  = 1,
-    [GGML_TYPE_I32]  = 1,
-};
-static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
-
-static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
-    [GGML_TYPE_F32]  = sizeof(float),
-    [GGML_TYPE_F16]  = sizeof(ggml_fp16_t),
-    [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
-    [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
-    [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
-    [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
-    [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
-    [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
-#ifdef GGML_USE_K_QUANTS
-    [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
-    [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
-    [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
-    [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
-    [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
-    [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
-#endif
-    [GGML_TYPE_I8]   = sizeof(int8_t),
-    [GGML_TYPE_I16]  = sizeof(int16_t),
-    [GGML_TYPE_I32]  = sizeof(int32_t),
-};
-static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
-
-
-static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
-    [GGML_TYPE_F32]  = "f32",
-    [GGML_TYPE_F16]  = "f16",
-    [GGML_TYPE_Q4_0] = "q4_0",
-    [GGML_TYPE_Q4_1] = "q4_1",
-    [GGML_TYPE_Q5_0] = "q5_0",
-    [GGML_TYPE_Q5_1] = "q5_1",
-    [GGML_TYPE_Q8_0] = "q8_0",
-    [GGML_TYPE_Q8_1] = "q8_1",
-    [GGML_TYPE_Q2_K] = "q2_K",
-    [GGML_TYPE_Q3_K] = "q3_K",
-    [GGML_TYPE_Q4_K] = "q4_K",
-    [GGML_TYPE_Q5_K] = "q5_K",
-    [GGML_TYPE_Q6_K] = "q6_K",
-    [GGML_TYPE_Q8_K] = "q8_K",
-    [GGML_TYPE_I8]   = "i8",
-    [GGML_TYPE_I16]  = "i16",
-    [GGML_TYPE_I32]  = "i32",
-};
-static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
-
-static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
-    [GGML_TYPE_F32]  = false,
-    [GGML_TYPE_F16]  = false,
-    [GGML_TYPE_Q4_0] = true,
-    [GGML_TYPE_Q4_1] = true,
-    [GGML_TYPE_Q5_0] = true,
-    [GGML_TYPE_Q5_1] = true,
-    [GGML_TYPE_Q8_0] = true,
-    [GGML_TYPE_Q8_1] = true,
-    [GGML_TYPE_Q2_K] = true,
-    [GGML_TYPE_Q3_K] = true,
-    [GGML_TYPE_Q4_K] = true,
-    [GGML_TYPE_Q5_K] = true,
-    [GGML_TYPE_Q6_K] = true,
-    [GGML_TYPE_Q8_K] = true,
-    [GGML_TYPE_I8]   = false,
-    [GGML_TYPE_I16]  = false,
-    [GGML_TYPE_I32]  = false,
-};
-static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
-
-static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
-    "NONE",
-
-    "DUP",
-    "ADD",
-    "ADD1",
-    "ACC",
-    "SUB",
-    "MUL",
-    "DIV",
-    "SQR",
-    "SQRT",
-    "LOG",
-    "SUM",
-    "SUM_ROWS",
-    "MEAN",
-    "ARGMAX",
-    "REPEAT",
-    "REPEAT_BACK",
-    "SILU_BACK",
-    "NORM",
-    "RMS_NORM",
-    "RMS_NORM_BACK",
-
-    "MUL_MAT",
-    "OUT_PROD",
-
-    "SCALE",
-    "SET",
-    "CPY",
-    "CONT",
-    "RESHAPE",
-    "VIEW",
-    "PERMUTE",
-    "TRANSPOSE",
-    "GET_ROWS",
-    "GET_ROWS_BACK",
-    "DIAG",
-    "DIAG_MASK_INF",
-    "DIAG_MASK_ZERO",
-    "SOFT_MAX",
-    "SOFT_MAX_BACK",
-    "ROPE",
-    "ROPE_BACK",
-    "ALIBI",
-    "CLAMP",
-    "CONV_1D",
-    "CONV_2D",
-    "POOL_1D",
-    "POOL_2D",
-
-    "FLASH_ATTN",
-    "FLASH_FF",
-    "FLASH_ATTN_BACK",
-    "WIN_PART",
-    "WIN_UNPART",
-
-    "UNARY",
-
-    "MAP_UNARY",
-    "MAP_BINARY",
-
-    "MAP_CUSTOM1",
-    "MAP_CUSTOM2",
-    "MAP_CUSTOM3",
-
-    "CROSS_ENTROPY_LOSS",
-    "CROSS_ENTROPY_LOSS_BACK",
-};
-
-static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
-
-static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
-    "none",
-
-    "x",
-    "x+y",
-    "x+y",
-    "view(x,nb,offset)+=y->x",
-    "x-y",
-    "x*y",
-    "x/y",
-    "x^2",
-    "√x",
-    "log(x)",
-    "Σx",
-    "Σx_k",
-    "Σx/n",
-    "argmax(x)",
-    "repeat(x)",
-    "repeat_back(x)",
-    "silu_back(x)",
-    "norm(x)",
-    "rms_norm(x)",
-    "rms_norm_back(x)",
-
-    "X*Y",
-    "X*Y",
-
-    "x*v",
-    "y-\\>view(x)",
-    "x-\\>y",
-    "cont(x)",
-    "reshape(x)",
-    "view(x)",
-    "permute(x)",
-    "transpose(x)",
-    "get_rows(x)",
-    "get_rows_back(x)",
-    "diag(x)",
-    "diag_mask_inf(x)",
-    "diag_mask_zero(x)",
-    "soft_max(x)",
-    "soft_max_back(x)",
-    "rope(x)",
-    "rope_back(x)",
-    "alibi(x)",
-    "clamp(x)",
-    "conv_1d(x)",
-    "conv_2d(x)",
-    "pool_1d(x)",
-    "pool_2d(x)",
-
-    "flash_attn(x)",
-    "flash_ff(x)",
-    "flash_attn_back(x)",
-    "win_part(x)",
-    "win_unpart(x)",
-
-    "unary(x)",
-
-    "f(x)",
-    "f(x,y)",
-
-    "custom(x)",
-    "custom(x,y)",
-    "custom(x,y,z)",
-
-    "cross_entropy_loss(x,y)",
-    "cross_entropy_loss_back(x,y)",
-};
-
-static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
-
-static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
-
-static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
-static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
-
-// WARN:
-// Mis-confguration can lead to problem that's hard to reason about:
-// * At best  it crash or talks nosense.
-// * At worst it talks slightly difference but hard to perceive.
-//
-// An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
-// Take care about compile options (e.g., GGML_USE_xxx).
-static bool GGML_OP_HAS_INIT    [GGML_OP_COUNT] = { 0 };
-static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
-
-static void ggml_setup_op_has_task_pass(void) {
-    {   // INIT
-        bool * p = GGML_OP_HAS_INIT;
-
-        p[GGML_OP_ACC                    ] = true;
-        p[GGML_OP_MUL_MAT                ] = true;
-        p[GGML_OP_OUT_PROD               ] = true;
-        p[GGML_OP_SET                    ] = true;
-        p[GGML_OP_GET_ROWS_BACK          ] = true;
-        p[GGML_OP_DIAG_MASK_INF          ] = true;
-        p[GGML_OP_DIAG_MASK_ZERO         ] = true;
-        p[GGML_OP_CONV_1D                ] = true;
-        p[GGML_OP_CONV_2D                ] = true;
-        p[GGML_OP_FLASH_ATTN_BACK        ] = true;
-        p[GGML_OP_CROSS_ENTROPY_LOSS     ] = true;
-    }
-
-    {   // FINALIZE
-        bool * p = GGML_OP_HAS_FINALIZE;
-
-        p[GGML_OP_CROSS_ENTROPY_LOSS     ] = true;
-    }
-}
-
-//
-// ggml context
-//
-
-struct ggml_context {
-    size_t mem_size;
-    void * mem_buffer;
-    bool   mem_buffer_owned;
-    bool   no_alloc;
-    bool   no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
-
-    int    n_objects;
-
-    struct ggml_object * objects_begin;
-    struct ggml_object * objects_end;
-
-    struct ggml_scratch scratch;
-    struct ggml_scratch scratch_save;
-};
-
-struct ggml_context_container {
-    bool used;
-
-    struct ggml_context context;
-};
-
-//
-// NUMA support
-//
-
-#define GGML_NUMA_MAX_NODES 8
-#define GGML_NUMA_MAX_CPUS 512
-
-struct ggml_numa_node {
-    uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
-    uint32_t n_cpus;
-};
-
-struct ggml_numa_nodes {
-    struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
-    uint32_t n_nodes;
-    uint32_t total_cpus; // hardware threads on system
-};
-
-//
-// ggml state
-//
-
-struct ggml_state {
-    struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
-    struct ggml_numa_nodes numa;
-};
-
-// global state
-static struct ggml_state g_state;
-static atomic_int g_state_barrier = 0;
-
-// barrier via spin lock
-inline static void ggml_critical_section_start(void) {
-    int processing = atomic_fetch_add(&g_state_barrier, 1);
-
-    while (processing > 0) {
-        // wait for other threads to finish
-        atomic_fetch_sub(&g_state_barrier, 1);
-        sched_yield(); // TODO: reconsider this
-        processing = atomic_fetch_add(&g_state_barrier, 1);
-    }
-}
-
-// TODO: make this somehow automatically executed
-//       some sort of "sentry" mechanism
-inline static void ggml_critical_section_end(void) {
-    atomic_fetch_sub(&g_state_barrier, 1);
-}
-
-void ggml_numa_init(void) {
-    if (g_state.numa.n_nodes > 0) {
-        fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
-
-        return;
-    }
-
-#ifdef __linux__
-    struct stat st;
-    char path[256];
-    int rv;
-
-    // enumerate nodes
-    while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
-        rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
-        GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
-        if (stat(path, &st) != 0) { break; }
-        ++g_state.numa.n_nodes;
-    }
-
-    // enumerate CPUs
-    while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
-        rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
-        GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
-        if (stat(path, &st) != 0) { break; }
-        ++g_state.numa.total_cpus;
-    }
-
-    GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
-
-    if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
-        g_state.numa.n_nodes = 0;
-        return;
-    }
-
-    for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
-        struct ggml_numa_node * node = &g_state.numa.nodes[n];
-        GGML_PRINT_DEBUG("CPUs on node %u:", n);
-        node->n_cpus = 0;
-        for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
-            rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
-            GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
-            if (stat(path, &st) == 0) {
-                node->cpus[node->n_cpus++] = c;
-                GGML_PRINT_DEBUG(" %u", c);
-            }
-        }
-        GGML_PRINT_DEBUG("\n");
-    }
-
-    if (ggml_is_numa()) {
-        FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
-        if (fptr != NULL) {
-            char buf[42];
-            if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
-                GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
-            }
-            fclose(fptr);
-        }
-    }
-#else
-    // TODO
-#endif
-}
-
-bool ggml_is_numa(void) {
-    return g_state.numa.n_nodes > 1;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-void ggml_print_object(const struct ggml_object * obj) {
-    GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
-            obj->type, obj->offs, obj->size, (const void *) obj->next);
-}
-
-void ggml_print_objects(const struct ggml_context * ctx) {
-    struct ggml_object * obj = ctx->objects_begin;
-
-    GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
-
-    while (obj != NULL) {
-        ggml_print_object(obj);
-        obj = obj->next;
-    }
-
-    GGML_PRINT("%s: --- end ---\n", __func__);
-}
-
-int64_t ggml_nelements(const struct ggml_tensor * tensor) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
-}
-
-int64_t ggml_nrows(const struct ggml_tensor * tensor) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
-}
-
-size_t ggml_nbytes(const struct ggml_tensor * tensor) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    // this should handle cases where the tensor is not contiguous in memory
-    // probaby just:
-    //
-    //     return tensor->ne[3]*tensor->nb[3]
-    //
-    // is enough, but just in case, adding the second part
-
-    return GGML_PAD(MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]), GGML_MEM_ALIGN);
-}
-
-size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
-}
-
-int ggml_blck_size(enum ggml_type type) {
-    return GGML_BLCK_SIZE[type];
-}
-
-size_t ggml_type_size(enum ggml_type type) {
-    return GGML_TYPE_SIZE[type];
-}
-
-float ggml_type_sizef(enum ggml_type type) {
-    return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
-}
-
-const char * ggml_type_name(enum ggml_type type) {
-    return GGML_TYPE_NAME[type];
-}
-
-const char * ggml_op_name(enum ggml_op op) {
-    return GGML_OP_NAME[op];
-}
-
-const char * ggml_op_symbol(enum ggml_op op) {
-    return GGML_OP_SYMBOL[op];
-}
-
-size_t ggml_element_size(const struct ggml_tensor * tensor) {
-    return GGML_TYPE_SIZE[tensor->type];
-}
-
-static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
-}
-
-static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
-}
-
-static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return tensor->ne[2] == 1 && tensor->ne[3] == 1;
-}
-
-static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return (t0->ne[0]           == t1->ne[0])  &&
-           (t1->ne[2]%t0->ne[2] == 0)          && // verify t0 is broadcastable
-           (t1->ne[3]%t0->ne[3] == 0);
-}
-
-static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return
-        (t0->ne[1] == t1->ne[1])  &&
-        (t0->ne[2] == t1->ne[2])  &&
-        (t0->ne[3] == t1->ne[3]);
-}
-
-bool ggml_is_quantized(enum ggml_type type) {
-    return GGML_IS_QUANTIZED[type];
-}
-
-enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
-    enum ggml_type wtype = GGML_TYPE_COUNT;
-
-    switch (ftype) {
-        case GGML_FTYPE_ALL_F32:              wtype = GGML_TYPE_F32;   break;
-        case GGML_FTYPE_MOSTLY_F16:           wtype = GGML_TYPE_F16;   break;
-        case GGML_FTYPE_MOSTLY_Q4_0:          wtype = GGML_TYPE_Q4_0;  break;
-        case GGML_FTYPE_MOSTLY_Q4_1:          wtype = GGML_TYPE_Q4_1;  break;
-        case GGML_FTYPE_MOSTLY_Q5_0:          wtype = GGML_TYPE_Q5_0;  break;
-        case GGML_FTYPE_MOSTLY_Q5_1:          wtype = GGML_TYPE_Q5_1;  break;
-        case GGML_FTYPE_MOSTLY_Q8_0:          wtype = GGML_TYPE_Q8_0;  break;
-        case GGML_FTYPE_MOSTLY_Q2_K:          wtype = GGML_TYPE_Q2_K;  break;
-        case GGML_FTYPE_MOSTLY_Q3_K:          wtype = GGML_TYPE_Q3_K;  break;
-        case GGML_FTYPE_MOSTLY_Q4_K:          wtype = GGML_TYPE_Q4_K;  break;
-        case GGML_FTYPE_MOSTLY_Q5_K:          wtype = GGML_TYPE_Q5_K;  break;
-        case GGML_FTYPE_MOSTLY_Q6_K:          wtype = GGML_TYPE_Q6_K;  break;
-        case GGML_FTYPE_UNKNOWN:              wtype = GGML_TYPE_COUNT; break;
-        case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
-    }
-
-    GGML_ASSERT(wtype != GGML_TYPE_COUNT);
-
-    return wtype;
-}
-
-size_t ggml_tensor_overhead(void) {
-    return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
-}
-
-bool ggml_is_transposed(const struct ggml_tensor * tensor) {
-    return tensor->nb[0] > tensor->nb[1];
-}
-
-bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return
-        tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
-        tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
-        tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
-        tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
-}
-
-static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return
-        tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
-        tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
-        tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
-}
-
-bool ggml_is_permuted(const struct ggml_tensor * tensor) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
-}
-
-static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return
-        tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
-        tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
-        tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
-}
-
-bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return
-        (t0->ne[0] == t1->ne[0] ) &&
-        (t0->ne[1] == t1->ne[1] ) &&
-        (t0->ne[2] == t1->ne[2] ) &&
-        (t0->ne[3] == t1->ne[3] );
-}
-
-// check if t1 can be represented as a repeatition of t0
-static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return
-        (t1->ne[0]%t0->ne[0] == 0) &&
-        (t1->ne[1]%t0->ne[1] == 0) &&
-        (t1->ne[2]%t0->ne[2] == 0) &&
-        (t1->ne[3]%t0->ne[3] == 0);
-}
-
-static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
-    static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
-
-    return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
-}
-
-static inline int ggml_up32(int n) {
-    return (n + 31) & ~31;
-}
-
-//static inline int ggml_up64(int n) {
-//    return (n + 63) & ~63;
-//}
-
-static inline int ggml_up(int n, int m) {
-    // assert m is a power of 2
-    GGML_ASSERT((m & (m - 1)) == 0);
-    return (n + m - 1) & ~(m - 1);
-}
-
-// assert that pointer is aligned to GGML_MEM_ALIGN
-#define ggml_assert_aligned(ptr) \
-    GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
-
-////////////////////////////////////////////////////////////////////////////////
-
-struct ggml_context * ggml_init(struct ggml_init_params params) {
-    // make this function thread safe
-    ggml_critical_section_start();
-
-    static bool is_first_call = true;
-
-    if (is_first_call) {
-        // initialize time system (required on Windows)
-        ggml_time_init();
-
-        // initialize GELU, Quick GELU, SILU and EXP F32 tables
-        {
-            const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
-
-            ggml_fp16_t ii;
-            for (int i = 0; i < (1 << 16); ++i) {
-                uint16_t ui = i;
-                memcpy(&ii, &ui, sizeof(ii));
-                const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
-                table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
-                table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
-                table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
-                table_exp_f16[i]  = GGML_FP32_TO_FP16(expf(f));
-            }
-
-            const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
-
-            GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
-        }
-
-        // initialize g_state
-        {
-            const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
-
-            g_state = (struct ggml_state) {
-                /*.contexts =*/ { { 0 } },
-                /*.numa =*/ {
-                    .n_nodes = 0,
-                    .total_cpus = 0,
-                },
-            };
-
-            for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
-                g_state.contexts[i].used = false;
-            }
-
-            const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
-
-            GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
-        }
-
-#if defined(GGML_USE_CUBLAS)
-        ggml_init_cublas();
-#elif defined(GGML_USE_CLBLAST)
-        ggml_cl_init();
-#endif
-
-        ggml_setup_op_has_task_pass();
-
-        is_first_call = false;
-    }
-
-    // find non-used context in g_state
-    struct ggml_context * ctx = NULL;
-
-    for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
-        if (!g_state.contexts[i].used) {
-            g_state.contexts[i].used = true;
-            ctx = &g_state.contexts[i].context;
-
-            GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
-            break;
-        }
-    }
-
-    if (ctx == NULL) {
-        GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
-
-        ggml_critical_section_end();
-
-        return NULL;
-    }
-
-    const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
-
-    *ctx = (struct ggml_context) {
-        /*.mem_size           =*/ mem_size,
-        /*.mem_buffer         =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
-        /*.mem_buffer_owned   =*/ params.mem_buffer ? false : true,
-        /*.no_alloc           =*/ params.no_alloc,
-        /*.no_alloc_save      =*/ params.no_alloc,
-        /*.n_objects          =*/ 0,
-        /*.objects_begin      =*/ NULL,
-        /*.objects_end        =*/ NULL,
-        /*.scratch            =*/ { 0, 0, NULL, },
-        /*.scratch_save       =*/ { 0, 0, NULL, },
-    };
-
-    GGML_ASSERT(ctx->mem_buffer != NULL);
-
-    ggml_assert_aligned(ctx->mem_buffer);
-
-    GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
-
-    ggml_critical_section_end();
-
-    return ctx;
-}
-
-void ggml_free(struct ggml_context * ctx) {
-    // make this function thread safe
-    ggml_critical_section_start();
-
-    bool found = false;
-
-    for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
-        if (&g_state.contexts[i].context == ctx) {
-            g_state.contexts[i].used = false;
-
-            GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
-                    __func__, i, ggml_used_mem(ctx));
-
-            if (ctx->mem_buffer_owned) {
-                GGML_ALIGNED_FREE(ctx->mem_buffer);
-            }
-
-            found = true;
-            break;
-        }
-    }
-
-    if (!found) {
-        GGML_PRINT_DEBUG("%s: context not found\n", __func__);
-    }
-
-    ggml_critical_section_end();
-}
-
-size_t ggml_used_mem(const struct ggml_context * ctx) {
-    return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
-}
-
-size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
-    const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
-
-    ctx->scratch = scratch;
-
-    return result;
-}
-
-bool ggml_get_no_alloc(struct ggml_context * ctx) {
-    return ctx->no_alloc;
-}
-
-void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
-    ctx->no_alloc = no_alloc;
-}
-
-void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
-    return ctx->mem_buffer;
-}
-
-size_t ggml_get_mem_size(const struct ggml_context * ctx) {
-    return ctx->mem_size;
-}
-
-size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
-    size_t max_size = 0;
-
-    struct ggml_object * obj = ctx->objects_begin;
-
-    while (obj != NULL) {
-        if (obj->type == GGML_OBJECT_TENSOR) {
-            struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
-
-            const size_t size = ggml_nbytes(tensor);
-
-            if (max_size < size) {
-                max_size = size;
-            }
-        }
-
-        obj = obj->next;
-    }
-
-    return max_size;
-}
-
-// IMPORTANT:
-// when creating "opt" tensors, always save and load the scratch buffer
-// this is an error prone process, but it is necessary to support inplace
-// operators when using scratch buffers
-// TODO: implement a better way
-static void ggml_scratch_save(struct ggml_context * ctx) {
-    // this is needed to allow opt tensors to store their data
-    // TODO: again, need to find a better way
-    ctx->no_alloc_save = ctx->no_alloc;
-    ctx->no_alloc      = false;
-
-    ctx->scratch_save = ctx->scratch;
-    ctx->scratch.data = NULL;
-}
-
-static void ggml_scratch_load(struct ggml_context * ctx) {
-    ctx->no_alloc = ctx->no_alloc_save;
-
-    ctx->scratch = ctx->scratch_save;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
-    // always insert objects at the end of the context's memory pool
-    struct ggml_object * obj_cur = ctx->objects_end;
-
-    const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
-    const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
-    const size_t cur_end  = cur_offs + cur_size;
-
-    // align to GGML_MEM_ALIGN
-    size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
-
-    char * const mem_buffer = ctx->mem_buffer;
-    struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
-
-    if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
-        GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
-                __func__, cur_end + size_needed, ctx->mem_size);
-        assert(false);
-        return NULL;
-    }
-
-    *obj_new = (struct ggml_object) {
-        .offs = cur_end + GGML_OBJECT_SIZE,
-        .size = size_needed,
-        .next = NULL,
-        .type = type,
-    };
-
-    ggml_assert_aligned(mem_buffer + obj_new->offs);
-
-    if (obj_cur != NULL) {
-        obj_cur->next = obj_new;
-    } else {
-        // this is the first object in this context
-        ctx->objects_begin = obj_new;
-    }
-
-    ctx->objects_end = obj_new;
-
-    //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
-
-    return obj_new;
-}
-
-static struct ggml_tensor * ggml_new_tensor_impl(
-        struct ggml_context * ctx,
-        enum   ggml_type      type,
-        int                   n_dims,
-        const int64_t       * ne,
-        void                * data) {
-
-    assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
-
-    size_t data_size = 0;
-
-    if (data == NULL && !ctx->no_alloc) {
-        data_size += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
-        for (int i = 1; i < n_dims; i++) {
-            data_size *= ne[i];
-        }
-    }
-
-    if (ctx->scratch.data != NULL && data == NULL) {
-        // allocate tensor data in the scratch buffer
-        if (ctx->scratch.offs + data_size > ctx->scratch.size) {
-            GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
-                    __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
-            assert(false);
-            return NULL;
-        }
-
-        data = (char * const) ctx->scratch.data + ctx->scratch.offs;
-
-        ctx->scratch.offs += data_size;
-
-        data_size = 0;
-    }
-
-    struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + data_size);
-
-    // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
-
-    struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
-
-    *result = (struct ggml_tensor) {
-        /*.type         =*/ type,
-        /*.backend      =*/ GGML_BACKEND_CPU,
-        /*.n_dims       =*/ n_dims,
-        /*.ne           =*/ { 1, 1, 1, 1 },
-        /*.nb           =*/ { 0, 0, 0, 0 },
-        /*.op           =*/ GGML_OP_NONE,
-        /*.op_params    =*/ { 0 },
-        /*.is_param     =*/ false,
-        /*.grad         =*/ NULL,
-        /*.src          =*/ { NULL },
-        /*.perf_runs    =*/ 0,
-        /*.perf_cycles  =*/ 0,
-        /*.perf_time_us =*/ 0,
-        /*.data         =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
-        /*.name         =*/ { 0 },
-        /*.extra        =*/ NULL,
-        /*.padding      =*/ { 0 },
-    };
-
-    // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
-    //ggml_assert_aligned(result->data);
-
-    for (int i = 0; i < n_dims; i++) {
-        result->ne[i] = ne[i];
-    }
-
-    result->nb[0] = GGML_TYPE_SIZE[type];
-    result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
-    for (int i = 2; i < GGML_MAX_DIMS; i++) {
-        result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
-    }
-
-    ctx->n_objects++;
-
-    return result;
-}
-
-static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
-    GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
-    assert(params_size <= GGML_MAX_OP_PARAMS);
-    memcpy(tensor->op_params, params, params_size);
-}
-
-static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
-    assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
-    return ((const int32_t *)(tensor->op_params))[i];
-}
-
-static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
-    assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
-    ((int32_t *)(tensor->op_params))[i] = value;
-}
-
-struct ggml_tensor * ggml_new_tensor(
-        struct ggml_context * ctx,
-        enum   ggml_type      type,
-        int                   n_dims,
-        const int64_t       * ne) {
-    return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
-}
-
-struct ggml_tensor * ggml_new_tensor_1d(
-        struct ggml_context * ctx,
-        enum   ggml_type      type,
-        int64_t ne0) {
-    return ggml_new_tensor(ctx, type, 1, &ne0);
-}
-
-struct ggml_tensor * ggml_new_tensor_2d(
-        struct ggml_context * ctx,
-        enum   ggml_type      type,
-        int64_t ne0,
-        int64_t ne1) {
-    const int64_t ne[2] = { ne0, ne1 };
-    return ggml_new_tensor(ctx, type, 2, ne);
-}
-
-struct ggml_tensor * ggml_new_tensor_3d(
-        struct ggml_context * ctx,
-        enum   ggml_type      type,
-        int64_t ne0,
-        int64_t ne1,
-        int64_t ne2) {
-    const int64_t ne[3] = { ne0, ne1, ne2 };
-    return ggml_new_tensor(ctx, type, 3, ne);
-}
-
-struct ggml_tensor * ggml_new_tensor_4d(
-        struct ggml_context * ctx,
-        enum   ggml_type type,
-        int64_t ne0,
-        int64_t ne1,
-        int64_t ne2,
-        int64_t ne3) {
-    const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
-    return ggml_new_tensor(ctx, type, 4, ne);
-}
-
-struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
-    ggml_scratch_save(ctx);
-
-    struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
-
-    ggml_scratch_load(ctx);
-
-    ggml_set_i32(result, value);
-
-    return result;
-}
-
-struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
-    ggml_scratch_save(ctx);
-
-    struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
-
-    ggml_scratch_load(ctx);
-
-    ggml_set_f32(result, value);
-
-    return result;
-}
-
-struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
-    return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
-}
-
-struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
-    memset(tensor->data, 0, ggml_nbytes(tensor));
-    return tensor;
-}
-
-struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
-    const int n     = ggml_nrows(tensor);
-    const int nc    = tensor->ne[0];
-    const size_t n1 = tensor->nb[1];
-
-    char * const data = tensor->data;
-
-    switch (tensor->type) {
-        case GGML_TYPE_I8:
-            {
-                assert(tensor->nb[0] == sizeof(int8_t));
-                for (int i = 0; i < n; i++) {
-                    ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
-                }
-            } break;
-        case GGML_TYPE_I16:
-            {
-                assert(tensor->nb[0] == sizeof(int16_t));
-                for (int i = 0; i < n; i++) {
-                    ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
-                }
-            } break;
-        case GGML_TYPE_I32:
-            {
-                assert(tensor->nb[0] == sizeof(int32_t));
-                for (int i = 0; i < n; i++) {
-                    ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
-                }
-            } break;
-        case GGML_TYPE_F16:
-            {
-                assert(tensor->nb[0] == sizeof(ggml_fp16_t));
-                for (int i = 0; i < n; i++) {
-                    ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
-                }
-            } break;
-        case GGML_TYPE_F32:
-            {
-                assert(tensor->nb[0] == sizeof(float));
-                for (int i = 0; i < n; i++) {
-                    ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
-                }
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-
-    return tensor;
-}
-
-struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
-    const int n     = ggml_nrows(tensor);
-    const int nc    = tensor->ne[0];
-    const size_t n1 = tensor->nb[1];
-
-    char * const data = tensor->data;
-
-    switch (tensor->type) {
-        case GGML_TYPE_I8:
-            {
-                assert(tensor->nb[0] == sizeof(int8_t));
-                for (int i = 0; i < n; i++) {
-                    ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
-                }
-            } break;
-        case GGML_TYPE_I16:
-            {
-                assert(tensor->nb[0] == sizeof(int16_t));
-                for (int i = 0; i < n; i++) {
-                    ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
-                }
-            } break;
-        case GGML_TYPE_I32:
-            {
-                assert(tensor->nb[0] == sizeof(int32_t));
-                for (int i = 0; i < n; i++) {
-                    ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
-                }
-            } break;
-        case GGML_TYPE_F16:
-            {
-                assert(tensor->nb[0] == sizeof(ggml_fp16_t));
-                for (int i = 0; i < n; i++) {
-                    ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
-                }
-            } break;
-        case GGML_TYPE_F32:
-            {
-                assert(tensor->nb[0] == sizeof(float));
-                for (int i = 0; i < n; i++) {
-                    ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
-                }
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-
-    return tensor;
-}
-
-int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
-    switch (tensor->type) {
-        case GGML_TYPE_I8:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
-                return ((int8_t *)(tensor->data))[i];
-            } break;
-        case GGML_TYPE_I16:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
-                return ((int16_t *)(tensor->data))[i];
-            } break;
-        case GGML_TYPE_I32:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
-                return ((int32_t *)(tensor->data))[i];
-            } break;
-        case GGML_TYPE_F16:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
-                return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(float));
-                return ((float *)(tensor->data))[i];
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-
-    return 0.0f;
-}
-
-void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
-    switch (tensor->type) {
-        case GGML_TYPE_I8:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
-                ((int8_t *)(tensor->data))[i] = value;
-            } break;
-        case GGML_TYPE_I16:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
-                ((int16_t *)(tensor->data))[i] = value;
-            } break;
-        case GGML_TYPE_I32:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
-                ((int32_t *)(tensor->data))[i] = value;
-            } break;
-        case GGML_TYPE_F16:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
-                ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(float));
-                ((float *)(tensor->data))[i] = value;
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
-    switch (tensor->type) {
-        case GGML_TYPE_I8:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
-                return ((int8_t *)(tensor->data))[i];
-            } break;
-        case GGML_TYPE_I16:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
-                return ((int16_t *)(tensor->data))[i];
-            } break;
-        case GGML_TYPE_I32:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
-                return ((int32_t *)(tensor->data))[i];
-            } break;
-        case GGML_TYPE_F16:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
-                return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(float));
-                return ((float *)(tensor->data))[i];
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-
-    return 0.0f;
-}
-
-void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
-    switch (tensor->type) {
-        case GGML_TYPE_I8:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
-                ((int8_t *)(tensor->data))[i] = value;
-            } break;
-        case GGML_TYPE_I16:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
-                ((int16_t *)(tensor->data))[i] = value;
-            } break;
-        case GGML_TYPE_I32:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
-                ((int32_t *)(tensor->data))[i] = value;
-            } break;
-        case GGML_TYPE_F16:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
-                ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                GGML_ASSERT(tensor->nb[0] == sizeof(float));
-                ((float *)(tensor->data))[i] = value;
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-void * ggml_get_data(const struct ggml_tensor * tensor) {
-    return tensor->data;
-}
-
-float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
-    assert(tensor->type == GGML_TYPE_F32);
-    return (float *)(tensor->data);
-}
-
-enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
-    GGML_ASSERT(tensor->op == GGML_OP_UNARY);
-    return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
-}
-
-const char * ggml_get_name(const struct ggml_tensor * tensor) {
-    return tensor->name;
-}
-
-struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
-    strncpy(tensor->name, name, sizeof(tensor->name));
-    tensor->name[sizeof(tensor->name) - 1] = '\0';
-    return tensor;
-}
-
-struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
-    va_list args;
-    va_start(args, fmt);
-    vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
-    va_end(args);
-    return tensor;
-}
-
-struct ggml_tensor * ggml_view_tensor(
-        struct ggml_context * ctx,
-        const struct ggml_tensor * src) {
-    struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
-    ggml_format_name(result, "%s (view)", src->name);
-
-    result->nb[0] = src->nb[0];
-    result->nb[1] = src->nb[1];
-    result->nb[2] = src->nb[2];
-    result->nb[3] = src->nb[3];
-
-    return result;
-}
-
-struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
-    struct ggml_object * obj = ctx->objects_begin;
-
-    char * const mem_buffer = ctx->mem_buffer;
-
-    while (obj != NULL) {
-        if (obj->type == GGML_OBJECT_TENSOR) {
-            struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
-            if (strcmp(cur->name, name) == 0) {
-                return cur;
-            }
-        }
-
-        obj = obj->next;
-    }
-
-    return NULL;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-// ggml_dup
-
-static struct ggml_tensor * ggml_dup_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        bool inplace) {
-    bool is_node = false;
-
-    if (!inplace && (a->grad)) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_DUP;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_dup(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a) {
-    return ggml_dup_impl(ctx, a, false);
-}
-
-struct ggml_tensor * ggml_dup_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a) {
-    return ggml_dup_impl(ctx, a, true);
-}
-
-// ggml_add
-
-static struct ggml_tensor * ggml_add_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b,
-        bool inplace) {
-    // TODO: support less-strict constraint
-    //       GGML_ASSERT(ggml_can_repeat(b, a));
-    GGML_ASSERT(ggml_can_repeat_rows(b, a));
-
-    bool is_node = false;
-
-    if (!inplace && (a->grad || b->grad)) {
-        // TODO: support backward pass for broadcasting
-        GGML_ASSERT(ggml_are_same_shape(a, b));
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_ADD;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_add(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b) {
-    return ggml_add_impl(ctx, a, b, false);
-}
-
-struct ggml_tensor * ggml_add_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b) {
-    return ggml_add_impl(ctx, a, b, true);
-}
-
-// ggml_add1
-
-static struct ggml_tensor * ggml_add1_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b,
-        bool inplace) {
-    GGML_ASSERT(ggml_is_scalar(b));
-    GGML_ASSERT(ggml_is_padded_1d(a));
-
-    bool is_node = false;
-
-    if (a->grad || b->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_ADD1;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_add1(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b) {
-    return ggml_add1_impl(ctx, a, b, false);
-}
-
-struct ggml_tensor * ggml_add1_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b) {
-    return ggml_add1_impl(ctx, a, b, true);
-}
-
-// ggml_acc
-
-static struct ggml_tensor * ggml_acc_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b,
-        size_t               nb1,
-        size_t               nb2,
-        size_t               nb3,
-        size_t               offset,
-        bool inplace) {
-    GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
-    GGML_ASSERT(ggml_is_contiguous(a));
-    GGML_ASSERT(a->type == GGML_TYPE_F32);
-    GGML_ASSERT(b->type == GGML_TYPE_F32);
-
-    bool is_node = false;
-
-    if (!inplace && (a->grad || b->grad)) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
-    ggml_set_op_params(result, params, sizeof(params));
-
-    result->op   = GGML_OP_ACC;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_acc(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b,
-        size_t               nb1,
-        size_t               nb2,
-        size_t               nb3,
-        size_t               offset) {
-    return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
-}
-
-struct ggml_tensor * ggml_acc_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b,
-        size_t               nb1,
-        size_t               nb2,
-        size_t               nb3,
-        size_t               offset) {
-    return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
-}
-
-// ggml_sub
-
-static struct ggml_tensor * ggml_sub_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b,
-        bool inplace) {
-    GGML_ASSERT(ggml_are_same_shape(a, b));
-
-    bool is_node = false;
-
-    if (!inplace && (a->grad || b->grad)) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_SUB;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_sub(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b) {
-    return ggml_sub_impl(ctx, a, b, false);
-}
-
-struct ggml_tensor * ggml_sub_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b) {
-    return ggml_sub_impl(ctx, a, b, true);
-}
-
-// ggml_mul
-
-static struct ggml_tensor * ggml_mul_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b,
-        bool inplace) {
-    // TODO: support less-strict constraint
-    //       GGML_ASSERT(ggml_can_repeat(b, a));
-    GGML_ASSERT(ggml_can_repeat_rows(b, a));
-
-    bool is_node = false;
-
-    if (!inplace && (a->grad || b->grad)) {
-        // TODO: support backward pass for broadcasting
-        GGML_ASSERT(ggml_are_same_shape(a, b));
-        is_node = true;
-    }
-
-    if (inplace) {
-        GGML_ASSERT(is_node == false);
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_MUL;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_mul(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b) {
-    return ggml_mul_impl(ctx, a, b, false);
-}
-
-struct ggml_tensor * ggml_mul_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b) {
-    return ggml_mul_impl(ctx, a, b, true);
-}
-
-// ggml_div
-
-static struct ggml_tensor * ggml_div_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b,
-        bool inplace) {
-    GGML_ASSERT(ggml_are_same_shape(a, b));
-
-    bool is_node = false;
-
-    if (!inplace && (a->grad || b->grad)) {
-        is_node = true;
-    }
-
-    if (inplace) {
-        GGML_ASSERT(is_node == false);
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_DIV;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_div(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b) {
-    return ggml_div_impl(ctx, a, b, false);
-}
-
-struct ggml_tensor * ggml_div_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b) {
-    return ggml_div_impl(ctx, a, b, true);
-}
-
-// ggml_sqr
-
-static struct ggml_tensor * ggml_sqr_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        bool inplace) {
-    bool is_node = false;
-
-    if (!inplace && (a->grad)) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_SQR;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_sqr(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_sqr_impl(ctx, a, false);
-}
-
-struct ggml_tensor * ggml_sqr_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_sqr_impl(ctx, a, true);
-}
-
-// ggml_sqrt
-
-static struct ggml_tensor * ggml_sqrt_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        bool inplace) {
-    bool is_node = false;
-
-    if (!inplace && (a->grad)) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_SQRT;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_sqrt(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_sqrt_impl(ctx, a, false);
-}
-
-struct ggml_tensor * ggml_sqrt_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_sqrt_impl(ctx, a, true);
-}
-
-
-// ggml_log
-
-static struct ggml_tensor * ggml_log_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        bool inplace) {
-    bool is_node = false;
-
-    if (!inplace && (a->grad)) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_LOG;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_log(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_log_impl(ctx, a, false);
-}
-
-struct ggml_tensor * ggml_log_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_log_impl(ctx, a, true);
-}
-
-// ggml_sum
-
-struct ggml_tensor * ggml_sum(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a) {
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
-
-    result->op   = GGML_OP_SUM;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-
-// ggml_sum_rows
-
-struct ggml_tensor * ggml_sum_rows(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a) {
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    int64_t ne[4] = {1,1,1,1};
-    for (int i=1; i<a->n_dims; ++i) {
-        ne[i] = a->ne[i];
-    }
-
-    struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
-
-    result->op   = GGML_OP_SUM_ROWS;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_mean
-
-struct ggml_tensor * ggml_mean(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a) {
-    bool is_node = false;
-
-    if (a->grad) {
-        GGML_ASSERT(false); // TODO: implement
-        is_node = true;
-    }
-
-    int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
-    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
-
-    result->op   = GGML_OP_MEAN;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_argmax
-
-struct ggml_tensor * ggml_argmax(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a) {
-    GGML_ASSERT(ggml_is_matrix(a));
-    bool is_node = false;
-
-    if (a->grad) {
-        GGML_ASSERT(false);
-        is_node = true;
-    }
-
-    int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
-    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
-
-    result->op   = GGML_OP_ARGMAX;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_repeat
-
-struct ggml_tensor * ggml_repeat(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b) {
-    GGML_ASSERT(ggml_can_repeat(a, b));
-
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    if (ggml_are_same_shape(a, b) && !is_node) {
-        return a;
-    }
-
-    struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
-
-    result->op   = GGML_OP_REPEAT;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-// ggml_repeat_back
-
-struct ggml_tensor * ggml_repeat_back(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b) {
-    GGML_ASSERT(ggml_can_repeat(b, a));
-
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    if (ggml_are_same_shape(a, b) && !is_node) {
-        return a;
-    }
-
-    struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
-
-    result->op   = GGML_OP_REPEAT_BACK;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-// ggml_abs
-
-struct ggml_tensor * ggml_abs(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
-}
-
-struct ggml_tensor * ggml_abs_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
-}
-
-// ggml_sgn
-
-struct ggml_tensor * ggml_sgn(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
-}
-
-struct ggml_tensor * ggml_sgn_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
-}
-
-// ggml_neg
-
-struct ggml_tensor * ggml_neg(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
-}
-
-struct ggml_tensor * ggml_neg_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
-}
-
-// ggml_step
-
-struct ggml_tensor * ggml_step(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
-}
-
-struct ggml_tensor * ggml_step_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
-}
-
-// ggml_tanh
-
-struct ggml_tensor * ggml_tanh(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
-}
-
-struct ggml_tensor * ggml_tanh_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
-}
-
-// ggml_elu
-
-struct ggml_tensor * ggml_elu(
-    struct ggml_context * ctx,
-    struct ggml_tensor  * a) {
-    return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
-}
-
-struct ggml_tensor * ggml_elu_inplace(
-    struct ggml_context * ctx,
-    struct ggml_tensor  * a) {
-    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
-}
-
-// ggml_relu
-
-struct ggml_tensor * ggml_relu(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
-}
-
-struct ggml_tensor * ggml_relu_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
-}
-
-// ggml_gelu
-
-struct ggml_tensor * ggml_gelu(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
-}
-
-struct ggml_tensor * ggml_gelu_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
-}
-
-// ggml_gelu_quick
-
-struct ggml_tensor * ggml_gelu_quick(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
-}
-
-struct ggml_tensor * ggml_gelu_quick_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
-}
-
-// ggml_silu
-
-struct ggml_tensor * ggml_silu(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
-}
-
-struct ggml_tensor * ggml_silu_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
-}
-
-// ggml_silu_back
-
-struct ggml_tensor * ggml_silu_back(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b) {
-    bool is_node = false;
-
-    if (a->grad || b->grad) {
-        // TODO: implement backward
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_SILU_BACK;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-// ggml_norm
-
-static struct ggml_tensor * ggml_norm_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        bool inplace) {
-    bool is_node = false;
-
-    if (!inplace && (a->grad)) {
-        GGML_ASSERT(false); // TODO: implement backward
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    // TODO: maybe store epsilon here?
-
-    result->op   = GGML_OP_NORM;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_norm(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_norm_impl(ctx, a, false);
-}
-
-struct ggml_tensor * ggml_norm_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_norm_impl(ctx, a, true);
-}
-
-static struct ggml_tensor * ggml_rms_norm_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        float eps,
-        bool inplace) {
-    bool is_node = false;
-
-    if (!inplace && (a->grad)) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    ggml_set_op_params(result, &eps, sizeof(eps));
-
-    result->op   = GGML_OP_RMS_NORM;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_rms_norm(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        float  eps) {
-    return ggml_rms_norm_impl(ctx, a, eps, false);
-}
-
-struct ggml_tensor * ggml_rms_norm_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        float eps) {
-    return ggml_rms_norm_impl(ctx, a, eps, true);
-}
-
-struct ggml_tensor * ggml_rms_norm_back(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b) {
-    bool is_node = false;
-
-    if (a->grad) {
-        // TODO: implement backward
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_RMS_NORM_BACK;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-
-// ggml_mul_mat
-
-struct ggml_tensor * ggml_mul_mat(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b) {
-    GGML_ASSERT(ggml_can_mul_mat(a, b));
-    GGML_ASSERT(!ggml_is_transposed(a));
-
-    bool is_node = false;
-
-    if (a->grad || b->grad) {
-        is_node = true;
-    }
-
-    const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
-    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
-
-    result->op   = GGML_OP_MUL_MAT;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-// ggml_out_prod
-
-struct ggml_tensor * ggml_out_prod(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b) {
-    GGML_ASSERT(ggml_can_out_prod(a, b));
-    GGML_ASSERT(!ggml_is_transposed(a));
-
-    bool is_node = false;
-
-    if (a->grad || b->grad) {
-        is_node = true;
-    }
-
-    const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
-    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
-
-    result->op   = GGML_OP_OUT_PROD;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-// ggml_scale
-
-static struct ggml_tensor * ggml_scale_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b,
-        bool inplace) {
-    GGML_ASSERT(ggml_is_scalar(b));
-    GGML_ASSERT(ggml_is_padded_1d(a));
-
-    bool is_node = false;
-
-    if (a->grad || b->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_SCALE;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_scale(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b) {
-    return ggml_scale_impl(ctx, a, b, false);
-}
-
-struct ggml_tensor * ggml_scale_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b) {
-    return ggml_scale_impl(ctx, a, b, true);
-}
-
-// ggml_set
-
-static struct ggml_tensor * ggml_set_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b,
-        size_t                nb1,
-        size_t                nb2,
-        size_t                nb3,
-        size_t                offset,
-        bool inplace) {
-    GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
-
-    bool is_node = false;
-
-    if (a->grad || b->grad) {
-        is_node = true;
-    }
-
-    // make a view of the destination
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
-    ggml_set_op_params(result, params, sizeof(params));
-
-    result->op   = GGML_OP_SET;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_set(
-        struct ggml_context * ctx,
-        struct ggml_tensor *  a,
-        struct ggml_tensor *  b,
-        size_t                nb1,
-        size_t                nb2,
-        size_t                nb3,
-        size_t                offset) {
-    return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
-}
-
-struct ggml_tensor * ggml_set_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor *  a,
-        struct ggml_tensor *  b,
-        size_t                nb1,
-        size_t                nb2,
-        size_t                nb3,
-        size_t                offset) {
-    return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
-}
-
-struct ggml_tensor * ggml_set_1d(
-        struct ggml_context * ctx,
-        struct ggml_tensor *  a,
-        struct ggml_tensor *  b,
-        size_t                offset) {
-    return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
-}
-
-struct ggml_tensor * ggml_set_1d_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor *  a,
-        struct ggml_tensor *  b,
-        size_t                offset) {
-    return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
-}
-
-struct ggml_tensor * ggml_set_2d(
-        struct ggml_context * ctx,
-        struct ggml_tensor *  a,
-        struct ggml_tensor *  b,
-        size_t                nb1,
-        size_t                offset) {
-    return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
-}
-
-struct ggml_tensor * ggml_set_2d_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor *  a,
-        struct ggml_tensor *  b,
-        size_t                nb1,
-        size_t                offset) {
-    return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
-}
-
-
-// ggml_cpy
-
-static struct ggml_tensor * ggml_cpy_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b,
-        bool inplace) {
-    GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
-
-    bool is_node = false;
-
-    if (!inplace && (a->grad || b->grad)) {
-        is_node = true;
-    }
-
-    // make a view of the destination
-    struct ggml_tensor * result = ggml_view_tensor(ctx, b);
-    if (strlen(b->name) > 0) {
-        ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
-    } else {
-        ggml_format_name(result, "%s (copy)", a->name);
-    }
-
-    result->op   = GGML_OP_CPY;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_cpy(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b) {
-    return ggml_cpy_impl(ctx, a, b, false);
-}
-
-struct ggml_tensor * ggml_cpy_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b) {
-    return ggml_cpy_impl(ctx, a, b, true);
-}
-
-// ggml_cont
-
-static struct ggml_tensor * ggml_cont_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        bool inplace) {
-    bool is_node = false;
-
-    if (!inplace && a->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-    ggml_format_name(result, "%s (cont)", a->name);
-
-    result->op   = GGML_OP_CONT;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_cont(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a) {
-    return ggml_cont_impl(ctx, a, false);
-}
-
-struct ggml_tensor * ggml_cont_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a) {
-    return ggml_cont_impl(ctx, a, true);
-}
-
-// ggml_reshape
-
-struct ggml_tensor * ggml_reshape(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        struct ggml_tensor * b) {
-    GGML_ASSERT(ggml_is_contiguous(a));
-    GGML_ASSERT(ggml_is_contiguous(b));
-    GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
-
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    if (b->grad) {
-        // gradient propagation is not supported
-        //GGML_ASSERT(false);
-    }
-
-    struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
-    ggml_format_name(result, "%s (reshaped)", a->name);
-
-    result->op   = GGML_OP_RESHAPE;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_reshape_1d(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int64_t               ne0) {
-    GGML_ASSERT(ggml_is_contiguous(a));
-    GGML_ASSERT(ggml_nelements(a) == ne0);
-
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    const int64_t ne[1] = { ne0 };
-    struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
-    ggml_format_name(result, "%s (reshaped)", a->name);
-
-    result->op   = GGML_OP_RESHAPE;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_reshape_2d(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int64_t               ne0,
-        int64_t               ne1) {
-    GGML_ASSERT(ggml_is_contiguous(a));
-    GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
-
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    const int64_t ne[2] = { ne0, ne1 };
-    struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
-    ggml_format_name(result, "%s (reshaped)", a->name);
-
-    result->op   = GGML_OP_RESHAPE;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_reshape_3d(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int64_t               ne0,
-        int64_t               ne1,
-        int64_t               ne2) {
-    GGML_ASSERT(ggml_is_contiguous(a));
-    GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
-
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    const int64_t ne[3] = { ne0, ne1, ne2 };
-    struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
-    ggml_format_name(result, "%s (reshaped)", a->name);
-
-    result->op   = GGML_OP_RESHAPE;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-
-struct ggml_tensor * ggml_reshape_4d(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int64_t               ne0,
-        int64_t               ne1,
-        int64_t               ne2,
-        int64_t               ne3) {
-    GGML_ASSERT(ggml_is_contiguous(a));
-    GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
-
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
-    struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
-    ggml_format_name(result, "%s (reshaped)", a->name);
-
-    result->op   = GGML_OP_RESHAPE;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_view_1d
-
-static struct ggml_tensor * ggml_view_tensor_offset(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   n_dims,
-        const int64_t       * ne,
-        size_t                offset) {
-    // don't calculate an offset from an unallocated tensor
-    void * data = NULL;
-    if (a->data != NULL) {
-        data = (char *) a->data + offset;
-    }
-
-    struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data);
-
-    ggml_format_name(result, "%s (view)", a->name);
-
-    ggml_set_op_params(result, &offset, sizeof(offset));
-
-    return result;
-}
-
-struct ggml_tensor * ggml_view_1d(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int64_t               ne0,
-        size_t                offset) {
-
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset);
-
-    result->op   = GGML_OP_VIEW;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_view_2d
-
-struct ggml_tensor * ggml_view_2d(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int64_t               ne0,
-        int64_t               ne1,
-        size_t                nb1,
-        size_t                offset) {
-
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
-
-    struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset);
-
-    result->nb[1] = nb1;
-    result->nb[2] = result->nb[1]*ne1;
-    result->nb[3] = result->nb[2];
-
-    result->op   = GGML_OP_VIEW;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_view_3d
-
-struct ggml_tensor * ggml_view_3d(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int64_t               ne0,
-        int64_t               ne1,
-        int64_t               ne2,
-        size_t                nb1,
-        size_t                nb2,
-        size_t                offset) {
-
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
-
-    struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset);
-
-    result->nb[1] = nb1;
-    result->nb[2] = nb2;
-    result->nb[3] = result->nb[2]*ne2;
-
-    result->op   = GGML_OP_VIEW;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_view_4d
-
-struct ggml_tensor * ggml_view_4d(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int64_t               ne0,
-        int64_t               ne1,
-        int64_t               ne2,
-        int64_t               ne3,
-        size_t                nb1,
-        size_t                nb2,
-        size_t                nb3,
-        size_t                offset) {
-
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
-
-    struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset);
-
-    result->nb[1] = nb1;
-    result->nb[2] = nb2;
-    result->nb[3] = nb3;
-
-    result->op   = GGML_OP_VIEW;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_permute
-
-struct ggml_tensor * ggml_permute(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   axis0,
-        int                   axis1,
-        int                   axis2,
-        int                   axis3) {
-    GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
-    GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
-    GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
-    GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
-
-    GGML_ASSERT(axis0 != axis1);
-    GGML_ASSERT(axis0 != axis2);
-    GGML_ASSERT(axis0 != axis3);
-    GGML_ASSERT(axis1 != axis2);
-    GGML_ASSERT(axis1 != axis3);
-    GGML_ASSERT(axis2 != axis3);
-
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = ggml_view_tensor(ctx, a);
-    ggml_format_name(result, "%s (permuted)", a->name);
-
-    int ne[GGML_MAX_DIMS];
-    int nb[GGML_MAX_DIMS];
-
-    ne[axis0] = a->ne[0];
-    ne[axis1] = a->ne[1];
-    ne[axis2] = a->ne[2];
-    ne[axis3] = a->ne[3];
-
-    nb[axis0] = a->nb[0];
-    nb[axis1] = a->nb[1];
-    nb[axis2] = a->nb[2];
-    nb[axis3] = a->nb[3];
-
-    result->ne[0] = ne[0];
-    result->ne[1] = ne[1];
-    result->ne[2] = ne[2];
-    result->ne[3] = ne[3];
-
-    result->nb[0] = nb[0];
-    result->nb[1] = nb[1];
-    result->nb[2] = nb[2];
-    result->nb[3] = nb[3];
-
-    result->op   = GGML_OP_PERMUTE;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    int32_t params[] = { axis0, axis1, axis2, axis3 };
-    ggml_set_op_params(result, params, sizeof(params));
-
-    return result;
-}
-
-// ggml_transpose
-
-struct ggml_tensor * ggml_transpose(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = ggml_view_tensor(ctx, a);
-    ggml_format_name(result, "%s (transposed)", a->name);
-
-    result->ne[0] = a->ne[1];
-    result->ne[1] = a->ne[0];
-
-    result->nb[0] = a->nb[1];
-    result->nb[1] = a->nb[0];
-
-    result->op   = GGML_OP_TRANSPOSE;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_get_rows
-
-struct ggml_tensor * ggml_get_rows(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b) {
-    GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
-
-    bool is_node = false;
-
-    if (a->grad || b->grad) {
-        is_node = true;
-    }
-
-    // TODO: implement non F32 return
-    //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
-    struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
-
-    result->op   = GGML_OP_GET_ROWS;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-// ggml_get_rows_back
-
-struct ggml_tensor * ggml_get_rows_back(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b,
-        struct ggml_tensor  * c) {
-    GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
-    GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
-
-    bool is_node = false;
-
-    if (a->grad || b->grad) {
-        is_node = true;
-    }
-
-    // TODO: implement non F32 return
-    //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
-    struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
-
-    result->op   = GGML_OP_GET_ROWS_BACK;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-    result->src[2] = c;
-
-    return result;
-}
-
-// ggml_diag
-
-struct ggml_tensor * ggml_diag(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    GGML_ASSERT(a->ne[1] == 1);
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
-    struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
-
-    result->op   = GGML_OP_DIAG;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-
-// ggml_diag_mask_inf
-
-static struct ggml_tensor * ggml_diag_mask_inf_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   n_past,
-        bool                  inplace) {
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    int32_t params[] = { n_past, inplace ? 1 : 0 };
-    ggml_set_op_params(result, params, sizeof(params));
-
-    result->op   = GGML_OP_DIAG_MASK_INF;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_diag_mask_inf(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   n_past) {
-    return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
-}
-
-
-struct ggml_tensor * ggml_diag_mask_inf_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   n_past) {
-    return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
-}
-
-// ggml_diag_mask_zero
-
-static struct ggml_tensor * ggml_diag_mask_zero_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   n_past,
-        bool                  inplace) {
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    int32_t params[] = { n_past, inplace ? 1 : 0 };
-    ggml_set_op_params(result, params, sizeof(params));
-
-    result->op   = GGML_OP_DIAG_MASK_ZERO;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_diag_mask_zero(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   n_past) {
-    return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
-}
-
-struct ggml_tensor * ggml_diag_mask_zero_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   n_past) {
-    return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
-}
-
-// ggml_soft_max
-
-static struct ggml_tensor * ggml_soft_max_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        bool                  inplace) {
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_SOFT_MAX;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_soft_max(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_soft_max_impl(ctx, a, false);
-}
-
-struct ggml_tensor * ggml_soft_max_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a) {
-    return ggml_soft_max_impl(ctx, a, true);
-}
-
-
-// ggml_soft_max_back
-
-static struct ggml_tensor * ggml_soft_max_back_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b,
-        bool                  inplace) {
-    bool is_node = false;
-
-    if (a->grad || b->grad) {
-        is_node = true; // TODO : implement backward pass
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_SOFT_MAX_BACK;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_soft_max_back(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b) {
-    return ggml_soft_max_back_impl(ctx, a, b, false);
-}
-
-struct ggml_tensor * ggml_soft_max_back_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b) {
-    return ggml_soft_max_back_impl(ctx, a, b, true);
-}
-
-// ggml_rope
-
-static struct ggml_tensor * ggml_rope_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   n_past,
-        int                   n_dims,
-        int                   mode,
-        int                   n_ctx,
-        float                 freq_base,
-        float                 freq_scale,
-        bool                  inplace) {
-    GGML_ASSERT(n_past >= 0);
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    int32_t params[6] = { n_past, n_dims, mode, n_ctx };
-    memcpy(params + 4, &freq_base,  sizeof(float));
-    memcpy(params + 5, &freq_scale, sizeof(float));
-    ggml_set_op_params(result, params, sizeof(params));
-
-    result->op   = GGML_OP_ROPE;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_rope(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   n_past,
-        int                   n_dims,
-        int                   mode,
-        int                   n_ctx) {
-    return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, false);
-}
-
-struct ggml_tensor * ggml_rope_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   n_past,
-        int                   n_dims,
-        int                   mode,
-        int                   n_ctx) {
-    return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
-}
-
-struct ggml_tensor * ggml_rope_custom(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   n_past,
-        int                   n_dims,
-        int                   mode,
-        int                   n_ctx,
-        float                 freq_base,
-        float                 freq_scale) {
-    return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, false);
-}
-
-struct ggml_tensor * ggml_rope_custom_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   n_past,
-        int                   n_dims,
-        int                   mode,
-        int                   n_ctx,
-        float                 freq_base,
-        float                 freq_scale) {
-    return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, true);
-}
-
-// ggml_rope_back
-
-struct ggml_tensor * ggml_rope_back(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   n_past,
-        int                   n_dims,
-        int                   mode,
-        int                   n_ctx) {
-    GGML_ASSERT(n_past >= 0);
-    GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
-
-    bool is_node = false;
-
-    if (a->grad) {
-        is_node = false; // TODO: implement backward
-    }
-
-    struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
-
-    int32_t params[] = { n_past, n_dims, mode, n_ctx };
-    ggml_set_op_params(result, params, sizeof(params));
-
-    result->op   = GGML_OP_ROPE_BACK;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_alibi
-
-struct ggml_tensor * ggml_alibi(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   n_past,
-        int                   n_head,
-        float                 bias_max) {
-    GGML_ASSERT(n_past >= 0);
-    bool is_node = false;
-
-    if (a->grad) {
-        GGML_ASSERT(false); // TODO: implement backward
-        is_node = true;
-    }
-
-    // TODO: when implement backward, fix this:
-    //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-    struct ggml_tensor * result = ggml_view_tensor(ctx, a);
-
-    int32_t op_params[3] = { n_past, n_head };
-    memcpy(op_params + 2, &bias_max, sizeof(float));
-    ggml_set_op_params(result, op_params, sizeof(op_params));
-
-    result->op   = GGML_OP_ALIBI;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_clamp
-
-struct ggml_tensor * ggml_clamp(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        float                 min,
-        float                 max) {
-    bool is_node = false;
-
-    if (a->grad) {
-        GGML_ASSERT(false); // TODO: implement backward
-        is_node = true;
-    }
-
-    // TODO: when implement backward, fix this:
-    struct ggml_tensor * result = ggml_view_tensor(ctx, a);
-
-    float params[] = { min, max };
-    ggml_set_op_params(result, params, sizeof(params));
-
-    result->op   = GGML_OP_CLAMP;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_conv_1d
-
-static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
-    return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
-}
-
-GGML_API struct ggml_tensor * ggml_conv_1d(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b,
-        int                   s0,
-        int                   p0,
-        int                   d0) {
-    GGML_ASSERT(ggml_is_matrix(b));
-    GGML_ASSERT(a->ne[1] == b->ne[1]);
-    bool is_node = false;
-
-    if (a->grad || b->grad) {
-        GGML_ASSERT(false); // TODO: implement backward
-        is_node = true;
-    }
-
-    const int64_t ne[4] = {
-        ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
-        a->ne[2], 1, 1,
-    };
-    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
-
-    int32_t params[] = { s0, p0, d0 };
-    ggml_set_op_params(result, params, sizeof(params));
-
-    result->op = GGML_OP_CONV_1D;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-// ggml_conv_2d
-
-struct ggml_tensor * ggml_conv_2d(
-    struct ggml_context * ctx,
-    struct ggml_tensor  * a,
-    struct ggml_tensor  * b,
-    int                  s0,
-    int                  s1,
-    int                  p0,
-    int                  p1,
-    int                  d0,
-    int                  d1) {
-
-    GGML_ASSERT(a->ne[2] == b->ne[2]);
-    bool is_node = false;
-
-    if (a->grad || b->grad) {
-        GGML_ASSERT(false); // TODO: implement backward
-        is_node = true;
-    }
-
-    const int64_t ne[4] = {
-        ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
-        ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
-        a->ne[3], b->ne[3],
-    };
-    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
-
-    int32_t params[] = { s0, s1, p0, p1, d0, d1 };
-    ggml_set_op_params(result, params, sizeof(params));
-
-    result->op = GGML_OP_CONV_2D;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-
-}
-
-// ggml_conv_1d_ph
-
-struct ggml_tensor * ggml_conv_1d_ph(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b,
-        int                   s,
-        int                   d) {
-    return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
-}
-
-
-// ggml_pool_*
-
-static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
-    return (ins + 2 * p - ks) / s + 1;
-}
-
-// ggml_pool_1d
-
-struct ggml_tensor * ggml_pool_1d(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        enum ggml_op_pool     op,
-        int                   k0,
-        int                   s0,
-        int                   p0) {
-
-    bool is_node = false;
-
-    if (a->grad) {
-        GGML_ASSERT(false); // TODO: implement backward
-        is_node = true;
-    }
-
-    const int64_t ne[3] = {
-        ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
-        a->ne[1],
-    };
-    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
-
-    int32_t params[] = { op, k0, s0, p0 };
-    ggml_set_op_params(result, params, sizeof(params));
-
-    result->op = GGML_OP_POOL_1D;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_pool_2d
-
-struct ggml_tensor * ggml_pool_2d(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        enum ggml_op_pool     op,
-        int                   k0,
-        int                   k1,
-        int                   s0,
-        int                   s1,
-        int                   p0,
-        int                   p1) {
-
-    bool is_node = false;
-
-    if (a->grad) {
-        GGML_ASSERT(false); // TODO: implement backward
-        is_node = true;
-    }
-
-    const int64_t ne[3] = {
-        ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
-        ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
-        a->ne[2],
-    };
-    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
-
-    int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
-    ggml_set_op_params(result, params, sizeof(params));
-
-    result->op = GGML_OP_POOL_2D;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_flash_attn
-
-struct ggml_tensor * ggml_flash_attn(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * q,
-        struct ggml_tensor  * k,
-        struct ggml_tensor  * v,
-        bool                  masked) {
-    GGML_ASSERT(ggml_can_mul_mat(k, q));
-    // TODO: check if vT can be multiplied by (k*qT)
-
-    bool is_node = false;
-
-    if (q->grad || k->grad || v->grad) {
-        is_node = true;
-    }
-
-    //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
-    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
-
-    int32_t t = masked ? 1 : 0;
-    ggml_set_op_params(result, &t, sizeof(t));
-
-    result->op   = GGML_OP_FLASH_ATTN;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = q;
-    result->src[1] = k;
-    result->src[2] = v;
-
-    return result;
-}
-
-// ggml_flash_ff
-
-struct ggml_tensor * ggml_flash_ff(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        struct ggml_tensor  * b0,
-        struct ggml_tensor  * b1,
-        struct ggml_tensor  * c0,
-        struct ggml_tensor  * c1) {
-    GGML_ASSERT(ggml_can_mul_mat(b0, a));
-    // TODO: more checks
-
-    bool is_node = false;
-
-    if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
-        is_node = true;
-    }
-
-    //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
-    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
-
-    result->op   = GGML_OP_FLASH_FF;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b0;
-    result->src[2] = b1;
-    result->src[3] = c0;
-    result->src[4] = c1;
-
-    return result;
-}
-
-// ggml_flash_attn_back
-
-struct ggml_tensor * ggml_flash_attn_back(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * q,
-        struct ggml_tensor  * k,
-        struct ggml_tensor  * v,
-        struct ggml_tensor  * d,
-        bool                  masked) {
-    GGML_ASSERT(ggml_can_mul_mat(k, q));
-    // TODO: check if vT can be multiplied by (k*qT)
-
-    // d shape [D,N,ne2,ne3]
-    // q shape [D,N,ne2,ne3]
-    // k shape [D,M,ne2,ne3]
-    // v shape [M,D,ne2,ne3]
-
-    const int64_t   D = q->ne[0];
-    const int64_t   N = q->ne[1];
-    const int64_t   M = k->ne[1];
-    const int64_t ne2 = q->ne[2];
-    const int64_t ne3 = q->ne[3];
-
-    GGML_ASSERT(k->ne[0] == D);
-    GGML_ASSERT(v->ne[0] == M);
-    GGML_ASSERT(v->ne[1] == D);
-    GGML_ASSERT(d->ne[0] == D);
-    GGML_ASSERT(d->ne[1] == N);
-    GGML_ASSERT(k->ne[2] == ne2);
-    GGML_ASSERT(k->ne[3] == ne3);
-    GGML_ASSERT(v->ne[2] == ne2);
-    GGML_ASSERT(v->ne[3] == ne3);
-    GGML_ASSERT(d->ne[2] == ne2);
-    GGML_ASSERT(d->ne[3] == ne3);
-
-    bool is_node = false;
-
-    if (q->grad || k->grad || v->grad) {
-        // when using this operation (in backwards pass) these grads are set.
-        // we don't want to create (big) grad of our result, so is_node is false.
-        is_node = false;
-    }
-
-    // store gradients of q, k and v as continuous tensors concatenated in result.
-    // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
-    // gradq->data = result->data
-    // gradk->data = result->data + nb0*D*N*ne2*ne3
-    // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
-    // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
-    int64_t ne[4] = {D,M+N+M,ne2,ne3};
-
-    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
-
-    int32_t masked_i = masked ? 1 : 0;
-    ggml_set_op_params(result, &masked_i, sizeof(masked_i));
-
-    result->op   = GGML_OP_FLASH_ATTN_BACK;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = q;
-    result->src[1] = k;
-    result->src[2] = v;
-    result->src[3] = d;
-
-    return result;
-}
-
-// ggml_win_part
-
-struct ggml_tensor * ggml_win_part(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   w) {
-    GGML_ASSERT(a->ne[3] == 1);
-    GGML_ASSERT(a->type  == GGML_TYPE_F32);
-
-    bool is_node = false;
-
-    if (a->grad) {
-        GGML_ASSERT(false); // TODO: implement backward
-        is_node = true;
-    }
-
-    // padding
-    const int px = (w - a->ne[1]%w)%w;
-    const int py = (w - a->ne[2]%w)%w;
-
-    const int npx = (px + a->ne[1])/w;
-    const int npy = (py + a->ne[2])/w;
-    const int np  = npx*npy;
-
-    const int64_t ne[4] = { a->ne[0], w, w, np, };
-
-    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
-
-    int32_t params[] = { npx, npy, w };
-    ggml_set_op_params(result, params, sizeof(params));
-
-    result->op   = GGML_OP_WIN_PART;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// ggml_win_unpart
-
-struct ggml_tensor * ggml_win_unpart(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        int                   w0,
-        int                   h0,
-        int                   w) {
-    GGML_ASSERT(a->type == GGML_TYPE_F32);
-
-    bool is_node = false;
-
-    if (a->grad) {
-        GGML_ASSERT(false); // TODO: implement backward
-        is_node = true;
-    }
-
-    const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
-    struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
-
-    int32_t params[] = { w };
-    ggml_set_op_params(result, params, sizeof(params));
-
-    result->op   = GGML_OP_WIN_UNPART;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-// gmml_unary
-
-static struct ggml_tensor * ggml_unary_impl(
-        struct ggml_context * ctx,
-        struct ggml_tensor * a,
-        enum ggml_unary_op op,
-        bool inplace) {
-    bool is_node = false;
-
-    if (!inplace && (a->grad)) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    ggml_set_op_params_i32(result, 0, (int32_t) op);
-
-    result->op   = GGML_OP_UNARY;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_unary(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        enum ggml_unary_op op) {
-    return ggml_unary_impl(ctx, a, op, false);
-}
-
-struct ggml_tensor * ggml_unary_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        enum ggml_unary_op op) {
-    return ggml_unary_impl(ctx, a, op, true);
-}
-
-// ggml_map_unary
-
-static struct ggml_tensor * ggml_map_unary_impl_f32(
-        struct ggml_context        * ctx,
-        struct ggml_tensor         * a,
-        const  ggml_unary_op_f32_t fun,
-        bool   inplace) {
-    bool is_node = false;
-
-    if (!inplace && a->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
-
-    result->op = GGML_OP_MAP_UNARY;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_map_unary_f32(
-        struct ggml_context        * ctx,
-        struct ggml_tensor         * a,
-        const  ggml_unary_op_f32_t fun) {
-    return ggml_map_unary_impl_f32(ctx, a, fun, false);
-}
-
-struct ggml_tensor * ggml_map_unary_inplace_f32(
-        struct ggml_context        * ctx,
-        struct ggml_tensor         * a,
-        const  ggml_unary_op_f32_t fun) {
-    return ggml_map_unary_impl_f32(ctx, a, fun, true);
-}
-
-// ggml_map_binary
-
-static struct ggml_tensor * ggml_map_binary_impl_f32(
-        struct ggml_context         * ctx,
-        struct ggml_tensor          * a,
-        struct ggml_tensor          * b,
-        const  ggml_binary_op_f32_t fun,
-        bool   inplace) {
-    GGML_ASSERT(ggml_are_same_shape(a, b));
-
-    bool is_node = false;
-
-    if (!inplace && (a->grad || b->grad)) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
-
-    result->op = GGML_OP_MAP_BINARY;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_map_binary_f32(
-        struct ggml_context         * ctx,
-        struct ggml_tensor          * a,
-        struct ggml_tensor          * b,
-        const  ggml_binary_op_f32_t fun) {
-    return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
-}
-
-struct ggml_tensor * ggml_map_binary_inplace_f32(
-        struct ggml_context         * ctx,
-        struct ggml_tensor          * a,
-        struct ggml_tensor          * b,
-        const  ggml_binary_op_f32_t fun) {
-    return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
-}
-
-// ggml_map_custom1_f32
-
-static struct ggml_tensor * ggml_map_custom1_impl_f32(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        const  ggml_custom1_op_f32_t   fun,
-        bool   inplace) {
-    bool is_node = false;
-
-    if (!inplace && a->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
-
-    result->op = GGML_OP_MAP_CUSTOM1_F32;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_map_custom1_f32(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        const  ggml_custom1_op_f32_t   fun) {
-    return ggml_map_custom1_impl_f32(ctx, a, fun, false);
-}
-
-struct ggml_tensor * ggml_map_custom1_inplace_f32(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        const  ggml_custom1_op_f32_t   fun) {
-    return ggml_map_custom1_impl_f32(ctx, a, fun, true);
-}
-
-// ggml_map_custom2_f32
-
-static struct ggml_tensor * ggml_map_custom2_impl_f32(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        struct ggml_tensor           * b,
-        const  ggml_custom2_op_f32_t   fun,
-        bool   inplace) {
-    bool is_node = false;
-
-    if (!inplace && (a->grad || b->grad)) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
-
-    result->op = GGML_OP_MAP_CUSTOM2_F32;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_map_custom2_f32(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        struct ggml_tensor           * b,
-        const  ggml_custom2_op_f32_t   fun) {
-    return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
-}
-
-struct ggml_tensor * ggml_map_custom2_inplace_f32(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        struct ggml_tensor           * b,
-        const  ggml_custom2_op_f32_t   fun) {
-    return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
-}
-
-// ggml_map_custom3_f32
-
-static struct ggml_tensor * ggml_map_custom3_impl_f32(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        struct ggml_tensor           * b,
-        struct ggml_tensor           * c,
-        const  ggml_custom3_op_f32_t   fun,
-        bool   inplace) {
-    bool is_node = false;
-
-    if (!inplace && (a->grad || b->grad || c->grad)) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
-
-    result->op = GGML_OP_MAP_CUSTOM3_F32;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-    result->src[2] = c;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_map_custom3_f32(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        struct ggml_tensor           * b,
-        struct ggml_tensor           * c,
-        const  ggml_custom3_op_f32_t   fun) {
-    return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
-}
-
-struct ggml_tensor * ggml_map_custom3_inplace_f32(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        struct ggml_tensor           * b,
-        struct ggml_tensor           * c,
-        const  ggml_custom3_op_f32_t   fun) {
-    return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
-}
-
-// ggml_map_custom1
-struct ggml_map_custom1_op_params {
-    ggml_custom1_op_t fun;
-    int n_tasks;
-    void * userdata;
-};
-
-static struct ggml_tensor * ggml_map_custom1_impl(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        const  ggml_custom1_op_t       fun,
-        int                            n_tasks,
-        void                         * userdata,
-        bool                           inplace) {
-    GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
-
-    bool is_node = false;
-
-    if (!inplace && a->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    struct ggml_map_custom1_op_params params = {
-        /*.fun      =*/ fun,
-        /*.n_tasks  =*/ n_tasks,
-        /*.userdata =*/ userdata
-    };
-    ggml_set_op_params(result, (const void *) &params, sizeof(params));
-
-    result->op = GGML_OP_MAP_CUSTOM1;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_map_custom1(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        const  ggml_custom1_op_t       fun,
-        int                            n_tasks,
-        void                         * userdata) {
-    return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
-}
-
-struct ggml_tensor * ggml_map_custom1_inplace(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        const  ggml_custom1_op_t       fun,
-        int                            n_tasks,
-        void                         * userdata) {
-    return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
-}
-
-// ggml_map_custom2
-
-struct ggml_map_custom2_op_params {
-    ggml_custom2_op_t fun;
-    int n_tasks;
-    void * userdata;
-};
-
-static struct ggml_tensor * ggml_map_custom2_impl(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        struct ggml_tensor           * b,
-        const  ggml_custom2_op_t       fun,
-        int                            n_tasks,
-        void                         * userdata,
-        bool                           inplace) {
-    GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
-
-    bool is_node = false;
-
-    if (!inplace && (a->grad || b->grad)) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    struct ggml_map_custom2_op_params params = {
-        /*.fun      =*/ fun,
-        /*.n_tasks  =*/ n_tasks,
-        /*.userdata =*/ userdata
-    };
-    ggml_set_op_params(result, (const void *) &params, sizeof(params));
-
-    result->op = GGML_OP_MAP_CUSTOM2;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_map_custom2(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        struct ggml_tensor           * b,
-        const  ggml_custom2_op_t       fun,
-        int                            n_tasks,
-        void                         * userdata) {
-    return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
-}
-
-struct ggml_tensor * ggml_map_custom2_inplace(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        struct ggml_tensor           * b,
-        const  ggml_custom2_op_t       fun,
-        int                            n_tasks,
-        void                         * userdata) {
-    return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
-}
-
-// ggml_map_custom3
-
-struct ggml_map_custom3_op_params {
-    ggml_custom3_op_t fun;
-    int n_tasks;
-    void * userdata;
-};
-
-static struct ggml_tensor * ggml_map_custom3_impl(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        struct ggml_tensor           * b,
-        struct ggml_tensor           * c,
-        const  ggml_custom3_op_t       fun,
-        int                            n_tasks,
-        void                         * userdata,
-        bool                           inplace) {
-    GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
-
-    bool is_node = false;
-
-    if (!inplace && (a->grad || b->grad || c->grad)) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
-
-    struct ggml_map_custom3_op_params params = {
-        /*.fun      =*/ fun,
-        /*.n_tasks  =*/ n_tasks,
-        /*.userdata =*/ userdata
-    };
-    ggml_set_op_params(result, (const void *) &params, sizeof(params));
-
-    result->op = GGML_OP_MAP_CUSTOM3;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-    result->src[2] = c;
-
-    return result;
-}
-
-struct ggml_tensor * ggml_map_custom3(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        struct ggml_tensor           * b,
-        struct ggml_tensor           * c,
-        const  ggml_custom3_op_t       fun,
-        int                            n_tasks,
-        void                         * userdata) {
-    return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
-}
-
-struct ggml_tensor * ggml_map_custom3_inplace(
-        struct ggml_context          * ctx,
-        struct ggml_tensor           * a,
-        struct ggml_tensor           * b,
-        struct ggml_tensor           * c,
-        const  ggml_custom3_op_t       fun,
-        int                            n_tasks,
-        void                         * userdata) {
-    return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
-}
-
-
-
-// ggml_cross_entropy_loss
-
-struct ggml_tensor * ggml_cross_entropy_loss(
-        struct ggml_context         * ctx,
-        struct ggml_tensor          * a,
-        struct ggml_tensor          * b) {
-    GGML_ASSERT(ggml_are_same_shape(a, b));
-    bool is_node = false;
-
-    if (a->grad || b->grad) {
-        is_node = true;
-    }
-
-    struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
-
-    result->op   = GGML_OP_CROSS_ENTROPY_LOSS;
-    result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-
-    return result;
-}
-
-// ggml_cross_entropy_loss_back
-
-struct ggml_tensor * ggml_cross_entropy_loss_back(
-        struct ggml_context         * ctx,
-        struct ggml_tensor          * a,
-        struct ggml_tensor          * b,
-        struct ggml_tensor          * c) {
-    GGML_ASSERT(ggml_are_same_shape(a, b));
-    GGML_ASSERT(ggml_is_scalar(c));
-
-    struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
-
-    result->op   = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
-    result->grad = NULL;
-    result->src[0] = a;
-    result->src[1] = b;
-    result->src[2] = c;
-
-    return result;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-void ggml_set_param(
-        struct ggml_context * ctx,
-        struct ggml_tensor * tensor) {
-    tensor->is_param = true;
-
-    GGML_ASSERT(tensor->grad == NULL);
-    tensor->grad = ggml_dup_tensor(ctx, tensor);
-}
-
-// ggml_compute_forward_dup
-
-static void ggml_compute_forward_dup_same_cont(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
-    GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
-    GGML_ASSERT(src0->type == dst->type);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const size_t nb00 = src0->nb[0];
-    const size_t nb0 = dst->nb[0];
-
-    const int ith = params->ith; // thread index
-    const int nth = params->nth; // number of threads
-
-    // parallelize by elements
-    const int ne = ggml_nelements(dst);
-    const int dr = (ne + nth - 1) / nth;
-    const int ie0 = dr * ith;
-    const int ie1 = MIN(ie0 + dr, ne);
-
-    if (ie0 < ie1) {
-        memcpy(
-            ((char *)  dst->data + ie0*nb0),
-            ((char *) src0->data + ie0*nb00),
-            (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
-    }
-
-}
-static void ggml_compute_forward_dup_f16(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    const int ith = params->ith; // thread index
-    const int nth = params->nth; // number of threads
-
-    if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
-        ggml_compute_forward_dup_same_cont(params, src0, dst);
-        return;
-    }
-
-    // parallelize by rows
-    const int nr = ne01;
-    // number of rows per thread
-    const int dr = (nr + nth - 1) / nth;
-    // row range for this thread
-    const int ir0 = dr * ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    if (src0->type == dst->type &&
-        ne00 == ne0 &&
-        nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
-        // copy by rows
-        const size_t rs = ne00*nb00;
-        for (int64_t i03 = 0; i03 < ne03; i03++) {
-            for (int64_t i02 = 0; i02 < ne02; i02++) {
-                for (int64_t i01 = ir0; i01 < ir1; i01++) {
-                    memcpy(
-                        ((char *)  dst->data + i01*nb1  + i02*nb2  + i03*nb3),
-                        ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
-                        rs);
-                }
-            }
-        }
-        return;
-    }
-
-    // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
-
-    if (ggml_is_contiguous(dst)) {
-        if (nb00 == sizeof(ggml_fp16_t)) {
-            if (dst->type == GGML_TYPE_F16) {
-                size_t id = 0;
-                const size_t rs = ne00 * nb00;
-                char * dst_ptr = (char *) dst->data;
-
-                for (int i03 = 0; i03 < ne03; i03++) {
-                    for (int i02 = 0; i02 < ne02; i02++) {
-                        id += rs * ir0;
-                        for (int i01 = ir0; i01 < ir1; i01++) {
-                            const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
-                            memcpy(dst_ptr + id, src0_ptr, rs);
-                            id += rs;
-                        }
-                        id += rs * (ne01 - ir1);
-                    }
-                }
-            } else if (dst->type == GGML_TYPE_F32) {
-                size_t id = 0;
-                float * dst_ptr = (float *) dst->data;
-
-                for (int i03 = 0; i03 < ne03; i03++) {
-                    for (int i02 = 0; i02 < ne02; i02++) {
-                        id += ne00 * ir0;
-                        for (int i01 = ir0; i01 < ir1; i01++) {
-                            const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-                            for (int i00 = 0; i00 < ne00; i00++) {
-                                dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
-                                id++;
-                            }
-                        }
-                        id += ne00 * (ne01 - ir1);
-                    }
-                }
-            } else if (type_traits[dst->type].from_float) {
-                ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
-                float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
-
-                size_t id = 0;
-                size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
-                char * dst_ptr = (char *) dst->data;
-
-                for (int i03 = 0; i03 < ne03; i03++) {
-                    for (int i02 = 0; i02 < ne02; i02++) {
-                        id += rs * ir0;
-                        for (int i01 = ir0; i01 < ir1; i01++) {
-                            const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-
-                            for (int i00 = 0; i00 < ne00; i00++) {
-                                src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
-                            }
-
-                            quantize_row_q(src0_f32, dst_ptr + id, ne00);
-                            id += rs;
-                        }
-                        id += rs * (ne01 - ir1);
-                    }
-                }
-            } else {
-                GGML_ASSERT(false); // TODO: implement
-            }
-        } else {
-            //printf("%s: this is not optimal - fix me\n", __func__);
-
-            if (dst->type == GGML_TYPE_F32) {
-                size_t id = 0;
-                float * dst_ptr = (float *) dst->data;
-
-                for (int i03 = 0; i03 < ne03; i03++) {
-                    for (int i02 = 0; i02 < ne02; i02++) {
-                        id += ne00 * ir0;
-                        for (int i01 = ir0; i01 < ir1; i01++) {
-                            for (int i00 = 0; i00 < ne00; i00++) {
-                                const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
-                                dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
-                                id++;
-                            }
-                        }
-                        id += ne00 * (ne01 - ir1);
-                    }
-                }
-            } else if (dst->type == GGML_TYPE_F16) {
-                size_t id = 0;
-                ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
-
-                for (int i03 = 0; i03 < ne03; i03++) {
-                    for (int i02 = 0; i02 < ne02; i02++) {
-                        id += ne00 * ir0;
-                        for (int i01 = ir0; i01 < ir1; i01++) {
-                            for (int i00 = 0; i00 < ne00; i00++) {
-                                const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
-                                dst_ptr[id] = *src0_ptr;
-                                id++;
-                            }
-                        }
-                        id += ne00 * (ne01 - ir1);
-                    }
-                }
-            } else {
-                GGML_ASSERT(false); // TODO: implement
-            }
-        }
-        return;
-    }
-
-    // dst counters
-    int64_t i10 = 0;
-    int64_t i11 = 0;
-    int64_t i12 = 0;
-    int64_t i13 = 0;
-
-    if (dst->type == GGML_TYPE_F16) {
-        for (int64_t i03 = 0; i03 < ne03; i03++) {
-            for (int64_t i02 = 0; i02 < ne02; i02++) {
-                i10 += ne00 * ir0;
-                while (i10 >= ne0) {
-                    i10 -= ne0;
-                    if (++i11 == ne1) {
-                        i11 = 0;
-                        if (++i12 == ne2) {
-                            i12 = 0;
-                            if (++i13 == ne3) {
-                                i13 = 0;
-                            }
-                        }
-                    }
-                }
-                for (int64_t i01 = ir0; i01 < ir1; i01++) {
-                    for (int64_t i00 = 0; i00 < ne00; i00++) {
-                        const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-                              char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
-
-                        memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
-
-                        if (++i10 == ne00) {
-                            i10 = 0;
-                            if (++i11 == ne01) {
-                                i11 = 0;
-                                if (++i12 == ne02) {
-                                    i12 = 0;
-                                    if (++i13 == ne03) {
-                                        i13 = 0;
-                                    }
-                                }
-                            }
-                        }
-                    }
-                }
-                i10 += ne00 * (ne01 - ir1);
-                while (i10 >= ne0) {
-                    i10 -= ne0;
-                    if (++i11 == ne1) {
-                        i11 = 0;
-                        if (++i12 == ne2) {
-                            i12 = 0;
-                            if (++i13 == ne3) {
-                                i13 = 0;
-                            }
-                        }
-                    }
-                }
-            }
-        }
-    } else if (dst->type == GGML_TYPE_F32) {
-        for (int64_t i03 = 0; i03 < ne03; i03++) {
-            for (int64_t i02 = 0; i02 < ne02; i02++) {
-                i10 += ne00 * ir0;
-                while (i10 >= ne0) {
-                    i10 -= ne0;
-                    if (++i11 == ne1) {
-                        i11 = 0;
-                        if (++i12 == ne2) {
-                            i12 = 0;
-                            if (++i13 == ne3) {
-                                i13 = 0;
-                            }
-                        }
-                    }
-                }
-                for (int64_t i01 = ir0; i01 < ir1; i01++) {
-                    for (int64_t i00 = 0; i00 < ne00; i00++) {
-                        const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-                              char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
-
-                        *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
-
-                        if (++i10 == ne0) {
-                            i10 = 0;
-                            if (++i11 == ne1) {
-                                i11 = 0;
-                                if (++i12 == ne2) {
-                                    i12 = 0;
-                                    if (++i13 == ne3) {
-                                        i13 = 0;
-                                    }
-                                }
-                            }
-                        }
-                    }
-                }
-                i10 += ne00 * (ne01 - ir1);
-                while (i10 >= ne0) {
-                    i10 -= ne0;
-                    if (++i11 == ne1) {
-                        i11 = 0;
-                        if (++i12 == ne2) {
-                            i12 = 0;
-                            if (++i13 == ne3) {
-                                i13 = 0;
-                            }
-                        }
-                    }
-                }
-            }
-        }
-    } else {
-        GGML_ASSERT(false); // TODO: implement
-    }
-}
-
-static void ggml_compute_forward_dup_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    const int ith = params->ith; // thread index
-    const int nth = params->nth; // number of threads
-
-    if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
-        ggml_compute_forward_dup_same_cont(params, src0, dst);
-        return;
-    }
-
-    // parallelize by rows
-    const int nr = ne01;
-    // number of rows per thread
-    const int dr = (nr + nth - 1) / nth;
-    // row range for this thread
-    const int ir0 = dr * ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    if (src0->type == dst->type &&
-        ne00 == ne0 &&
-        nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
-        // copy by rows
-        const size_t rs = ne00*nb00;
-        for (int64_t i03 = 0; i03 < ne03; i03++) {
-            for (int64_t i02 = 0; i02 < ne02; i02++) {
-                for (int64_t i01 = ir0; i01 < ir1; i01++) {
-                    memcpy(
-                        ((char *)  dst->data + i01*nb1  + i02*nb2  + i03*nb3),
-                        ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
-                        rs);
-                }
-            }
-        }
-        return;
-    }
-
-    if (ggml_is_contiguous(dst)) {
-        // TODO: simplify
-        if (nb00 == sizeof(float)) {
-            if (dst->type == GGML_TYPE_F32) {
-                size_t id = 0;
-                const size_t rs = ne00 * nb00;
-                char * dst_ptr = (char *) dst->data;
-
-                for (int i03 = 0; i03 < ne03; i03++) {
-                    for (int i02 = 0; i02 < ne02; i02++) {
-                        id += rs * ir0;
-                        for (int i01 = ir0; i01 < ir1; i01++) {
-                            const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
-                            memcpy(dst_ptr + id, src0_ptr, rs);
-                            id += rs;
-                        }
-                        id += rs * (ne01 - ir1);
-                    }
-                }
-            } else if (type_traits[dst->type].from_float) {
-                ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
-
-                size_t id = 0;
-                size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
-                char * dst_ptr = (char *) dst->data;
-
-                for (int i03 = 0; i03 < ne03; i03++) {
-                    for (int i02 = 0; i02 < ne02; i02++) {
-                        id += rs * ir0;
-                        for (int i01 = ir0; i01 < ir1; i01++) {
-                            const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-                            quantize_row_q(src0_ptr, dst_ptr + id, ne00);
-                            id += rs;
-                        }
-                        id += rs * (ne01 - ir1);
-                    }
-                }
-            } else {
-                GGML_ASSERT(false); // TODO: implement
-            }
-        } else {
-            //printf("%s: this is not optimal - fix me\n", __func__);
-
-            if (dst->type == GGML_TYPE_F32) {
-                size_t id = 0;
-                float * dst_ptr = (float *) dst->data;
-
-                for (int i03 = 0; i03 < ne03; i03++) {
-                    for (int i02 = 0; i02 < ne02; i02++) {
-                        id += ne00 * ir0;
-                        for (int i01 = ir0; i01 < ir1; i01++) {
-                            for (int i00 = 0; i00 < ne00; i00++) {
-                                const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
-                                dst_ptr[id] = *src0_ptr;
-                                id++;
-                            }
-                        }
-                        id += ne00 * (ne01 - ir1);
-                    }
-                }
-            } else if (dst->type == GGML_TYPE_F16) {
-                size_t id = 0;
-                ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
-
-                for (int i03 = 0; i03 < ne03; i03++) {
-                    for (int i02 = 0; i02 < ne02; i02++) {
-                        id += ne00 * ir0;
-                        for (int i01 = ir0; i01 < ir1; i01++) {
-                            for (int i00 = 0; i00 < ne00; i00++) {
-                                const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-
-                                dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
-                                id++;
-                            }
-                        }
-                        id += ne00 * (ne01 - ir1);
-                    }
-                }
-            } else {
-                GGML_ASSERT(false); // TODO: implement
-            }
-        }
-
-        return;
-    }
-
-    // dst counters
-
-    int64_t i10 = 0;
-    int64_t i11 = 0;
-    int64_t i12 = 0;
-    int64_t i13 = 0;
-
-    if (dst->type == GGML_TYPE_F32) {
-        for (int64_t i03 = 0; i03 < ne03; i03++) {
-            for (int64_t i02 = 0; i02 < ne02; i02++) {
-                i10 += ne00 * ir0;
-                while (i10 >= ne0) {
-                    i10 -= ne0;
-                    if (++i11 == ne1) {
-                        i11 = 0;
-                        if (++i12 == ne2) {
-                            i12 = 0;
-                            if (++i13 == ne3) {
-                                i13 = 0;
-                            }
-                        }
-                    }
-                }
-                for (int64_t i01 = ir0; i01 < ir1; i01++) {
-                    for (int64_t i00 = 0; i00 < ne00; i00++) {
-                        const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-                              char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
-
-                        memcpy(dst_ptr, src0_ptr, sizeof(float));
-
-                        if (++i10 == ne0) {
-                            i10 = 0;
-                            if (++i11 == ne1) {
-                                i11 = 0;
-                                if (++i12 == ne2) {
-                                    i12 = 0;
-                                    if (++i13 == ne3) {
-                                        i13 = 0;
-                                    }
-                                }
-                            }
-                        }
-                    }
-                }
-                i10 += ne00 * (ne01 - ir1);
-                while (i10 >= ne0) {
-                    i10 -= ne0;
-                    if (++i11 == ne1) {
-                        i11 = 0;
-                        if (++i12 == ne2) {
-                            i12 = 0;
-                            if (++i13 == ne3) {
-                                i13 = 0;
-                            }
-                        }
-                    }
-                }
-            }
-        }
-    } else if (dst->type == GGML_TYPE_F16) {
-        for (int64_t i03 = 0; i03 < ne03; i03++) {
-            for (int64_t i02 = 0; i02 < ne02; i02++) {
-                i10 += ne00 * ir0;
-                while (i10 >= ne0) {
-                    i10 -= ne0;
-                    if (++i11 == ne1) {
-                        i11 = 0;
-                        if (++i12 == ne2) {
-                            i12 = 0;
-                            if (++i13 == ne3) {
-                                i13 = 0;
-                            }
-                        }
-                    }
-                }
-                for (int64_t i01 = ir0; i01 < ir1; i01++) {
-                    for (int64_t i00 = 0; i00 < ne00; i00++) {
-                        const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
-                              char * dst_ptr  = ((char *)  dst->data + i10*nb0  + i11*nb1  + i12*nb2  + i13*nb3);
-
-                        *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
-
-                        if (++i10 == ne0) {
-                            i10 = 0;
-                            if (++i11 == ne1) {
-                                i11 = 0;
-                                if (++i12 == ne2) {
-                                    i12 = 0;
-                                    if (++i13 == ne3) {
-                                        i13 = 0;
-                                    }
-                                }
-                            }
-                        }
-                    }
-                }
-                i10 += ne00 * (ne01 - ir1);
-                while (i10 >= ne0) {
-                    i10 -= ne0;
-                    if (++i11 == ne1) {
-                        i11 = 0;
-                        if (++i12 == ne2) {
-                            i12 = 0;
-                            if (++i13 == ne3) {
-                                i13 = 0;
-                            }
-                        }
-                    }
-                }
-            }
-        }
-    } else {
-        GGML_ASSERT(false); // TODO: implement
-    }
-}
-
-static void ggml_compute_forward_dup(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
-        ggml_compute_forward_dup_same_cont(params, src0, dst);
-        return;
-    }
-    switch (src0->type) {
-        case GGML_TYPE_F16:
-            {
-                ggml_compute_forward_dup_f16(params, src0, dst);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_dup_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_add
-
-static void ggml_compute_forward_add_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nr  = ggml_nrows(src0);
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    GGML_ASSERT( nb0 == sizeof(float));
-    GGML_ASSERT(nb00 == sizeof(float));
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    if (nb10 == sizeof(float)) {
-        for (int ir = ir0; ir < ir1; ++ir) {
-            // src1 is broadcastable across src0 and dst in i1, i2, i3
-            const int64_t i03 = ir/(ne02*ne01);
-            const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
-            const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
-            const int64_t i13 = i03 % ne13;
-            const int64_t i12 = i02 % ne12;
-            const int64_t i11 = i01 % ne11;
-
-            float * dst_ptr  = (float *) ((char *) dst->data  + i03*nb3  + i02*nb2  + i01*nb1 );
-            float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
-            float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
-
-#ifdef GGML_USE_ACCELERATE
-            vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
-#else
-            ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
-#endif
-                // }
-            // }
-        }
-    } else {
-        // src1 is not contiguous
-        for (int ir = ir0; ir < ir1; ++ir) {
-            // src1 is broadcastable across src0 and dst in i1, i2, i3
-            const int64_t i03 = ir/(ne02*ne01);
-            const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
-            const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
-            const int64_t i13 = i03 % ne13;
-            const int64_t i12 = i02 % ne12;
-            const int64_t i11 = i01 % ne11;
-
-            float * dst_ptr  = (float *) ((char *) dst->data  + i03*nb3  + i02*nb2  + i01*nb1 );
-            float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
-
-            for (int i0 = 0; i0 < ne0; i0++) {
-                float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
-
-                dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_add_f16_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nr  = ggml_nrows(src0);
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F16);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-    GGML_ASSERT(dst->type  == GGML_TYPE_F16);
-
-    GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
-    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    if (nb10 == sizeof(float)) {
-        for (int ir = ir0; ir < ir1; ++ir) {
-            // src0, src1 and dst are same shape => same indices
-            const int i3 = ir/(ne2*ne1);
-            const int i2 = (ir - i3*ne2*ne1)/ne1;
-            const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
-            ggml_fp16_t * dst_ptr  = (ggml_fp16_t *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1);
-            ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
-            float *       src1_ptr = (float *)       ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
-
-            for (int i = 0; i < ne0; i++) {
-                dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
-            }
-        }
-    }
-    else {
-        // src1 is not contiguous
-        GGML_ASSERT(false);
-    }
-}
-
-static void ggml_compute_forward_add_f16_f16(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nr  = ggml_nrows(src0);
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F16);
-    GGML_ASSERT(src1->type == GGML_TYPE_F16);
-    GGML_ASSERT(dst->type  == GGML_TYPE_F16);
-
-    GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
-    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    if (nb10 == sizeof(ggml_fp16_t)) {
-        for (int ir = ir0; ir < ir1; ++ir) {
-            // src0, src1 and dst are same shape => same indices
-            const int i3 = ir/(ne2*ne1);
-            const int i2 = (ir - i3*ne2*ne1)/ne1;
-            const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
-            ggml_fp16_t * dst_ptr  = (ggml_fp16_t *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1);
-            ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
-            ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
-
-            for (int i = 0; i < ne0; i++) {
-                dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
-            }
-        }
-    }
-    else {
-        // src1 is not contiguous
-        GGML_ASSERT(false);
-    }
-}
-
-static void ggml_compute_forward_add_q_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int nr  = ggml_nrows(src0);
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const enum ggml_type type = src0->type;
-    ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
-    ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
-
-    // we don't support permuted src0 or src1
-    GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
-    GGML_ASSERT(nb10 == sizeof(float));
-
-    // dst cannot be transposed or permuted
-    GGML_ASSERT(nb0 <= nb1);
-    GGML_ASSERT(nb1 <= nb2);
-    GGML_ASSERT(nb2 <= nb3);
-
-    GGML_ASSERT(ggml_is_quantized(src0->type));
-    GGML_ASSERT(dst->type == src0->type);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
-
-    for (int ir = ir0; ir < ir1; ++ir) {
-        // src0 indices
-        const int i03 = ir/(ne02*ne01);
-        const int i02 = (ir - i03*ne02*ne01)/ne01;
-        const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
-        // src1 and dst are same shape as src0 => same indices
-        const int i13 = i03;
-        const int i12 = i02;
-        const int i11 = i01;
-
-        const int i3 = i03;
-        const int i2 = i02;
-        const int i1 = i01;
-
-        void  * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
-        float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
-        void  * dst_row  = (void *) ((char *)  dst->data + ( i1*nb1  +  i2*nb2  +  i3*nb3));
-
-        assert(ne00 % 32 == 0);
-
-        // unquantize row from src0 to temp buffer
-        dequantize_row_q(src0_row, wdata, ne00);
-        // add src1
-        ggml_vec_acc_f32(ne00, wdata, src1_row);
-        // quantize row to dst
-        quantize_row_q(wdata, dst_row, ne00);
-    }
-}
-
-static void ggml_compute_forward_add(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_add_f32(params, src0, src1, dst);
-            } break;
-        case GGML_TYPE_F16:
-            {
-                if (src1->type == GGML_TYPE_F16) {
-                    ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
-                }
-                else if (src1->type == GGML_TYPE_F32) {
-                    ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
-                }
-                else {
-                    GGML_ASSERT(false);
-                }
-            } break;
-        case GGML_TYPE_Q4_0:
-        case GGML_TYPE_Q4_1:
-        case GGML_TYPE_Q5_0:
-        case GGML_TYPE_Q5_1:
-        case GGML_TYPE_Q8_0:
-        case GGML_TYPE_Q2_K:
-        case GGML_TYPE_Q3_K:
-        case GGML_TYPE_Q4_K:
-        case GGML_TYPE_Q5_K:
-        case GGML_TYPE_Q6_K:
-            {
-                ggml_compute_forward_add_q_f32(params, src0, src1, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_add1
-
-static void ggml_compute_forward_add1_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-    GGML_ASSERT(ggml_is_scalar(src1));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nr  = ggml_nrows(src0);
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    GGML_ASSERT( nb0 == sizeof(float));
-    GGML_ASSERT(nb00 == sizeof(float));
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int ir = ir0; ir < ir1; ++ir) {
-        // src0 and dst are same shape => same indices
-        const int i3 = ir/(ne2*ne1);
-        const int i2 = (ir - i3*ne2*ne1)/ne1;
-        const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
-#ifdef GGML_USE_ACCELERATE
-        UNUSED(ggml_vec_add1_f32);
-
-        vDSP_vadd(
-                (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
-                (float *) ((char *) src1->data), 0,
-                (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 ), 1,
-                ne0);
-#else
-        ggml_vec_add1_f32(ne0,
-                (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 ),
-                (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
-               *(float *) src1->data);
-#endif
-    }
-}
-
-static void ggml_compute_forward_add1_f16_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-    GGML_ASSERT(ggml_is_scalar(src1));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // scalar to add
-    const float v = *(float *) src1->data;
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nr  = ggml_nrows(src0);
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F16);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-    GGML_ASSERT(dst->type  == GGML_TYPE_F16);
-
-    GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
-    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int ir = ir0; ir < ir1; ++ir) {
-        // src0 and dst are same shape => same indices
-        const int i3 = ir/(ne2*ne1);
-        const int i2 = (ir - i3*ne2*ne1)/ne1;
-        const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
-        ggml_fp16_t * dst_ptr  = (ggml_fp16_t *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 );
-        ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
-        for (int i = 0; i < ne0; i++) {
-            dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
-        }
-    }
-}
-
-static void ggml_compute_forward_add1_f16_f16(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-    GGML_ASSERT(ggml_is_scalar(src1));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // scalar to add
-    const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nr  = ggml_nrows(src0);
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    GGML_ASSERT(src0->type == GGML_TYPE_F16);
-    GGML_ASSERT(src1->type == GGML_TYPE_F16);
-    GGML_ASSERT(dst->type  == GGML_TYPE_F16);
-
-    GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
-    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int ir = ir0; ir < ir1; ++ir) {
-        // src0 and dst are same shape => same indices
-        const int i3 = ir/(ne2*ne1);
-        const int i2 = (ir - i3*ne2*ne1)/ne1;
-        const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
-        ggml_fp16_t * dst_ptr  = (ggml_fp16_t *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 );
-        ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
-        for (int i = 0; i < ne0; i++) {
-            dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
-        }
-    }
-}
-
-static void ggml_compute_forward_add1_q_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-    GGML_ASSERT(ggml_is_scalar(src1));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // scalar to add
-    const float v = *(float *) src1->data;
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nr  = ggml_nrows(src0);
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    const enum ggml_type type = src0->type;
-    ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
-    ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
-
-    // we don't support permuted src0
-    GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
-
-    // dst cannot be transposed or permuted
-    GGML_ASSERT(nb0 <= nb1);
-    GGML_ASSERT(nb1 <= nb2);
-    GGML_ASSERT(nb2 <= nb3);
-
-    GGML_ASSERT(ggml_is_quantized(src0->type));
-    GGML_ASSERT(dst->type == src0->type);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
-
-    for (int ir = ir0; ir < ir1; ++ir) {
-        // src0 and dst are same shape => same indices
-        const int i3 = ir/(ne2*ne1);
-        const int i2 = (ir - i3*ne2*ne1)/ne1;
-        const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
-        void  * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
-        void  * dst_row  = (void *) ((char *)  dst->data + (i1*nb1  + i2*nb2  + i3*nb0 ));
-
-        assert(ne0 % 32 == 0);
-
-        // unquantize row from src0 to temp buffer
-        dequantize_row_q(src0_row, wdata, ne0);
-        // add src1
-        ggml_vec_acc1_f32(ne0, wdata, v);
-        // quantize row to dst
-        quantize_row_q(wdata, dst_row, ne0);
-    }
-}
-
-static void ggml_compute_forward_add1(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_add1_f32(params, src0, src1, dst);
-            } break;
-        case GGML_TYPE_F16:
-            {
-                if (src1->type == GGML_TYPE_F16) {
-                    ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
-                }
-                else if (src1->type == GGML_TYPE_F32) {
-                    ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
-                }
-                else {
-                    GGML_ASSERT(false);
-                }
-            } break;
-        case GGML_TYPE_Q4_0:
-        case GGML_TYPE_Q4_1:
-        case GGML_TYPE_Q5_0:
-        case GGML_TYPE_Q5_1:
-        case GGML_TYPE_Q8_0:
-        case GGML_TYPE_Q8_1:
-        case GGML_TYPE_Q2_K:
-        case GGML_TYPE_Q3_K:
-        case GGML_TYPE_Q4_K:
-        case GGML_TYPE_Q5_K:
-        case GGML_TYPE_Q6_K:
-            {
-                ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-
-// ggml_compute_forward_acc
-
-static void ggml_compute_forward_acc_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-    GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
-
-    // view src0 and dst with these strides and data offset inbytes during acc
-    // nb0 is implicitely element_size because src0 and dst are contiguous
-    size_t nb1     = ((int32_t *) dst->op_params)[0];
-    size_t nb2     = ((int32_t *) dst->op_params)[1];
-    size_t nb3     = ((int32_t *) dst->op_params)[2];
-    size_t offset  = ((int32_t *) dst->op_params)[3];
-    bool   inplace = (bool) ((int32_t *) dst->op_params)[4];
-
-    if (!inplace && (params->type == GGML_TASK_INIT)) {
-        // memcpy needs to be synchronized across threads to avoid race conditions.
-        // => do it in INIT phase
-        memcpy(
-            ((char *)  dst->data),
-            ((char *) src0->data),
-            ggml_nbytes(dst));
-    }
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nr = ggml_nrows(src1);
-    const int nc = src1->ne[0];
-
-    GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
-    GGML_TENSOR_LOCALS(size_t,  nb1, src1, nb);
-
-    // src0 and dst as viewed during acc
-    const size_t nb0 = ggml_element_size(src0);
-
-    const size_t nb00 = nb0;
-    const size_t nb01 = nb1;
-    const size_t nb02 = nb2;
-    const size_t nb03 = nb3;
-
-    GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0  + (ne11 == 0 ? 0 : ne11-1)*nb1  + (ne12 == 0 ? 0 : ne12-1)*nb2  + (ne13 == 0 ? 0 : ne13-1)*nb3  < ggml_nbytes(dst));
-    GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
-
-    GGML_ASSERT(nb10 == sizeof(float));
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int ir = ir0; ir < ir1; ++ir) {
-        // src0 and dst are viewed with shape of src1 and offset
-        // => same indices
-        const int i3 = ir/(ne12*ne11);
-        const int i2 = (ir - i3*ne12*ne11)/ne11;
-        const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
-
-#ifdef GGML_USE_ACCELERATE
-        vDSP_vadd(
-                (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
-                (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
-                (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1  + offset), 1, nc);
-#else
-        ggml_vec_add_f32(nc,
-                (float *) ((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + offset),
-                (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
-                (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
-#endif
-    }
-}
-
-static void ggml_compute_forward_acc(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_acc_f32(params, src0, src1, dst);
-            } break;
-        case GGML_TYPE_F16:
-        case GGML_TYPE_Q4_0:
-        case GGML_TYPE_Q4_1:
-        case GGML_TYPE_Q5_0:
-        case GGML_TYPE_Q5_1:
-        case GGML_TYPE_Q8_0:
-        case GGML_TYPE_Q8_1:
-        case GGML_TYPE_Q2_K:
-        case GGML_TYPE_Q3_K:
-        case GGML_TYPE_Q4_K:
-        case GGML_TYPE_Q5_K:
-        case GGML_TYPE_Q6_K:
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_sub
-
-static void ggml_compute_forward_sub_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int nr  = ggml_nrows(src0);
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    GGML_ASSERT( nb0 == sizeof(float));
-    GGML_ASSERT(nb00 == sizeof(float));
-
-    if (nb10 == sizeof(float)) {
-        for (int ir = 0; ir < nr; ++ir) {
-            // src0, src1 and dst are same shape => same indices
-            const int i3 = ir/(ne2*ne1);
-            const int i2 = (ir - i3*ne2*ne1)/ne1;
-            const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
-
-#ifdef GGML_USE_ACCELERATE
-            vDSP_vsub(
-                    (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
-                    (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
-                    (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 ), 1,
-                    ne0);
-#else
-            ggml_vec_sub_f32(ne0,
-                    (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 ),
-                    (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
-                    (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
-#endif
-                // }
-            // }
-        }
-    } else {
-        // src1 is not contiguous
-        for (int ir = 0; ir < nr; ++ir) {
-            // src0, src1 and dst are same shape => same indices
-            const int i3 = ir/(ne2*ne1);
-            const int i2 = (ir - i3*ne2*ne1)/ne1;
-            const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
-            float * dst_ptr  = (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 );
-            float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
-            for (int i0 = 0; i0 < ne0; i0++) {
-                float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
-
-                dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_sub(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_sub_f32(params, src0, src1, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_mul
-
-static void ggml_compute_forward_mul_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-#ifdef GGML_USE_CLBLAST
-    if (src1->backend == GGML_BACKEND_GPU) {
-        if (ith == 0) {
-            ggml_cl_mul(src0, src1, dst);
-        }
-        return;
-    }
-#endif
-
-    const int64_t nr = ggml_nrows(src0);
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    GGML_ASSERT( nb0 == sizeof(float));
-    GGML_ASSERT(nb00 == sizeof(float));
-    GGML_ASSERT(ne00 == ne10);
-
-    if (nb10 == sizeof(float)) {
-        for (int64_t ir = ith; ir < nr; ir += nth) {
-            // src0 and dst are same shape => same indices
-            const int64_t i03 = ir/(ne02*ne01);
-            const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
-            const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
-            const int64_t i13 = i03 % ne13;
-            const int64_t i12 = i02 % ne12;
-            const int64_t i11 = i01 % ne11;
-
-            float * dst_ptr  = (float *) ((char *) dst->data  + i03*nb3  + i02*nb2  + i01*nb1 );
-            float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
-            float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
-
-#ifdef GGML_USE_ACCELERATE
-            UNUSED(ggml_vec_mul_f32);
-
-            vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr,  1, ne00);
-#else
-            ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
-#endif
-                // }
-            // }
-        }
-    } else {
-        // src1 is not contiguous
-        for (int64_t ir = ith; ir < nr; ir += nth) {
-            // src0 and dst are same shape => same indices
-            // src1 is broadcastable across src0 and dst in i1, i2, i3
-            const int64_t i03 = ir/(ne02*ne01);
-            const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
-            const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
-
-            const int64_t i13 = i03 % ne13;
-            const int64_t i12 = i02 % ne12;
-            const int64_t i11 = i01 % ne11;
-
-            float * dst_ptr  = (float *) ((char *) dst->data  + i03*nb3  + i02*nb2  + i01*nb1 );
-            float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
-
-            for (int64_t i0 = 0; i0 < ne00; i0++) {
-                float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
-
-                dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_mul(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_mul_f32(params, src0, src1, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_div
-
-static void ggml_compute_forward_div_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int nr  = ggml_nrows(src0);
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    GGML_ASSERT( nb0 == sizeof(float));
-    GGML_ASSERT(nb00 == sizeof(float));
-
-    if (nb10 == sizeof(float)) {
-        for (int ir = 0; ir < nr; ++ir) {
-            // src0, src1 and dst are same shape => same indices
-            const int i3 = ir/(ne2*ne1);
-            const int i2 = (ir - i3*ne2*ne1)/ne1;
-            const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
-
-#ifdef GGML_USE_ACCELERATE
-            vDSP_vdiv(
-                    (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
-                    (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
-                    (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 ), 1,
-                    ne0);
-#else
-            ggml_vec_div_f32(ne0,
-                    (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 ),
-                    (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
-                    (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
-#endif
-                // }
-            // }
-        }
-    } else {
-        // src1 is not contiguous
-        for (int ir = 0; ir < nr; ++ir) {
-            // src0, src1 and dst are same shape => same indices
-            const int i3 = ir/(ne2*ne1);
-            const int i2 = (ir - i3*ne2*ne1)/ne1;
-            const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
-            float * dst_ptr  = (float *) ((char *) dst->data  + i3*nb3  + i2*nb2  + i1*nb1 );
-            float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
-            for (int i0 = 0; i0 < ne0; i0++) {
-                float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
-
-                dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_div(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_div_f32(params, src0, src1, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_sqr
-
-static void ggml_compute_forward_sqr_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int n     = ggml_nrows(src0);
-    const int nc    = src0->ne[0];
-
-    assert( dst->nb[0] == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
-
-    for (int i = 0; i < n; i++) {
-        ggml_vec_sqr_f32(nc,
-                (float *) ((char *) dst->data  + i*( dst->nb[1])),
-                (float *) ((char *) src0->data + i*(src0->nb[1])));
-    }
-}
-
-static void ggml_compute_forward_sqr(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_sqr_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_sqrt
-
-static void ggml_compute_forward_sqrt_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int n  = ggml_nrows(src0);
-    const int nc = src0->ne[0];
-
-    assert( dst->nb[0] == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
-
-    for (int i = 0; i < n; i++) {
-        ggml_vec_sqrt_f32(nc,
-                (float *) ((char *) dst->data  + i*( dst->nb[1])),
-                (float *) ((char *) src0->data + i*(src0->nb[1])));
-    }
-}
-
-static void ggml_compute_forward_sqrt(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_sqrt_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-
-// ggml_compute_forward_log
-
-static void ggml_compute_forward_log_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(params->ith == 0);
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int n  = ggml_nrows(src0);
-    const int nc = src0->ne[0];
-
-    GGML_ASSERT( dst->nb[0] == sizeof(float));
-    GGML_ASSERT(src0->nb[0] == sizeof(float));
-
-    for (int i = 0; i < n; i++) {
-        ggml_vec_log_f32(nc,
-                (float *) ((char *) dst->data  + i*( dst->nb[1])),
-                (float *) ((char *) src0->data + i*(src0->nb[1])));
-    }
-}
-
-static void ggml_compute_forward_log(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_log_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_sum
-
-static void ggml_compute_forward_sum_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_is_scalar(dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    assert(ggml_is_scalar(dst));
-    assert(src0->nb[0] == sizeof(float));
-
-    GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
-    GGML_TENSOR_LOCALS(size_t,  nb0, src0, nb);
-
-    ggml_float sum     = 0;
-    ggml_float row_sum = 0;
-
-    for (int64_t i03 = 0; i03 < ne03; i03++) {
-        for (int64_t i02 = 0; i02 < ne02; i02++) {
-            for (int64_t i01 = 0; i01 < ne01; i01++) {
-                ggml_vec_sum_f32_ggf(ne00,
-                        &row_sum,
-                        (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
-                sum += row_sum;
-            }
-        }
-    }
-    ((float *) dst->data)[0] = sum;
-}
-
-static void ggml_compute_forward_sum_f16(
-    const struct ggml_compute_params * params,
-    const struct ggml_tensor * src0,
-          struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_is_scalar(dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    assert(src0->nb[0] == sizeof(ggml_fp16_t));
-
-    GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
-    GGML_TENSOR_LOCALS(size_t,  nb0, src0, nb);
-
-    float sum = 0;
-    float row_sum = 0;
-
-    for (int64_t i03 = 0; i03 < ne03; i03++) {
-        for (int64_t i02 = 0; i02 < ne02; i02++) {
-            for (int64_t i01 = 0; i01 < ne01; i01++) {
-                ggml_vec_sum_f16_ggf(ne00,
-                    &row_sum,
-                    (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
-                sum += row_sum;
-            }
-        }
-    }
-    ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
-}
-
-static void ggml_compute_forward_sum(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_sum_f32(params, src0, dst);
-            } break;
-        case GGML_TYPE_F16:
-            {
-                ggml_compute_forward_sum_f16(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_sum_rows
-
-static void ggml_compute_forward_sum_rows_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    GGML_ASSERT(src0->nb[0] == sizeof(float));
-    GGML_ASSERT(dst->nb[0] == sizeof(float));
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    GGML_ASSERT(ne0 == 1);
-    GGML_ASSERT(ne1 == ne01);
-    GGML_ASSERT(ne2 == ne02);
-    GGML_ASSERT(ne3 == ne03);
-
-    for (int64_t i3 = 0; i3 < ne03; i3++) {
-        for (int64_t i2 = 0; i2 < ne02; i2++) {
-            for (int64_t i1 = 0; i1 < ne01; i1++) {
-                float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
-                float * dst_row = (float *) ((char *) dst->data  + i1*nb1  + i2*nb2  + i3*nb3);
-                float row_sum = 0;
-                ggml_vec_sum_f32(ne00, &row_sum, src_row);
-                dst_row[0] = row_sum;
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_sum_rows(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_sum_rows_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_mean
-
-static void ggml_compute_forward_mean_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    assert(src0->nb[0] == sizeof(float));
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    assert(ne0 == 1);
-    assert(ne1 == ne01);
-    assert(ne2 == ne02);
-    assert(ne3 == ne03);
-
-    UNUSED(ne0);
-    UNUSED(ne1);
-    UNUSED(ne2);
-    UNUSED(ne3);
-
-    for (int64_t i03 = 0; i03 < ne03; i03++) {
-        for (int64_t i02 = 0; i02 < ne02; i02++) {
-            for (int64_t i01 = 0; i01 < ne01; i01++) {
-                ggml_vec_sum_f32(ne00,
-                        (float *) ((char *)  dst->data + i01*nb1  + i02*nb2  + i03*nb3),
-                        (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
-
-                *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_mean(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_mean_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_argmax
-
-static void ggml_compute_forward_argmax_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    assert(src0->nb[0] == sizeof(float));
-    assert(dst->nb[0] == sizeof(float));
-
-    const int64_t ne00 = src0->ne[0];
-    const int64_t ne01 = src0->ne[1];
-
-    const size_t nb01 = src0->nb[1];
-    const size_t nb0 = dst->nb[0];
-
-    for (int64_t i1 = 0; i1 < ne01; i1++) {
-        float * src = (float *) ((char *) src0->data + i1*nb01);
-        int32_t * dst_ = (int32_t *) ((char *)  dst->data + i1*nb0);
-        int v = 0;
-        ggml_vec_argmax_f32(ne00, &v, src);
-        dst_[0] = v;
-    }
-}
-
-static void ggml_compute_forward_argmax(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_argmax_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_repeat
-
-static void ggml_compute_forward_repeat_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(params->ith == 0);
-    GGML_ASSERT(ggml_can_repeat(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    // guaranteed to be an integer due to the check in ggml_can_repeat
-    const int nr0 = (int)(ne0/ne00);
-    const int nr1 = (int)(ne1/ne01);
-    const int nr2 = (int)(ne2/ne02);
-    const int nr3 = (int)(ne3/ne03);
-
-    // TODO: support for transposed / permuted tensors
-    GGML_ASSERT(nb0  == sizeof(float));
-    GGML_ASSERT(nb00 == sizeof(float));
-
-    // TODO: maybe this is not optimal?
-    for                         (int i3 = 0; i3 < nr3;  i3++) {
-        for                     (int k3 = 0; k3 < ne03; k3++) {
-            for                 (int i2 = 0; i2 < nr2;  i2++) {
-                for             (int k2 = 0; k2 < ne02; k2++) {
-                    for         (int i1 = 0; i1 < nr1;  i1++) {
-                        for     (int k1 = 0; k1 < ne01; k1++) {
-                            for (int i0 = 0; i0 < nr0;  i0++) {
-                                ggml_vec_cpy_f32(ne00,
-                                        (float *) ((char *)  dst->data + (i3*ne03 + k3)*nb3  + (i2*ne02 + k2)*nb2  + (i1*ne01 + k1)*nb1  + (i0*ne00)*nb0),
-                                        (float *) ((char *) src0->data + (          k3)*nb03 + (          k2)*nb02 + (          k1)*nb01));
-                            }
-                        }
-                    }
-                }
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_repeat(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_repeat_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_repeat_back
-
-static void ggml_compute_forward_repeat_back_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(params->ith == 0);
-    GGML_ASSERT(ggml_can_repeat(dst, src0));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    // guaranteed to be an integer due to the check in ggml_can_repeat
-    const int nr0 = (int)(ne00/ne0);
-    const int nr1 = (int)(ne01/ne1);
-    const int nr2 = (int)(ne02/ne2);
-    const int nr3 = (int)(ne03/ne3);
-
-    // TODO: support for transposed / permuted tensors
-    GGML_ASSERT(nb0  == sizeof(float));
-    GGML_ASSERT(nb00 == sizeof(float));
-
-    if (ggml_is_contiguous(dst)) {
-        ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
-    } else {
-        for         (int k3 = 0; k3 < ne3; k3++) {
-            for     (int k2 = 0; k2 < ne2; k2++) {
-                for (int k1 = 0; k1 < ne1; k1++) {
-                    ggml_vec_set_f32(ne0,
-                        (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
-                        0);
-                }
-            }
-        }
-    }
-
-    // TODO: maybe this is not optimal?
-    for                         (int i3 = 0; i3 < nr3; i3++) {
-        for                     (int k3 = 0; k3 < ne3; k3++) {
-            for                 (int i2 = 0; i2 < nr2; i2++) {
-                for             (int k2 = 0; k2 < ne2; k2++) {
-                    for         (int i1 = 0; i1 < nr1; i1++) {
-                        for     (int k1 = 0; k1 < ne1; k1++) {
-                            for (int i0 = 0; i0 < nr0; i0++) {
-                                ggml_vec_acc_f32(ne0,
-                                        (float *) ((char *)  dst->data + (         k3)*nb3  + (         k2)*nb2  + (         k1)*nb1),
-                                        (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
-                            }
-                        }
-                    }
-                }
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_repeat_back(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_repeat_back_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_abs
-
-static void ggml_compute_forward_abs_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int n  = ggml_nrows(src0);
-    const int nc = src0->ne[0];
-
-    assert(dst->nb[0]  == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
-
-    for (int i = 0; i < n; i++) {
-        ggml_vec_abs_f32(nc,
-                (float *) ((char *) dst->data  + i*( dst->nb[1])),
-                (float *) ((char *) src0->data + i*(src0->nb[1])));
-    }
-}
-
-static void ggml_compute_forward_abs(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_abs_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_sgn
-
-static void ggml_compute_forward_sgn_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int n  = ggml_nrows(src0);
-    const int nc = src0->ne[0];
-
-    assert(dst->nb[0]  == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
-
-    for (int i = 0; i < n; i++) {
-        ggml_vec_sgn_f32(nc,
-                (float *) ((char *) dst->data  + i*( dst->nb[1])),
-                (float *) ((char *) src0->data + i*(src0->nb[1])));
-    }
-}
-
-static void ggml_compute_forward_sgn(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_sgn_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_neg
-
-static void ggml_compute_forward_neg_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int n  = ggml_nrows(src0);
-    const int nc = src0->ne[0];
-
-    assert(dst->nb[0]  == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
-
-    for (int i = 0; i < n; i++) {
-        ggml_vec_neg_f32(nc,
-                (float *) ((char *) dst->data  + i*( dst->nb[1])),
-                (float *) ((char *) src0->data + i*(src0->nb[1])));
-    }
-}
-
-static void ggml_compute_forward_neg(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_neg_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_step
-
-static void ggml_compute_forward_step_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int n  = ggml_nrows(src0);
-    const int nc = src0->ne[0];
-
-    assert(dst->nb[0]  == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
-
-    for (int i = 0; i < n; i++) {
-        ggml_vec_step_f32(nc,
-                (float *) ((char *) dst->data  + i*( dst->nb[1])),
-                (float *) ((char *) src0->data + i*(src0->nb[1])));
-    }
-}
-
-static void ggml_compute_forward_step(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_step_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_tanh
-
-static void ggml_compute_forward_tanh_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int n  = ggml_nrows(src0);
-    const int nc = src0->ne[0];
-
-    assert(dst->nb[0]  == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
-
-    for (int i = 0; i < n; i++) {
-        ggml_vec_tanh_f32(nc,
-                (float *) ((char *) dst->data  + i*( dst->nb[1])),
-                (float *) ((char *) src0->data + i*(src0->nb[1])));
-    }
-}
-
-static void ggml_compute_forward_tanh(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_tanh_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_elu
-
-static void ggml_compute_forward_elu_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int n  = ggml_nrows(src0);
-    const int nc = src0->ne[0];
-
-    assert(dst->nb[0]  == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
-
-    for (int i = 0; i < n; i++) {
-        ggml_vec_elu_f32(nc,
-                (float *) ((char *) dst->data  + i*( dst->nb[1])),
-                (float *) ((char *) src0->data + i*(src0->nb[1])));
-    }
-}
-
-static void ggml_compute_forward_elu(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_elu_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_relu
-
-static void ggml_compute_forward_relu_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-    assert(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int n  = ggml_nrows(src0);
-    const int nc = src0->ne[0];
-
-    assert(dst->nb[0]  == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
-
-    for (int i = 0; i < n; i++) {
-        ggml_vec_relu_f32(nc,
-                (float *) ((char *) dst->data  + i*( dst->nb[1])),
-                (float *) ((char *) src0->data + i*(src0->nb[1])));
-    }
-}
-
-static void ggml_compute_forward_relu(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_relu_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_gelu
-
-static void ggml_compute_forward_gelu_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
-    GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nc = src0->ne[0];
-    const int nr = ggml_nrows(src0);
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int i1 = ir0; i1 < ir1; i1++) {
-        ggml_vec_gelu_f32(nc,
-                (float *) ((char *) dst->data  + i1*( dst->nb[1])),
-                (float *) ((char *) src0->data + i1*(src0->nb[1])));
-
-#ifndef NDEBUG
-        for (int k = 0; k < nc; k++) {
-            const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
-            UNUSED(x);
-            assert(!isnan(x));
-            assert(!isinf(x));
-        }
-#endif
-    }
-}
-
-static void ggml_compute_forward_gelu(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_gelu_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_gelu_quick
-
-static void ggml_compute_forward_gelu_quick_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
-    GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nc = src0->ne[0];
-    const int nr = ggml_nrows(src0);
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int i1 = ir0; i1 < ir1; i1++) {
-        ggml_vec_gelu_quick_f32(nc,
-                (float *) ((char *) dst->data  + i1*( dst->nb[1])),
-                (float *) ((char *) src0->data + i1*(src0->nb[1])));
-
-#ifndef NDEBUG
-        for (int k = 0; k < nc; k++) {
-            const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
-            UNUSED(x);
-            assert(!isnan(x));
-            assert(!isinf(x));
-        }
-#endif
-    }
-}
-
-static void ggml_compute_forward_gelu_quick(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_gelu_quick_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_silu
-
-static void ggml_compute_forward_silu_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
-    GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nc = src0->ne[0];
-    const int nr = ggml_nrows(src0);
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int i1 = ir0; i1 < ir1; i1++) {
-        ggml_vec_silu_f32(nc,
-                (float *) ((char *) dst->data  + i1*( dst->nb[1])),
-                (float *) ((char *) src0->data + i1*(src0->nb[1])));
-
-#ifndef NDEBUG
-        for (int k = 0; k < nc; k++) {
-            const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
-            UNUSED(x);
-            assert(!isnan(x));
-            assert(!isinf(x));
-        }
-#endif
-    }
-}
-
-static void ggml_compute_forward_silu(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_silu_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_silu_back
-
-static void ggml_compute_forward_silu_back_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * grad,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
-    GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
-    GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-    GGML_ASSERT(ggml_are_same_shape(src0, grad));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nc = src0->ne[0];
-    const int nr = ggml_nrows(src0);
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int i1 = ir0; i1 < ir1; i1++) {
-        ggml_vec_silu_backward_f32(nc,
-                (float *) ((char *) dst->data  + i1*( dst->nb[1])),
-                (float *) ((char *) src0->data + i1*(src0->nb[1])),
-                (float *) ((char *) grad->data + i1*(grad->nb[1])));
-
-#ifndef NDEBUG
-        for (int k = 0; k < nc; k++) {
-            const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
-            UNUSED(x);
-            assert(!isnan(x));
-            assert(!isinf(x));
-        }
-#endif
-    }
-}
-
-static void ggml_compute_forward_silu_back(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * grad,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_norm
-
-static void ggml_compute_forward_norm_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    GGML_ASSERT(src0->nb[0] == sizeof(float));
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    const float eps = 1e-5f; // TODO: make this a parameter
-
-    // TODO: optimize
-    for (int64_t i03 = 0; i03 < ne03; i03++) {
-        for (int64_t i02 = 0; i02 < ne02; i02++) {
-            for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
-                const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-
-                ggml_float sum = 0.0;
-                for (int64_t i00 = 0; i00 < ne00; i00++) {
-                    sum += (ggml_float)x[i00];
-                }
-
-                float mean = sum/ne00;
-
-                float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
-
-                ggml_float sum2 = 0.0;
-                for (int64_t i00 = 0; i00 < ne00; i00++) {
-                    float v = x[i00] - mean;
-                    y[i00] = v;
-                    sum2 += (ggml_float)(v*v);
-                }
-
-                float variance = sum2/ne00;
-                const float scale = 1.0f/sqrtf(variance + eps);
-
-                ggml_vec_scale_f32(ne00, y, scale);
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_norm(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_norm_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-static void ggml_compute_forward_rms_norm_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    GGML_ASSERT(src0->nb[0] == sizeof(float));
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    float eps;
-    memcpy(&eps, dst->op_params, sizeof(float));
-
-    // TODO: optimize
-    for (int64_t i03 = 0; i03 < ne03; i03++) {
-        for (int64_t i02 = 0; i02 < ne02; i02++) {
-            for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
-                const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-
-                ggml_float sum = 0.0;
-                for (int64_t i00 = 0; i00 < ne00; i00++) {
-                    sum += (ggml_float)(x[i00] * x[i00]);
-                }
-
-                const float mean = sum/ne00;
-
-                float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
-
-                memcpy(y, x, ne00 * sizeof(float));
-                // for (int i00 = 0; i00 < ne00; i00++) {
-                //     y[i00] = x[i00];
-                // }
-
-                const float scale = 1.0f/sqrtf(mean + eps);
-
-                ggml_vec_scale_f32(ne00, y, scale);
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_rms_norm(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_rms_norm_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-
-static void ggml_compute_forward_rms_norm_back_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    GGML_ASSERT(src0->nb[0] == sizeof(float));
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    const float eps = 1e-6f; // TODO: make this a parameter
-
-    // TODO: optimize
-    for (int64_t i03 = 0; i03 < ne03; i03++) {
-        for (int64_t i02 = 0; i02 < ne02; i02++) {
-            for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
-                // src1 is same shape as src0 => same indices
-                const int64_t i11 = i01;
-                const int64_t i12 = i02;
-                const int64_t i13 = i03;
-
-                const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
-                const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
-
-                ggml_float sum_xx  = 0.0;
-                ggml_float sum_xdz = 0.0;
-
-                for (int64_t i00 = 0; i00 < ne00; i00++) {
-                    sum_xx  += (ggml_float)(x[i00] * x[i00]);
-                    sum_xdz += (ggml_float)(x[i00] * dz[i00]);
-                }
-
-                //const float mean     = (float)(sum_xx)/ne00;
-                const float mean_eps = (float)(sum_xx)/ne00 + eps;
-                const float sum_eps  = (float)(sum_xx) + eps*ne00;
-                //const float mean_xdz = (float)(sum_xdz)/ne00;
-                // we could cache rms from forward pass to improve performance.
-                // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
-                //const float rms      = sqrtf(mean_eps);
-                const float rrms     = 1.0f / sqrtf(mean_eps);
-                //const float scale    = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
-
-                {
-                    // z = rms_norm(x)
-                    //
-                    // rms_norm(src0) =
-                    //     scale(
-                    //         src0,
-                    //         div(
-                    //             1,
-                    //             sqrt(
-                    //                 add(
-                    //                     scale(
-                    //                         sum(
-                    //                             sqr(
-                    //                                 src0)),
-                    //                         (1.0/N)),
-                    //                     eps))));
-
-                    // postorder:
-                    // ## op    args         grad
-                    // 00 param src0         grad[#00]
-                    // 01 const 1
-                    // 02 sqr   (#00)        grad[#02]
-                    // 03 sum   (#02)        grad[#03]
-                    // 04 const 1/N
-                    // 05 scale (#03, #04)   grad[#05]
-                    // 06 const eps
-                    // 07 add   (#05, #06)   grad[#07]
-                    // 08 sqrt  (#07)        grad[#08]
-                    // 09 div   (#01,#08)    grad[#09]
-                    // 10 scale (#00,#09)    grad[#10]
-                    //
-                    // backward pass, given grad[#10]
-                    // #10: scale
-                    // grad[#00] += scale(grad[#10],#09)
-                    // grad[#09] += sum(mul(grad[#10],#00))
-                    // #09: div
-                    // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
-                    // #08: sqrt
-                    // grad[#07] += mul(grad[#08], div(0.5, #08))
-                    // #07: add
-                    // grad[#05] += grad[#07]
-                    // #05: scale
-                    // grad[#03] += scale(grad[#05],#04)
-                    // #03: sum
-                    // grad[#02] += repeat(grad[#03], #02)
-                    // #02:
-                    // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
-                    //
-                    // substitute and simplify:
-                    // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
-                    // grad[#02] = repeat(grad[#03], #02)
-                    // grad[#02] = repeat(scale(grad[#05],#04), #02)
-                    // grad[#02] = repeat(scale(grad[#07],#04), #02)
-                    // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
-                    // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
-                    // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
-                    // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
-                    // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
-                    // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
-                    // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
-                    // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
-                    // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
-                    // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
-                    // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
-                    // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
-                    // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
-                    // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
-                    // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
-                    // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
-                    // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
-                    // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
-                    // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
-                    // a = b*c + d*e
-                    // a = b*c*f/f + d*e*f/f
-                    // a = (b*c*f + d*e*f)*(1/f)
-                    // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
-                    // a = (b + d*e/c)*c
-                    // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
-                    // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
-                    // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
-                    // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
-                    // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
-                    // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
-                    // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
-                    // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
-                    // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
-                    // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
-                }
-                // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
-                // post-order:
-                // dx := x
-                // dx := scale(dx,-mean_xdz/mean_eps)
-                // dx := add(dx, dz)
-                // dx := scale(dx, rrms)
-                float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
-
-                ggml_vec_cpy_f32  (ne00, dx, x);
-                // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
-                ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
-                ggml_vec_acc_f32  (ne00, dx, dz);
-                ggml_vec_scale_f32(ne00, dx, rrms);
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_rms_norm_back(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_mul_mat
-
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
-// helper function to determine if it is better to use BLAS or not
-// for large matrices, BLAS is faster
-static bool ggml_compute_forward_mul_mat_use_blas(
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    //const int64_t ne00 = src0->ne[0];
-    //const int64_t ne01 = src0->ne[1];
-
-    const int64_t ne10 = src1->ne[0];
-
-    const int64_t ne0 = dst->ne[0];
-    const int64_t ne1 = dst->ne[1];
-
-    // TODO: find the optimal values for these
-    if (ggml_is_contiguous(src0) &&
-        ggml_is_contiguous(src1) &&
-        (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
-
-        /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
-        return true;
-    }
-
-    return false;
-}
-#endif
-
-static void ggml_compute_forward_mul_mat(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    int64_t t0 = ggml_perf_time_us();
-    UNUSED(t0);
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const enum ggml_type type = src0->type;
-
-    const bool src1_cont = ggml_is_contiguous(src1);
-
-    ggml_vec_dot_t    const vec_dot               = type_traits[type].vec_dot;
-    enum ggml_type    const vec_dot_type          = type_traits[type].vec_dot_type;
-    ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
-
-    GGML_ASSERT(ne0 == ne01);
-    GGML_ASSERT(ne1 == ne11);
-    GGML_ASSERT(ne2 == ne12);
-    GGML_ASSERT(ne3 == ne13);
-
-    // we don't support permuted src0 or src1
-    GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
-    GGML_ASSERT(nb10 == sizeof(float));
-
-    // dst cannot be transposed or permuted
-    GGML_ASSERT(nb0 == sizeof(float));
-    GGML_ASSERT(nb0 <= nb1);
-    GGML_ASSERT(nb1 <= nb2);
-    GGML_ASSERT(nb2 <= nb3);
-
-    // nb01 >= nb00 - src0 is not transposed
-    //   compute by src0 rows
-
-#if defined(GGML_USE_CLBLAST)
-    if (ggml_cl_can_mul_mat(src0, src1, dst)) {
-        // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
-        //       ref: https://github.com/ggerganov/ggml/pull/224
-        GGML_ASSERT(ne02 == ne12);
-        GGML_ASSERT(ne03 == ne13);
-
-        if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
-            ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
-        }
-        return;
-    }
-#endif
-
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
-    if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
-        // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
-        //       ref: https://github.com/ggerganov/ggml/pull/224
-        GGML_ASSERT(ne02 == ne12);
-        GGML_ASSERT(ne03 == ne13);
-
-        if (params->ith != 0) {
-            return;
-        }
-
-        if (params->type == GGML_TASK_INIT) {
-            return;
-        }
-
-        if (params->type == GGML_TASK_FINALIZE) {
-            return;
-        }
-
-        for (int64_t i03 = 0; i03 < ne03; i03++) {
-            for (int64_t i02 = 0; i02 < ne02; i02++) {
-                const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
-                const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
-
-                float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
-
-                if (type != GGML_TYPE_F32) {
-                            float * const wdata    = params->wdata;
-                    ggml_to_float_t const to_float = type_traits[type].to_float;
-
-                    size_t id = 0;
-                    for (int64_t i01 = 0; i01 < ne01; ++i01) {
-                        to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
-                        id += ne00;
-                    }
-
-                    assert(id*sizeof(float) <= params->wsize);
-                    x = wdata;
-                }
-
-                cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
-                        ne11, ne01, ne10,
-                        1.0f,    y, ne10,
-                                 x, ne00,
-                        0.0f,    d, ne01);
-            }
-        }
-
-        //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
-
-        return;
-    }
-#endif
-
-    if (params->type == GGML_TASK_INIT) {
-        if (src1->type != vec_dot_type) {
-            char * wdata = params->wdata;
-            const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
-
-            for (int64_t i13 = 0; i13 < ne13; ++i13) {
-                for (int64_t i12 = 0; i12 < ne12; ++i12) {
-                    for (int64_t i11 = 0; i11 < ne11; ++i11) {
-                        from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
-                        wdata += row_size;
-                    }
-                }
-            }
-        }
-
-        return;
-    }
-
-    if (params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const void * wdata    = (src1->type == vec_dot_type) ? src1->data : params->wdata;
-    const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
-
-    const int64_t nr0 = ne01;           // src0 rows
-    const int64_t nr1 = ne11*ne12*ne13; // src1 rows
-
-    //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
-
-    // distribute the thread work across the inner or outer loop based on which one is larger
-
-    const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
-    const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
-
-    const int64_t ith0 = ith % nth0;
-    const int64_t ith1 = ith / nth0;
-
-    const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
-    const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
-
-    const int64_t ir010 = dr0*ith0;
-    const int64_t ir011 = MIN(ir010 + dr0, nr0);
-
-    const int64_t ir110 = dr1*ith1;
-    const int64_t ir111 = MIN(ir110 + dr1, nr1);
-
-    //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
-
-    // threads with no work simply yield (not sure if it helps)
-    if (ir010 >= ir011 || ir110 >= ir111) {
-        sched_yield();
-        return;
-    }
-
-    assert(ne12 % ne02 == 0);
-    assert(ne13 % ne03 == 0);
-
-    // broadcast factors
-    const int64_t r2 = ne12/ne02;
-    const int64_t r3 = ne13/ne03;
-
-    // block-tiling attempt
-    const int64_t blck_0 = 16;
-    const int64_t blck_1 = 16;
-
-    // attempt to reduce false-sharing (does not seem to make a difference)
-    float tmp[16];
-
-    for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
-        for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
-            for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
-                const int64_t i13 = (ir1/(ne12*ne11));
-                const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
-                const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
-
-                // broadcast src0 into src1
-                const int64_t i03 = i13/r3;
-                const int64_t i02 = i12/r2;
-
-                const int64_t i1 = i11;
-                const int64_t i2 = i12;
-                const int64_t i3 = i13;
-
-                const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
-
-                // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
-                //       if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
-                //       the original src1 data pointer, so we should index using the indices directly
-                // TODO: this is a bit of a hack, we should probably have a better way to handle this
-                const char * src1_col = (const char *) wdata +
-                    (src1_cont || src1->type != vec_dot_type
-                     ? (i11      + i12*ne11 + i13*ne12*ne11)*row_size
-                     : (i11*nb11 + i12*nb12 + i13*nb13));
-
-                float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
-
-                //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
-                //    vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
-                //}
-
-                for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
-                    vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
-                }
-                memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
-            }
-        }
-    }
-}
-
-// ggml_compute_forward_out_prod
-
-static void ggml_compute_forward_out_prod_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    int64_t t0 = ggml_perf_time_us();
-    UNUSED(t0);
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    GGML_ASSERT(ne02 == ne12);
-    GGML_ASSERT(ne03 == ne13);
-    GGML_ASSERT(ne2  == ne12);
-    GGML_ASSERT(ne3  == ne13);
-
-    // we don't support permuted src0 or src1
-    GGML_ASSERT(nb00 == sizeof(float));
-
-    // dst cannot be transposed or permuted
-    GGML_ASSERT(nb0 == sizeof(float));
-    // GGML_ASSERT(nb0 <= nb1);
-    // GGML_ASSERT(nb1 <= nb2);
-    // GGML_ASSERT(nb2 <= nb3);
-
-    GGML_ASSERT(ne0 == ne00);
-    GGML_ASSERT(ne1 == ne10);
-    GGML_ASSERT(ne2 == ne02);
-    GGML_ASSERT(ne3 == ne03);
-
-    // nb01 >= nb00 - src0 is not transposed
-    //   compute by src0 rows
-
-    // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
-    // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
-
-    if (params->type == GGML_TASK_INIT) {
-        ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
-        return;
-    }
-
-    if (params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // parallelize by last three dimensions
-
-    // total rows in dst
-    const int64_t nr = ne1*ne2*ne3;
-
-    // rows per thread
-    const int64_t dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int64_t ir0 = dr*ith;
-    const int64_t ir1 = MIN(ir0 + dr, nr);
-
-    // dst[:,:,:,:] = 0
-    // for i2,i3:
-    //   for i1:
-    //     for i01:
-    //       for i0:
-    //         dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
-
-    for (int64_t ir = ir0; ir < ir1; ++ir) {
-        // dst indices
-        const int64_t i3 = ir/(ne2*ne1);
-        const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
-        const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
-
-        const int64_t i02 = i2;
-        const int64_t i03 = i3;
-
-        //const int64_t i10 = i1;
-        const int64_t i12 = i2;
-        const int64_t i13 = i3;
-
-        for (int64_t i01 = 0; i01 < ne01; ++i01) {
-            const int64_t i11 = i01;
-
-            float * s0 = (float *) ((char *) src0->data + (          i01*nb01 + i02*nb02 + i03*nb03));
-            float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
-            float * d  = (float *) ((char *)  dst->data + (          i1*nb1 + i2*nb2 + i3*nb3));
-
-            ggml_vec_mad_f32(ne0, d, s0, *s1);
-            // for (int64_t i0 = 0; i0 < ne0; ++i0) {
-            //     d[i0] += s0[i0] * s1[i1];
-            // }
-        }
-    }
-
-    //int64_t t1 = ggml_perf_time_us();
-    //static int64_t acc = 0;
-    //acc += t1 - t0;
-    //if (t1 - t0 > 10) {
-    //    printf("\n");
-    //    printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
-    //    printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
-    //    printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
-    //    printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
-
-    //    printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
-    //}
-}
-
-static void ggml_compute_forward_out_prod(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_Q4_0:
-        case GGML_TYPE_Q4_1:
-        case GGML_TYPE_Q5_0:
-        case GGML_TYPE_Q5_1:
-        case GGML_TYPE_Q8_0:
-        case GGML_TYPE_Q8_1:
-            {
-                GGML_ASSERT(false); // todo
-                // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
-            } break;
-        case GGML_TYPE_F16:
-            {
-                GGML_ASSERT(false); // todo
-                // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_scale
-
-static void ggml_compute_forward_scale_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_is_contiguous(src0));
-    GGML_ASSERT(ggml_is_contiguous(dst));
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-    GGML_ASSERT(ggml_is_scalar(src1));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // scale factor
-    const float v = *(float *) src1->data;
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nc = src0->ne[0];
-    const int nr = ggml_nrows(src0);
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    const size_t nb01 = src0->nb[1];
-
-    const size_t nb1 = dst->nb[1];
-
-
-    for (int i1 = ir0; i1 < ir1; i1++) {
-        if (dst->data != src0->data) {
-            // src0 is same shape as dst => same indices
-            memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
-        }
-        ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
-    }
-}
-
-static void ggml_compute_forward_scale(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_scale_f32(params, src0, src1, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_set
-
-static void ggml_compute_forward_set_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-    GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
-
-    // view src0 and dst with these strides and data offset inbytes during set
-    // nb0 is implicitely element_size because src0 and dst are contiguous
-    size_t nb1     = ((int32_t *) dst->op_params)[0];
-    size_t nb2     = ((int32_t *) dst->op_params)[1];
-    size_t nb3     = ((int32_t *) dst->op_params)[2];
-    size_t offset  = ((int32_t *) dst->op_params)[3];
-    bool   inplace = (bool) ((int32_t *) dst->op_params)[4];
-
-    if (!inplace && (params->type == GGML_TASK_INIT)) {
-        // memcpy needs to be synchronized across threads to avoid race conditions.
-        // => do it in INIT phase
-        memcpy(
-            ((char *)  dst->data),
-            ((char *) src0->data),
-            ggml_nbytes(dst));
-    }
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nr = ggml_nrows(src1);
-    const int nc = src1->ne[0];
-
-    GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
-    GGML_TENSOR_LOCALS(size_t,  nb1, src1, nb);
-
-    // src0 and dst as viewed during set
-    const size_t nb0 = ggml_element_size(src0);
-
-    const int im0 = (ne10 == 0 ? 0 : ne10-1);
-    const int im1 = (ne11 == 0 ? 0 : ne11-1);
-    const int im2 = (ne12 == 0 ? 0 : ne12-1);
-    const int im3 = (ne13 == 0 ? 0 : ne13-1);
-
-    GGML_ASSERT(offset + im0*nb0  + im1*nb1  + im2*nb2  + im3*nb3  <= ggml_nbytes(dst));
-
-    GGML_ASSERT(nb10 == sizeof(float));
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int ir = ir0; ir < ir1; ++ir) {
-        // src0 and dst are viewed with shape of src1 and offset
-        // => same indices
-        const int i3 = ir/(ne12*ne11);
-        const int i2 = (ir - i3*ne12*ne11)/ne11;
-        const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
-
-        ggml_vec_cpy_f32(nc,
-                (float *) ((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + offset),
-                (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
-    }
-}
-
-static void ggml_compute_forward_set(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_set_f32(params, src0, src1, dst);
-            } break;
-        case GGML_TYPE_F16:
-        case GGML_TYPE_Q4_0:
-        case GGML_TYPE_Q4_1:
-        case GGML_TYPE_Q5_0:
-        case GGML_TYPE_Q5_1:
-        case GGML_TYPE_Q8_0:
-        case GGML_TYPE_Q8_1:
-        case GGML_TYPE_Q2_K:
-        case GGML_TYPE_Q3_K:
-        case GGML_TYPE_Q4_K:
-        case GGML_TYPE_Q5_K:
-        case GGML_TYPE_Q6_K:
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_cpy
-
-static void ggml_compute_forward_cpy(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    ggml_compute_forward_dup(params, src0, dst);
-}
-
-// ggml_compute_forward_cont
-
-static void ggml_compute_forward_cont(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    ggml_compute_forward_dup(params, src0, dst);
-}
-
-// ggml_compute_forward_reshape
-
-static void ggml_compute_forward_reshape(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    // NOP
-    UNUSED(params);
-    UNUSED(src0);
-    UNUSED(dst);
-}
-
-// ggml_compute_forward_view
-
-static void ggml_compute_forward_view(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0) {
-    // NOP
-    UNUSED(params);
-    UNUSED(src0);
-}
-
-// ggml_compute_forward_permute
-
-static void ggml_compute_forward_permute(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0) {
-    // NOP
-    UNUSED(params);
-    UNUSED(src0);
-}
-
-// ggml_compute_forward_transpose
-
-static void ggml_compute_forward_transpose(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0) {
-    // NOP
-    UNUSED(params);
-    UNUSED(src0);
-}
-
-// ggml_compute_forward_get_rows
-
-static void ggml_compute_forward_get_rows_q(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int nc = src0->ne[0];
-    const int nr = ggml_nelements(src1);
-    const enum ggml_type type = src0->type;
-    ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
-
-    assert( dst->ne[0] == nc);
-    assert( dst->ne[1] == nr);
-    assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
-
-    for (int i = 0; i < nr; ++i) {
-        const int r = ((int32_t *) src1->data)[i];
-
-        dequantize_row_q(
-                (const void *) ((char *) src0->data + r*src0->nb[1]),
-                     (float *) ((char *)  dst->data + i*dst->nb[1]), nc);
-    }
-}
-
-static void ggml_compute_forward_get_rows_f16(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int nc = src0->ne[0];
-    const int nr = ggml_nelements(src1);
-
-    assert( dst->ne[0] == nc);
-    assert( dst->ne[1] == nr);
-    assert(src0->nb[0] == sizeof(ggml_fp16_t));
-
-    for (int i = 0; i < nr; ++i) {
-        const int r = ((int32_t *) src1->data)[i];
-
-        for (int j = 0; j < nc; ++j) {
-            ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
-            ((float *) ((char *)  dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
-        }
-    }
-}
-
-static void ggml_compute_forward_get_rows_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int nc = src0->ne[0];
-    const int nr = ggml_nelements(src1);
-
-    assert( dst->ne[0] == nc);
-    assert( dst->ne[1] == nr);
-    assert(src0->nb[0] == sizeof(float));
-
-    for (int i = 0; i < nr; ++i) {
-        const int r = ((int32_t *) src1->data)[i];
-
-        ggml_vec_cpy_f32(nc,
-                (float *) ((char *)  dst->data + i*dst->nb[1]),
-                (float *) ((char *) src0->data + r*src0->nb[1]));
-    }
-}
-
-static void ggml_compute_forward_get_rows(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_Q4_0:
-        case GGML_TYPE_Q4_1:
-        case GGML_TYPE_Q5_0:
-        case GGML_TYPE_Q5_1:
-        case GGML_TYPE_Q8_0:
-        case GGML_TYPE_Q8_1:
-        case GGML_TYPE_Q2_K:
-        case GGML_TYPE_Q3_K:
-        case GGML_TYPE_Q4_K:
-        case GGML_TYPE_Q5_K:
-        case GGML_TYPE_Q6_K:
-            {
-                ggml_compute_forward_get_rows_q(params, src0, src1, dst);
-            } break;
-        case GGML_TYPE_F16:
-            {
-                ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-
-    //static bool first = true;
-    //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
-    //if (first) {
-    //    first = false;
-    //} else {
-    //    for (int k = 0; k < dst->ne[1]; ++k) {
-    //        for (int j = 0; j < dst->ne[0]/16; ++j) {
-    //            for (int i = 0; i < 16; ++i) {
-    //                printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
-    //            }
-    //            printf("\n");
-    //        }
-    //        printf("\n");
-    //    }
-    //    printf("\n");
-    //    exit(0);
-    //}
-}
-
-// ggml_compute_forward_get_rows_back
-
-static void ggml_compute_forward_get_rows_back_f32_f16(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        const struct ggml_tensor * opt0,
-              struct ggml_tensor * dst) {
-    GGML_ASSERT(params->ith == 0);
-    GGML_ASSERT(ggml_are_same_shape(opt0, dst));
-    GGML_ASSERT(ggml_is_contiguous(opt0));
-    GGML_ASSERT(ggml_is_contiguous(dst));
-
-    ggml_compute_forward_dup_same_cont(params, opt0, dst);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int nc = src0->ne[0];
-    const int nr = ggml_nelements(src1);
-
-    GGML_ASSERT( dst->ne[0] == nc);
-    GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
-
-    for (int i = 0; i < nr; ++i) {
-        const int r = ((int32_t *) src1->data)[i];
-
-        for (int j = 0; j < nc; ++j) {
-            ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
-            ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
-        }
-    }
-}
-
-static void ggml_compute_forward_get_rows_back_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        const struct ggml_tensor * opt0,
-              struct ggml_tensor * dst) {
-    GGML_ASSERT(params->ith == 0);
-    GGML_ASSERT(ggml_are_same_shape(opt0, dst));
-    GGML_ASSERT(ggml_is_contiguous(opt0));
-    GGML_ASSERT(ggml_is_contiguous(dst));
-
-    // ggml_compute_forward_dup_same_cont(params, opt0, dst);
-
-    if (params->type == GGML_TASK_INIT) {
-        memset(dst->data, 0, ggml_nbytes(dst));
-    }
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int nc = src0->ne[0];
-    const int nr = ggml_nelements(src1);
-
-    GGML_ASSERT( dst->ne[0] == nc);
-    GGML_ASSERT(src0->nb[0] == sizeof(float));
-
-    for (int i = 0; i < nr; ++i) {
-        const int r = ((int32_t *) src1->data)[i];
-
-        ggml_vec_add_f32(nc,
-                (float *) ((char *)  dst->data + r*dst->nb[1]),
-                (float *) ((char *)  dst->data + r*dst->nb[1]),
-                (float *) ((char *) src0->data + i*src0->nb[1]));
-    }
-}
-
-
-static void ggml_compute_forward_get_rows_back(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        const struct ggml_tensor * opt0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F16:
-            {
-                ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-
-    //static bool first = true;
-    //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
-    //if (first) {
-    //    first = false;
-    //} else {
-    //    for (int k = 0; k < dst->ne[1]; ++k) {
-    //        for (int j = 0; j < dst->ne[0]/16; ++j) {
-    //            for (int i = 0; i < 16; ++i) {
-    //                printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
-    //            }
-    //            printf("\n");
-    //        }
-    //        printf("\n");
-    //    }
-    //    printf("\n");
-    //    exit(0);
-    //}
-}
-
-// ggml_compute_forward_diag
-
-static void ggml_compute_forward_diag_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // TODO: handle transposed/permuted matrices
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    GGML_ASSERT(ne00 == ne0);
-    GGML_ASSERT(ne00 == ne1);
-    GGML_ASSERT(ne01 == 1);
-    GGML_ASSERT(ne02 == ne2);
-    GGML_ASSERT(ne03 == ne3);
-
-    GGML_ASSERT(nb00 == sizeof(float));
-    GGML_ASSERT(nb0  == sizeof(float));
-
-    for (int i3 = 0; i3 < ne3; i3++) {
-        for (int i2 = 0; i2 < ne2; i2++) {
-            for (int i1 = 0; i1 < ne1; i1++) {
-                float * d = (float *)((char *)  dst->data + i3*nb3  + i2*nb2 + i1*nb1);
-                float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
-                for (int i0 = 0; i0 < i1; i0++) {
-                    d[i0] = 0;
-                }
-                d[i1] = s[i1];
-                for (int i0 = i1+1; i0 < ne0; i0++) {
-                    d[i0] = 0;
-                }
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_diag(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_diag_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_diag_mask_inf
-
-static void ggml_compute_forward_diag_mask_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst,
-        const float value) {
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int  n_past  =       ((int32_t *) dst->op_params)[0];
-    const bool inplace = (bool)((int32_t *) dst->op_params)[1];
-
-    GGML_ASSERT(n_past >= 0);
-
-    if (!inplace && (params->type == GGML_TASK_INIT)) {
-        // memcpy needs to be synchronized across threads to avoid race conditions.
-        // => do it in INIT phase
-        GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
-        GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
-        memcpy(
-            ((char *)  dst->data),
-            ((char *) src0->data),
-            ggml_nbytes(dst));
-    }
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // TODO: handle transposed/permuted matrices
-
-    const int n  = ggml_nrows(src0);
-    const int nc = src0->ne[0];
-    const int nr = src0->ne[1];
-    const int nz = n/nr;
-
-    GGML_ASSERT( dst->nb[0] == sizeof(float));
-    GGML_ASSERT(src0->nb[0] == sizeof(float));
-
-    for (int k = 0; k < nz; k++) {
-        for (int j = ith; j < nr; j += nth) {
-            for (int i = n_past; i < nc; i++) {
-                if (i > n_past + j) {
-                    *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
-                }
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_diag_mask_inf(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-static void ggml_compute_forward_diag_mask_zero(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_soft_max
-
-static void ggml_compute_forward_soft_max_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_is_contiguous(src0));
-    GGML_ASSERT(ggml_is_contiguous(dst));
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // TODO: handle transposed/permuted matrices
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nc = src0->ne[0];
-    const int nr = ggml_nrows(src0);
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int i1 = ir0; i1 < ir1; i1++) {
-        float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
-        float *dp = (float *)((char *)  dst->data +  i1*dst->nb[1]);
-
-#ifndef NDEBUG
-        for (int i = 0; i < nc; ++i) {
-            //printf("p[%d] = %f\n", i, p[i]);
-            assert(!isnan(sp[i]));
-        }
-#endif
-
-        float max = -INFINITY;
-        ggml_vec_max_f32(nc, &max, sp);
-
-        ggml_float sum = 0.0;
-
-        uint16_t scvt;
-        for (int i = 0; i < nc; i++) {
-            if (sp[i] == -INFINITY) {
-                dp[i] = 0.0f;
-            } else {
-                // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
-                ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
-                memcpy(&scvt, &s, sizeof(scvt));
-                const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
-                sum += (ggml_float)val;
-                dp[i] = val;
-            }
-        }
-
-        assert(sum > 0.0);
-
-        sum = 1.0/sum;
-        ggml_vec_scale_f32(nc, dp, sum);
-
-#ifndef NDEBUG
-        for (int i = 0; i < nc; ++i) {
-            assert(!isnan(dp[i]));
-            assert(!isinf(dp[i]));
-        }
-#endif
-    }
-}
-
-static void ggml_compute_forward_soft_max(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_soft_max_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_soft_max_back
-
-static void ggml_compute_forward_soft_max_back_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_is_contiguous(src0));
-    GGML_ASSERT(ggml_is_contiguous(src1));
-    GGML_ASSERT(ggml_is_contiguous(dst));
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-    GGML_ASSERT(ggml_are_same_shape(src1, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // TODO: handle transposed/permuted matrices
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nc = src0->ne[0];
-    const int nr = ggml_nrows(src0);
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int i1 = ir0; i1 < ir1; i1++) {
-        float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
-        float *y  = (float *)((char *) src1->data + i1*src1->nb[1]);
-        float *dx = (float *)((char *) dst->data  + i1*dst->nb[1]);
-
-#ifndef NDEBUG
-        for (int i = 0; i < nc; ++i) {
-            //printf("p[%d] = %f\n", i, p[i]);
-            assert(!isnan(dy[i]));
-            assert(!isnan(y[i]));
-        }
-#endif
-        // Jii = yi - yi*yi
-        // Jij = -yi*yj
-        // J = diag(y)-y.T*y
-        // dx = J * dy
-        // dxk = sum_i(Jki * dyi)
-        // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
-        // dxk = sum_i(-yk*yi * dyi) + yk*dyk
-        // dxk = -yk * sum_i(yi * dyi) + yk*dyk
-        // dxk = -yk * dot(y, dy) + yk*dyk
-        // dxk = yk * (- dot(y, dy) + dyk)
-        // dxk = yk * (dyk - dot(y, dy))
-        //
-        // post-order:
-        // dot_y_dy := dot(y, dy)
-        // dx := dy
-        // dx := dx - dot_y_dy
-        // dx := dx * y
-
-        // linear runtime, no additional memory
-        float dot_y_dy = 0;
-        ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
-        ggml_vec_cpy_f32 (nc, dx, dy);
-        ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
-        ggml_vec_mul_f32 (nc, dx, dx, y);
-
-#ifndef NDEBUG
-        for (int i = 0; i < nc; ++i) {
-            assert(!isnan(dx[i]));
-            assert(!isinf(dx[i]));
-        }
-#endif
-    }
-}
-
-static void ggml_compute_forward_soft_max_back(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_alibi
-
-static void ggml_compute_forward_alibi_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int n_past = ((int32_t *) dst->op_params)[0];
-    const int n_head = ((int32_t *) dst->op_params)[1];
-    float max_bias;
-    memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
-
-    assert(n_past >= 0);
-
-    const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
-    const int ne1 = src0->ne[1]; // seq_len_without_past
-    const int ne2 = src0->ne[2]; // n_head -> this is k
-    //const int ne3 = src0->ne[3]; // 1 -> bsz
-
-    const int n  = ggml_nrows(src0);
-    const int ne2_ne3 = n/ne1; // ne2*ne3
-
-    const int nb0 = src0->nb[0];
-    const int nb1 = src0->nb[1];
-    const int nb2 = src0->nb[2];
-    //const int nb3 = src0->nb[3];
-
-    GGML_ASSERT(nb0 == sizeof(float));
-    GGML_ASSERT(ne1 + n_past == ne0);
-    GGML_ASSERT(n_head == ne2);
-
-    // add alibi to src0 (KQ_scaled)
-    const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
-
-    const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
-    const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
-
-    for (int i = 0; i < ne0; i++) {
-        for (int j = 0; j < ne1; j++) {
-            for (int k = 0; k < ne2_ne3; k++) {
-                float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
-                float *      pdst = (float *)((char *)  dst->data + i*nb0 + j*nb1 + k*nb2);
-
-                // TODO: k*nb2 or k*nb3
-
-                float m_k;
-
-                if (k < n_heads_log2_floor) {
-                    m_k = powf(m0, k + 1);
-                } else {
-                    m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
-                }
-
-                pdst[0] = i * m_k + src[0];
-
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_alibi_f16(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int n_past = ((int32_t *) dst->op_params)[0];
-    const int n_head = ((int32_t *) dst->op_params)[1];
-    float max_bias;
-    memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
-
-    assert(n_past >= 0);
-
-    const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
-    const int ne1 = src0->ne[1]; // seq_len_without_past
-    const int ne2 = src0->ne[2]; // n_head -> this is k
-    //const int ne3 = src0->ne[3]; // 1 -> bsz
-
-    const int n  = ggml_nrows(src0);
-    const int ne2_ne3 = n/ne1; // ne2*ne3
-
-    const int nb0 = src0->nb[0];
-    const int nb1 = src0->nb[1];
-    const int nb2 = src0->nb[2];
-    //const int nb3 = src0->nb[3];
-
-    GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
-    GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
-    GGML_ASSERT(n_head == ne2);
-
-    // add alibi to src0 (KQ_scaled)
-    const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
-
-    const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
-    const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
-
-    for (int i = 0; i < ne0; i++) {
-        for (int j = 0; j < ne1; j++) {
-            for (int k = 0; k < ne2_ne3; k++) {
-                ggml_fp16_t * const src  = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
-                      float *      pdst  =       (float *)((char *)  dst->data + i*nb0 + j*nb1 + k*nb2);
-
-                // TODO: k*nb2 or k*nb3
-
-                float m_k;
-
-                if (k < n_heads_log2_floor) {
-                    m_k = powf(m0, k + 1);
-                } else {
-                    m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
-                }
-
-                // we return F32
-                pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_alibi(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F16:
-            {
-                ggml_compute_forward_alibi_f16(params, src0, dst);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_alibi_f32(params, src0, dst);
-            } break;
-        case GGML_TYPE_Q4_0:
-        case GGML_TYPE_Q4_1:
-        case GGML_TYPE_Q5_0:
-        case GGML_TYPE_Q5_1:
-        case GGML_TYPE_Q8_0:
-        case GGML_TYPE_Q8_1:
-        case GGML_TYPE_Q2_K:
-        case GGML_TYPE_Q3_K:
-        case GGML_TYPE_Q4_K:
-        case GGML_TYPE_Q5_K:
-        case GGML_TYPE_Q6_K:
-        case GGML_TYPE_Q8_K:
-        case GGML_TYPE_I8:
-        case GGML_TYPE_I16:
-        case GGML_TYPE_I32:
-        case GGML_TYPE_COUNT:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-
-// ggml_compute_forward_clamp
-
-static void ggml_compute_forward_clamp_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    assert(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    float min;
-    float max;
-    memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
-    memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int n  = ggml_nrows(src0);
-    const int nc = src0->ne[0];
-
-    const size_t nb00 = src0->nb[0];
-    const size_t nb01 = src0->nb[1];
-
-    const size_t nb0 = dst->nb[0];
-    const size_t nb1 = dst->nb[1];
-
-    GGML_ASSERT( nb0 == sizeof(float));
-    GGML_ASSERT(nb00 == sizeof(float));
-
-    for (int j = ith; j < n; j += nth) {
-        float * dst_ptr  = (float *) ((char *)  dst->data + j*nb1);
-        float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
-
-        for (int i = 0; i < nc; i++) {
-            dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
-        }
-    }
-}
-
-static void ggml_compute_forward_clamp(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_clamp_f32(params, src0, dst);
-            } break;
-        case GGML_TYPE_F16:
-        case GGML_TYPE_Q4_0:
-        case GGML_TYPE_Q4_1:
-        case GGML_TYPE_Q5_0:
-        case GGML_TYPE_Q5_1:
-        case GGML_TYPE_Q8_0:
-        case GGML_TYPE_Q8_1:
-        case GGML_TYPE_Q2_K:
-        case GGML_TYPE_Q3_K:
-        case GGML_TYPE_Q4_K:
-        case GGML_TYPE_Q5_K:
-        case GGML_TYPE_Q6_K:
-        case GGML_TYPE_Q8_K:
-        case GGML_TYPE_I8:
-        case GGML_TYPE_I16:
-        case GGML_TYPE_I32:
-        case GGML_TYPE_COUNT:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_rope
-
-static void ggml_compute_forward_rope_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    float freq_base;
-    float freq_scale;
-
-    const int n_past = ((int32_t *) dst->op_params)[0];
-    const int n_dims = ((int32_t *) dst->op_params)[1];
-    const int mode   = ((int32_t *) dst->op_params)[2];
-    const int n_ctx  = ((int32_t *) dst->op_params)[3];
-    memcpy(&freq_base,  (int32_t *) dst->op_params + 4, sizeof(float));
-    memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
-
-    assert(n_past >= 0);
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
-    //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
-
-    GGML_ASSERT(nb00 == sizeof(float));
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nr = ggml_nrows(dst);
-
-    GGML_ASSERT(n_dims <= ne0);
-    GGML_ASSERT(n_dims % 2 == 0);
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    // row index used to determine which thread to use
-    int ir = 0;
-
-    const float theta_scale = powf(freq_base, -2.0f/n_dims);
-
-    const bool is_neox = mode & 2;
-    const bool is_glm  = mode & 4;
-
-    for (int64_t i3 = 0; i3 < ne3; i3++) {
-        for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
-            const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
-            for (int64_t i1 = 0; i1 < ne1; i1++) {
-                if (ir++ < ir0) continue;
-                if (ir   > ir1) break;
-
-                float theta = freq_scale * (float)p;
-
-                if (is_glm) {
-                    theta = MIN(p, n_ctx - 2);
-                    float block_theta = MAX(p - (n_ctx - 2), 0);
-                    for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
-                        const float cos_theta = cosf(theta);
-                        const float sin_theta = sinf(theta);
-                        const float cos_block_theta = cosf(block_theta);
-                        const float sin_block_theta = sinf(block_theta);
-
-                        theta *= theta_scale;
-                        block_theta *= theta_scale;
-
-                        const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
-                              float * dst_data  = (float *)((char *)  dst->data +  i3*nb3 + i2*nb2  + i1*nb1  + i0*nb0);
-
-                        const float x0 = src[0];
-                        const float x1 = src[n_dims/2];
-                        const float x2 = src[n_dims];
-                        const float x3 = src[n_dims/2*3];
-
-                        dst_data[0]          = x0*cos_theta - x1*sin_theta;
-                        dst_data[n_dims/2]   = x0*sin_theta + x1*cos_theta;
-                        dst_data[n_dims]     = x2*cos_block_theta - x3*sin_block_theta;
-                        dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
-                    }
-                } else if (!is_neox) {
-                    for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
-                        const float cos_theta = cosf(theta);
-                        const float sin_theta = sinf(theta);
-
-                        theta *= theta_scale;
-
-                        const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
-                              float * dst_data  = (float *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
-
-                        const float x0 = src[0];
-                        const float x1 = src[1];
-
-                        dst_data[0] = x0*cos_theta - x1*sin_theta;
-                        dst_data[1] = x0*sin_theta + x1*cos_theta;
-                    }
-                } else {
-                    // TODO: this is probably wrong, but I can't figure it out ..
-                    // ref:  https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
-                    for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
-                        for (int64_t ic = 0; ic < n_dims; ic += 2) {
-                            const float cos_theta = cosf(theta);
-                            const float sin_theta = sinf(theta);
-
-                            theta *= theta_scale;
-
-                            const int64_t i0 = ib*n_dims + ic/2;
-
-                            const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
-                                  float * dst_data  = (float *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
-
-                            const float x0 = src[0];
-                            const float x1 = src[n_dims/2];
-
-                            dst_data[0]        = x0*cos_theta - x1*sin_theta;
-                            dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
-                        }
-                    }
-                }
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_rope_f16(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    float freq_base;
-    float freq_scale;
-
-    const int n_past = ((int32_t *) dst->op_params)[0];
-    const int n_dims = ((int32_t *) dst->op_params)[1];
-    const int mode   = ((int32_t *) dst->op_params)[2];
-    const int n_ctx  = ((int32_t *) dst->op_params)[3];
-    memcpy(&freq_base,  (int32_t *) dst->op_params + 4, sizeof(float));
-    memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
-
-    assert(n_past >= 0);
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
-    //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
-
-    GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nr = ggml_nrows(dst);
-
-    GGML_ASSERT(n_dims <= ne0);
-    GGML_ASSERT(n_dims % 2 == 0);
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    // row index used to determine which thread to use
-    int ir = 0;
-
-    const float theta_scale = powf(freq_base, -2.0f/n_dims);
-
-    const bool is_neox = mode & 2;
-    const bool is_glm  = mode & 4;
-
-    for (int64_t i3 = 0; i3 < ne3; i3++) {
-        for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
-            const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
-            for (int64_t i1 = 0; i1 < ne1; i1++) {
-                if (ir++ < ir0) continue;
-                if (ir   > ir1) break;
-
-                float theta = freq_scale * (float)p;
-
-                if (is_glm) {
-                    theta = MIN(p, n_ctx - 2);
-                    float block_theta = MAX(p - (n_ctx - 2), 0);
-                    for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
-                        const float cos_theta = cosf(theta);
-                        const float sin_theta = sinf(theta);
-                        const float cos_block_theta = cosf(block_theta);
-                        const float sin_block_theta = sinf(block_theta);
-
-                        theta *= theta_scale;
-                        block_theta *= theta_scale;
-
-                        const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
-                              ggml_fp16_t * dst_data  = (ggml_fp16_t *)((char *)  dst->data +  i3*nb3 + i2*nb2  + i1*nb1  + i0*nb0);
-
-                        const float x0 = GGML_FP16_TO_FP32(src[0]);
-                        const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
-                        const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
-                        const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
-
-                        dst_data[0]          = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
-                        dst_data[n_dims/2]   = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
-                        dst_data[n_dims]     = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
-                        dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
-                    }
-                } if (!is_neox) {
-                    for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
-                        const float cos_theta = cosf(theta);
-                        const float sin_theta = sinf(theta);
-
-                        theta *= theta_scale;
-
-                        const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
-                              ggml_fp16_t * dst_data  = (ggml_fp16_t *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
-
-                        const float x0 = GGML_FP16_TO_FP32(src[0]);
-                        const float x1 = GGML_FP16_TO_FP32(src[1]);
-
-                        dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
-                        dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
-                    }
-                } else {
-                    // TODO: this is probably wrong, but I can't figure it out ..
-                    // ref:  https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
-                    for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
-                        for (int64_t ic = 0; ic < n_dims; ic += 2) {
-                            const float cos_theta = cosf(theta);
-                            const float sin_theta = sinf(theta);
-
-                            theta *= theta_scale;
-
-                            const int64_t i0 = ib*n_dims + ic/2;
-
-                            const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
-                                  ggml_fp16_t * dst_data  = (ggml_fp16_t *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
-
-                            const float x0 = GGML_FP16_TO_FP32(src[0]);
-                            const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
-
-                            dst_data[0]        = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
-                            dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
-                        }
-                    }
-                }
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_rope(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F16:
-            {
-                ggml_compute_forward_rope_f16(params, src0, dst);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_rope_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_rope_back
-
-static void ggml_compute_forward_rope_back_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // y = rope(x, src1)
-    // dx = rope_back(dy, src1)
-    // src0 is dy, src1 contains options
-
-    const int n_past = ((int32_t *) dst->op_params)[0];
-    const int n_dims = ((int32_t *) dst->op_params)[1];
-    const int mode   = ((int32_t *) dst->op_params)[2];
-
-    assert(n_past >= 0);
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
-    //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
-
-    assert(nb0 == sizeof(float));
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nr = ggml_nrows(dst);
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    // row index used to determine which thread to use
-    int ir = 0;
-
-    const float theta_scale = powf(10000.0, -2.0f/n_dims);
-
-    const bool is_neox = mode & 2;
-
-    for (int64_t i3 = 0; i3 < ne3; i3++) {
-        for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
-            const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
-            for (int64_t i1 = 0; i1 < ne1; i1++) {
-                if (ir++ < ir0) continue;
-                if (ir   > ir1) break;
-
-                float theta = (float)p;
-
-                if (!is_neox) {
-                    for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
-                        const float cos_theta = cosf(theta);
-                        const float sin_theta = sinf(theta);
-
-                        theta *= theta_scale;
-
-                        const float * const dy  = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
-                              float *       dx  = (float *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
-
-                        const float dy0 = dy[0];
-                        const float dy1 = dy[1];
-
-                        dx[0] =   dy0*cos_theta + dy1*sin_theta;
-                        dx[1] = - dy0*sin_theta + dy1*cos_theta;
-                    }
-                } else {
-                    for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
-                        for (int64_t ic = 0; ic < n_dims; ic += 2) {
-                            const float cos_theta = cosf(theta);
-                            const float sin_theta = sinf(theta);
-
-                            theta *= theta_scale;
-
-                            const int64_t i0 = ib*n_dims + ic/2;
-
-                            const float * const dy  = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
-                                  float *       dx  = (float *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
-
-                            const float dy0 = dy[0];
-                            const float dy1 = dy[n_dims/2];
-
-                            dx[0]        =   dy0*cos_theta + dy1*sin_theta;
-                            dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
-                        }
-                    }
-                }
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_rope_back_f16(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // y = rope(x, src1)
-    // dx = rope_back(dy, src1)
-    // src0 is dy, src1 contains options
-
-    const int n_past = ((int32_t *) dst->op_params)[0];
-    const int n_dims = ((int32_t *) dst->op_params)[1];
-    const int mode   = ((int32_t *) dst->op_params)[2];
-
-    assert(n_past >= 0);
-
-    GGML_TENSOR_UNARY_OP_LOCALS;
-
-    //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
-    //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
-
-    assert(nb0 == sizeof(ggml_fp16_t));
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nr = ggml_nrows(dst);
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    // row index used to determine which thread to use
-    int ir = 0;
-
-    const float theta_scale = powf(10000.0, -2.0f/n_dims);
-
-    const bool is_neox = mode & 2;
-
-    for (int64_t i3 = 0; i3 < ne3; i3++) {
-        for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
-            const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
-            for (int64_t i1 = 0; i1 < ne1; i1++) {
-                if (ir++ < ir0) continue;
-                if (ir   > ir1) break;
-
-                float theta = (float)p;
-
-                if (!is_neox) {
-                    for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
-                        const float cos_theta = cosf(theta);
-                        const float sin_theta = sinf(theta);
-
-                        theta *= theta_scale;
-
-                        const ggml_fp16_t * const dy  = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
-                              ggml_fp16_t *       dx  = (ggml_fp16_t *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
-
-                        const float dy0 = GGML_FP16_TO_FP32(dy[0]);
-                        const float dy1 = GGML_FP16_TO_FP32(dy[1]);
-
-                        dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
-                        dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
-                    }
-                } else {
-                    for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
-                        for (int64_t ic = 0; ic < n_dims; ic += 2) {
-                            const float cos_theta = cosf(theta);
-                            const float sin_theta = sinf(theta);
-
-                            theta *= theta_scale;
-
-                            const int64_t i0 = ib*n_dims + ic/2;
-
-                            const ggml_fp16_t * const dy  = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
-                                  ggml_fp16_t *       dx  = (ggml_fp16_t *)((char *)  dst->data + i3*nb3  + i2*nb2  + i1*nb1  + i0*nb0);
-
-                            const float dy0 = GGML_FP16_TO_FP32(dy[0]);
-                            const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
-
-                            dx[0]        = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
-                            dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
-                        }
-                    }
-                }
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_rope_back(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F16:
-            {
-                ggml_compute_forward_rope_back_f16(params, src0, dst);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_rope_back_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_conv_1d
-
-static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F16);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    int64_t t0 = ggml_perf_time_us();
-    UNUSED(t0);
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nk = ne00;
-    const int nh = nk/2;
-
-    const int ew0 = ggml_up32(ne01);
-
-    GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
-    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-    GGML_ASSERT(nb10 == sizeof(float));
-
-    if (params->type == GGML_TASK_INIT) {
-        // TODO: fix this memset (wsize is overestimated)
-        memset(params->wdata, 0, params->wsize);
-
-        // prepare kernel data (src0)
-        {
-            ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
-
-            for (int64_t i02 = 0; i02 < ne02; i02++) {
-                for (int64_t i01 = 0; i01 < ne01; i01++) {
-                    const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
-                    ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
-                    for (int64_t i00 = 0; i00 < ne00; i00++) {
-                        dst_data[i00*ew0 + i01] = src[i00];
-                    }
-                }
-            }
-        }
-
-        // prepare source data (src1)
-        {
-            ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
-
-            for (int64_t i11 = 0; i11 < ne11; i11++) {
-                const float * const src = (float *)((char *) src1->data + i11*nb11);
-                ggml_fp16_t * dst_data = wdata;
-                for (int64_t i10 = 0; i10 < ne10; i10++) {
-                    dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
-                }
-            }
-        }
-
-        return;
-    }
-
-    if (params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // total rows in dst
-    const int nr = ne02;
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int i1 = ir0; i1 < ir1; i1++) {
-        float * dst_data = (float *)((char *) dst->data + i1*nb1);
-        for (int64_t i0 = 0; i0 < ne10; ++i0) {
-            dst_data[i0] = 0;
-            for (int k = -nh; k <= nh; k++) {
-                float v = 0.0f;
-                ggml_vec_dot_f16(ew0, &v,
-                        (ggml_fp16_t *) params->wdata +   i1*ew0*ne00 +      (nh + k)*ew0,
-                        (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
-
-                dst_data[i0] += v;
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_conv_1d_s1_ph_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    int64_t t0 = ggml_perf_time_us();
-    UNUSED(t0);
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nk = ne00;
-    const int nh = nk/2;
-
-    const int ew0 = ggml_up32(ne01);
-
-    GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
-    GGML_ASSERT(nb00 == sizeof(float));
-    GGML_ASSERT(nb10 == sizeof(float));
-
-    if (params->type == GGML_TASK_INIT) {
-        // TODO: fix this memset (wsize is overestimated)
-        memset(params->wdata, 0, params->wsize);
-
-        // prepare kernel data (src0)
-        {
-            float * const wdata = (float *) params->wdata + 0;
-
-            for (int64_t i02 = 0; i02 < ne02; i02++) {
-                for (int64_t i01 = 0; i01 < ne01; i01++) {
-                    const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
-                    float * dst_data = wdata + i02*ew0*ne00;
-                    for (int64_t i00 = 0; i00 < ne00; i00++) {
-                        dst_data[i00*ew0 + i01] = src[i00];
-                    }
-                }
-            }
-        }
-
-        // prepare source data (src1)
-        {
-            float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
-
-            for (int64_t i11 = 0; i11 < ne11; i11++) {
-                const float * const src = (float *)((char *) src1->data + i11*nb11);
-                float * dst_data = wdata;
-                for (int64_t i10 = 0; i10 < ne10; i10++) {
-                    dst_data[(i10 + nh)*ew0 + i11] = src[i10];
-                }
-            }
-        }
-
-        return;
-    }
-
-    if (params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // total rows in dst
-    const int nr = ne02;
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int i1 = ir0; i1 < ir1; i1++) {
-        float * dst_data = (float *)((char *) dst->data + i1*nb1);
-        for (int64_t i0 = 0; i0 < ne10; ++i0) {
-            dst_data[i0] = 0;
-            for (int k = -nh; k <= nh; k++) {
-                float v = 0.0f;
-                ggml_vec_dot_f32(ew0, &v,
-                        (float *) params->wdata +   i1*ew0*ne00 +      (nh + k)*ew0,
-                        (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
-
-                dst_data[i0] += v;
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_conv_1d_s1_ph(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F16:
-            {
-                ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F16);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    int64_t t0 = ggml_perf_time_us();
-    UNUSED(t0);
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nk = ne00;
-    const int nh = nk/2;
-
-    const int ew0 = ggml_up32(ne01);
-
-    GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
-    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-    GGML_ASSERT(nb10 == sizeof(float));
-
-    if (params->type == GGML_TASK_INIT) {
-        // TODO: fix this memset (wsize is overestimated)
-        memset(params->wdata, 0, params->wsize);
-
-        // prepare kernel data (src0)
-        {
-            ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
-
-            for (int64_t i02 = 0; i02 < ne02; i02++) {
-                for (int64_t i01 = 0; i01 < ne01; i01++) {
-                    const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
-                    ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
-                    for (int64_t i00 = 0; i00 < ne00; i00++) {
-                        dst_data[i00*ew0 + i01] = src[i00];
-                    }
-                }
-            }
-        }
-
-        // prepare source data (src1)
-        {
-            ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
-
-            for (int64_t i11 = 0; i11 < ne11; i11++) {
-                const float * const src = (float *)((char *) src1->data + i11*nb11);
-                ggml_fp16_t * dst_data = wdata;
-                for (int64_t i10 = 0; i10 < ne10; i10++) {
-                    dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
-                }
-            }
-        }
-
-        return;
-    }
-
-    if (params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // total rows in dst
-    const int nr = ne02;
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int i1 = ir0; i1 < ir1; i1++) {
-        float * dst_data = (float *)((char *) dst->data + i1*nb1);
-        for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
-            dst_data[i0/2] = 0;
-            for (int k = -nh; k <= nh; k++) {
-                float v = 0.0f;
-                ggml_vec_dot_f16(ew0, &v,
-                        (ggml_fp16_t *) params->wdata +   i1*ew0*ne00 +      (nh + k)*ew0,
-                        (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
-
-                dst_data[i0/2] += v;
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_conv_1d_s2_ph_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F32);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    int64_t t0 = ggml_perf_time_us();
-    UNUSED(t0);
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nk = ne00;
-    const int nh = nk/2;
-
-    const int ew0 = ggml_up32(ne01);
-
-    GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
-    GGML_ASSERT(nb00 == sizeof(float));
-    GGML_ASSERT(nb10 == sizeof(float));
-
-    if (params->type == GGML_TASK_INIT) {
-        // TODO: fix this memset (wsize is overestimated)
-        memset(params->wdata, 0, params->wsize);
-
-        // prepare kernel data (src0)
-        {
-            float * const wdata = (float *) params->wdata + 0;
-
-            for (int64_t i02 = 0; i02 < ne02; i02++) {
-                for (int64_t i01 = 0; i01 < ne01; i01++) {
-                    const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
-                    float * dst_data = wdata + i02*ew0*ne00;
-                    for (int64_t i00 = 0; i00 < ne00; i00++) {
-                        dst_data[i00*ew0 + i01] = src[i00];
-                    }
-                }
-            }
-        }
-
-        // prepare source data (src1)
-        {
-            float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
-
-            for (int64_t i11 = 0; i11 < ne11; i11++) {
-                const float * const src = (float *)((char *) src1->data + i11*nb11);
-                float * dst_data = wdata;
-                for (int64_t i10 = 0; i10 < ne10; i10++) {
-                    dst_data[(i10 + nh)*ew0 + i11] = src[i10];
-                }
-            }
-        }
-
-        return;
-    }
-
-    if (params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // total rows in dst
-    const int nr = ne02;
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int i1 = ir0; i1 < ir1; i1++) {
-        float * dst_data = (float *)((char *) dst->data + i1*nb1);
-        for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
-            dst_data[i0/2] = 0;
-            for (int k = -nh; k <= nh; k++) {
-                float v = 0.0f;
-                ggml_vec_dot_f32(ew0, &v,
-                        (float *) params->wdata +   i1*ew0*ne00 +      (nh + k)*ew0,
-                        (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
-
-                dst_data[i0/2] += v;
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_conv_1d_s2_ph(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F16:
-            {
-                ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_conv_1d
-
-static void ggml_compute_forward_conv_1d(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
-    const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
-    const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
-    GGML_ASSERT(d0 == 1); // dilation not supported
-    GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
-    if (s0 == 1) {
-        ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
-    } else if (s0 == 2) {
-        ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
-    } else {
-        GGML_ASSERT(false); // only stride 1 and 2 supported
-    };
-}
-
-// ggml_compute_forward_conv_2d
-
-static void ggml_compute_forward_conv_2d_f16_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    GGML_ASSERT(src0->type == GGML_TYPE_F16);
-    GGML_ASSERT(src1->type == GGML_TYPE_F32);
-    GGML_ASSERT( dst->type == GGML_TYPE_F32);
-
-    int64_t t0 = ggml_perf_time_us();
-    UNUSED(t0);
-
-    GGML_TENSOR_BINARY_OP_LOCALS;
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int nk0 = ne00;
-    const int nk1 = ne01;
-
-    // size of the convolution row - the kernel size unrolled across all channels
-    const int ew0 = nk0*nk1*ne02;
-
-    const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
-    const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
-    const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
-    const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
-    const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
-    const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
-
-    GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
-    GGML_ASSERT(nb10 == sizeof(float));
-
-    if (params->type == GGML_TASK_INIT) {
-        memset(params->wdata, 0, params->wsize);
-
-        // prepare source data (src1)
-        {
-            ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
-
-            for (int i12 = 0; i12 < ne12; i12++) {
-                const float * const src = (float *)((char *) src1->data + i12*nb12);
-                ggml_fp16_t * dst_data = wdata;
-
-                for (int i1 = 0; i1 < ne1; i1++) {
-                    for (int i0 = 0; i0 < ne0; i0++) {
-                        for (int ik1 = 0; ik1 < nk1; ik1++) {
-                            for (int ik0 = 0; ik0 < nk0; ik0++) {
-                                const int idx0 = i0*s0 + ik0*d0 - p0;
-                                const int idx1 = i1*s1 + ik1*d1 - p1;
-
-                                if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
-                                    dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
-                                        GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
-                                }
-                            }
-                        }
-                    }
-                }
-            }
-        }
-
-        return;
-    }
-
-    if (params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // total patches in dst
-    const int np = ne2;
-
-    // patches per thread
-    const int dp = (np + nth - 1)/nth;
-
-    // patch range for this thread
-    const int ip0 = dp*ith;
-    const int ip1 = MIN(ip0 + dp, np);
-
-    ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
-
-    for (int i3 = 0; i3 < ne3; i3++) {
-        for (int i2 = ip0; i2 < ip1; i2++) {
-            float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
-
-            for (int i1 = 0; i1 < ne1; ++i1) {
-                for (int i0 = 0; i0 < ne0; ++i0) {
-                    ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
-                            (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
-                            (ggml_fp16_t *)                wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
-                }
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_conv_2d(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-              struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F16:
-            {
-                ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
-                GGML_ASSERT(false);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_pool_1d_sk_p0
-
-static void ggml_compute_forward_pool_1d_sk_p0(
-        const struct ggml_compute_params * params,
-        const enum ggml_op_pool op,
-        const struct ggml_tensor * src,
-        const int k,
-        struct ggml_tensor * dst) {
-    assert(src->type == GGML_TYPE_F32);
-    assert(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const char * cdata = (const char *)src->data;
-    const char * const data_end = cdata + ggml_nbytes(src);
-    float * drow = (float *)dst->data;
-
-    const int64_t rs = dst->ne[0];
-
-    while (cdata < data_end) {
-        const float * const srow = (const float *)cdata;
-
-        int j = 0;
-
-        for (int64_t i = 0; i < rs; ++i) {
-            switch (op) {
-                case GGML_OP_POOL_AVG:   drow[i] = 0;        break;
-                case GGML_OP_POOL_MAX:   drow[i] = -FLT_MAX; break;
-                case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
-            }
-            for (int ki = 0; ki < k; ++ki) {
-                switch (op) {
-                    case GGML_OP_POOL_AVG:                          drow[i] += srow[j]; break;
-                    case GGML_OP_POOL_MAX:   if (srow[j] > drow[i]) drow[i]  = srow[j]; break;
-                    case GGML_OP_POOL_COUNT:                        GGML_ASSERT(false); break;
-                }
-                ++j;
-            }
-            switch (op) {
-                case GGML_OP_POOL_AVG:         drow[i] /= k; break;
-                case GGML_OP_POOL_MAX:                       break;
-                case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
-            }
-        }
-
-        cdata += src->nb[1];
-        drow  += rs;
-    }
-}
-
-// ggml_compute_forward_pool_1d
-
-static void ggml_compute_forward_pool_1d(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-              struct ggml_tensor * dst) {
-
-    const int32_t * opts = (const int32_t *)dst->op_params;
-    enum ggml_op_pool op = opts[0];
-    const int k0 = opts[1];
-    const int s0 = opts[2];
-    const int p0 = opts[3];
-    GGML_ASSERT(p0 == 0); // padding not supported
-    GGML_ASSERT(k0 == s0); // only s = k supported
-
-    ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
-}
-
-// ggml_compute_forward_pool_2d_sk_p0
-
-static void ggml_compute_forward_pool_2d_sk_p0(
-        const struct ggml_compute_params * params,
-        const enum   ggml_op_pool op,
-        const struct ggml_tensor * src,
-        const int k0,
-        const int k1,
-        struct ggml_tensor * dst) {
-    assert(src->type == GGML_TYPE_F32);
-    assert(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const char * cdata = (const char*)src->data;
-    const char * const data_end = cdata + ggml_nbytes(src);
-
-    const int64_t px = dst->ne[0];
-    const int64_t py = dst->ne[1];
-    const int64_t pa = px * py;
-
-    float * dplane = (float *)dst->data;
-
-    const int ka = k0 * k1;
-
-    while (cdata < data_end) {
-        for (int oy = 0; oy < py; ++oy) {
-            float * const drow = dplane + oy * px;
-            for (int ox = 0; ox < px; ++ox) {
-                float * const out =  drow + ox;
-                switch (op) {
-                    case GGML_OP_POOL_AVG:     *out = 0;        break;
-                    case GGML_OP_POOL_MAX:     *out = -FLT_MAX; break;
-                    case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
-                }
-
-                const int ix = ox * k0;
-                const int iy = oy * k1;
-
-                for (int ky = 0; ky < k1; ++ky) {
-                    const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
-                    for (int kx = 0; kx < k0; ++kx) {
-                        int j = ix + kx;
-                        switch (op) {
-                            case GGML_OP_POOL_AVG:                     *out += srow[j]; break;
-                            case GGML_OP_POOL_MAX: if (srow[j] > *out) *out  = srow[j]; break;
-                            case GGML_OP_POOL_COUNT:                GGML_ASSERT(false); break;
-                        }
-                    }
-                }
-                switch (op) {
-                    case GGML_OP_POOL_AVG:           *out /= ka; break;
-                    case GGML_OP_POOL_MAX:                       break;
-                    case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
-                }
-            }
-        }
-
-        cdata  += src->nb[2];
-        dplane += pa;
-    }
-}
-
-// ggml_compute_forward_pool_2d
-
-static void ggml_compute_forward_pool_2d(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-              struct ggml_tensor * dst) {
-
-    const int32_t * opts = (const int32_t *)dst->op_params;
-    enum ggml_op_pool op = opts[0];
-    const int k0 = opts[1];
-    const int k1 = opts[2];
-    const int s0 = opts[3];
-    const int s1 = opts[4];
-    const int p0 = opts[5];
-    const int p1 = opts[6];
-    GGML_ASSERT(p0 == 0);
-    GGML_ASSERT(p1 == 0); // padding not supported
-    GGML_ASSERT(k0 == s0);
-    GGML_ASSERT(k1 == s1); // only s = k supported
-
-    ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
-}
-
-
-// ggml_compute_forward_flash_attn
-
-static void ggml_compute_forward_flash_attn_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * q,
-        const struct ggml_tensor * k,
-        const struct ggml_tensor * v,
-        const bool masked,
-        struct ggml_tensor * dst) {
-    int64_t t0 = ggml_perf_time_us();
-    UNUSED(t0);
-
-    GGML_TENSOR_LOCALS(int64_t, neq, q,   ne);
-    GGML_TENSOR_LOCALS(size_t,  nbq, q,   nb);
-    GGML_TENSOR_LOCALS(int64_t, nek, k,   ne);
-    GGML_TENSOR_LOCALS(size_t,  nbk, k,   nb);
-    GGML_TENSOR_LOCALS(int64_t, nev, v,   ne);
-    GGML_TENSOR_LOCALS(size_t,  nbv, v,   nb);
-    GGML_TENSOR_LOCALS(int64_t, ne,  dst, ne);
-    GGML_TENSOR_LOCALS(size_t,  nb,  dst, nb);
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int64_t D = neq0;
-    const int64_t N = neq1;
-    const int64_t P = nek1 - N;
-    const int64_t M = P + N;
-
-    const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
-
-    GGML_ASSERT(ne0 == D);
-    GGML_ASSERT(ne1 == N);
-    GGML_ASSERT(P >= 0);
-
-    GGML_ASSERT(nbq0 == sizeof(float));
-    GGML_ASSERT(nbk0 == sizeof(float));
-    GGML_ASSERT(nbv0 == sizeof(float));
-
-    GGML_ASSERT(neq0 == D);
-    GGML_ASSERT(nek0 == D);
-    GGML_ASSERT(nev1 == D);
-
-    GGML_ASSERT(neq1 == N);
-    GGML_ASSERT(nek1 == N + P);
-    GGML_ASSERT(nev1 == D);
-
-    // dst cannot be transposed or permuted
-    GGML_ASSERT(nb0 == sizeof(float));
-    GGML_ASSERT(nb0 <= nb1);
-    GGML_ASSERT(nb1 <= nb2);
-    GGML_ASSERT(nb2 <= nb3);
-
-    if (params->type == GGML_TASK_INIT) {
-        return;
-    }
-
-    if (params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // parallelize by q rows using ggml_vec_dot_f32
-
-    // total rows in q
-    const int nr = neq1*neq2*neq3;
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    const float scale = 1.0f/sqrtf(D);
-
-    //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
-
-    for (int ir = ir0; ir < ir1; ++ir) {
-        // q indices
-        const int iq3 = ir/(neq2*neq1);
-        const int iq2 = (ir - iq3*neq2*neq1)/neq1;
-        const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
-
-        float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
-
-        for (int i = M; i < Mup; ++i) {
-            S[i] = -INFINITY;
-        }
-
-        for (int64_t ic = 0; ic < nek1; ++ic) {
-            // k indices
-            const int ik3 = iq3;
-            const int ik2 = iq2;
-            const int ik1 = ic;
-
-            // S indices
-            const int i1 = ik1;
-
-            ggml_vec_dot_f32(neq0,
-                    S + i1,
-                    (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
-                    (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
-        }
-
-        // scale
-        ggml_vec_scale_f32(nek1, S, scale);
-
-        if (masked) {
-            for (int64_t i = P; i < M; i++) {
-                if (i > P + iq1) {
-                    S[i] = -INFINITY;
-                }
-            }
-        }
-
-        // softmax
-        {
-            float max = -INFINITY;
-            ggml_vec_max_f32(M, &max, S);
-
-            ggml_float sum = 0.0;
-            {
-#ifdef GGML_SOFT_MAX_ACCELERATE
-                max = -max;
-                vDSP_vsadd(S, 1, &max, S, 1, Mup);
-                vvexpf(S, S, &Mup);
-                ggml_vec_sum_f32(Mup, &sum, S);
-#else
-                uint16_t   scvt[GGML_SOFT_MAX_UNROLL];
-                ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
-
-                for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
-                    float * SS = S + i;
-
-                    for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
-                        if (SS[j] == -INFINITY) {
-                            SS[j] = 0.0f;
-                        } else {
-                            ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
-                            memcpy(&scvt[j], &s, sizeof(uint16_t));
-                            const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
-                            sump[j] += (ggml_float)val;
-                            SS[j] = val;
-                        }
-                    }
-                }
-
-                for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
-                    sum += sump[i];
-                }
-#endif
-            }
-
-            assert(sum > 0.0);
-
-            sum = 1.0/sum;
-            ggml_vec_scale_f32(M, S, sum);
-
-#ifndef NDEBUG
-            for (int i = 0; i < M; ++i) {
-                assert(!isnan(S[i]));
-                assert(!isinf(S[i]));
-            }
-#endif
-        }
-
-        for (int64_t ic = 0; ic < nev1; ++ic) {
-            // dst indices
-            const int i1 = iq1;
-            const int i2 = iq2;
-            const int i3 = iq3;
-
-            ggml_vec_dot_f32(nek1,
-                    (float *) ((char *) dst->data + (ic*nb0 + i1*nb1  + i2*nb2  + i3*nb3)),
-                    (float *) ((char *) v->data   + (         ic*nbv1 + i2*nbv2 + i3*nbv3)),
-                    S);
-        }
-    }
-}
-
-static void ggml_compute_forward_flash_attn_f16(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * q,
-        const struct ggml_tensor * k,
-        const struct ggml_tensor * v,
-        const bool masked,
-        struct ggml_tensor * dst) {
-    int64_t t0 = ggml_perf_time_us();
-    UNUSED(t0);
-
-    GGML_TENSOR_LOCALS(int64_t, neq, q,   ne);
-    GGML_TENSOR_LOCALS(size_t,  nbq, q,   nb);
-    GGML_TENSOR_LOCALS(int64_t, nek, k,   ne);
-    GGML_TENSOR_LOCALS(size_t,  nbk, k,   nb);
-    GGML_TENSOR_LOCALS(int64_t, nev, v,   ne);
-    GGML_TENSOR_LOCALS(size_t,  nbv, v,   nb);
-    GGML_TENSOR_LOCALS(int64_t, ne,  dst, ne);
-    GGML_TENSOR_LOCALS(size_t,  nb,  dst, nb);
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int64_t D = neq0;
-    const int64_t N = neq1;
-    const int64_t P = nek1 - N;
-    const int64_t M = P + N;
-
-    const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
-
-    GGML_ASSERT(ne0 == D);
-    GGML_ASSERT(ne1 == N);
-    GGML_ASSERT(P >= 0);
-
-    GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
-    GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
-    GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
-
-    GGML_ASSERT(neq0 == D);
-    GGML_ASSERT(nek0 == D);
-    GGML_ASSERT(nev1 == D);
-
-    GGML_ASSERT(neq1 == N);
-    GGML_ASSERT(nek1 == N + P);
-    GGML_ASSERT(nev1 == D);
-
-    // dst cannot be transposed or permuted
-    GGML_ASSERT(nb0 == sizeof(float));
-    GGML_ASSERT(nb0 <= nb1);
-    GGML_ASSERT(nb1 <= nb2);
-    GGML_ASSERT(nb2 <= nb3);
-
-    if (params->type == GGML_TASK_INIT) {
-        return;
-    }
-
-    if (params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // parallelize by q rows using ggml_vec_dot_f32
-
-    // total rows in q
-    const int nr = neq1*neq2*neq3;
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    const float scale = 1.0f/sqrtf(D);
-
-    //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
-
-    for (int ir = ir0; ir < ir1; ++ir) {
-        // q indices
-        const int iq3 = ir/(neq2*neq1);
-        const int iq2 = (ir - iq3*neq2*neq1)/neq1;
-        const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
-
-        float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
-
-        for (int i = M; i < Mup; ++i) {
-            S[i] = -INFINITY;
-        }
-
-        if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
-            for (int64_t ic = 0; ic < nek1; ++ic) {
-                // k indices
-                const int ik3 = iq3;
-                const int ik2 = iq2;
-                const int ik1 = ic;
-
-                // S indices
-                const int i1 = ik1;
-
-                ggml_vec_dot_f16(neq0,
-                        S + i1,
-                        (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
-                        (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
-            }
-        } else {
-            for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
-                // k indices
-                const int ik3 = iq3;
-                const int ik2 = iq2;
-                const int ik1 = ic;
-
-                // S indices
-                const int i1 = ik1;
-
-                ggml_vec_dot_f16_unroll(neq0, nbk1,
-                        S + i1,
-                        ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
-                        (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
-            }
-        }
-
-        // scale
-        ggml_vec_scale_f32(nek1, S, scale);
-
-        if (masked) {
-            for (int64_t i = P; i < M; i++) {
-                if (i > P + iq1) {
-                    S[i] = -INFINITY;
-                }
-            }
-        }
-
-        // softmax
-        {
-            float max = -INFINITY;
-            ggml_vec_max_f32(M, &max, S);
-
-            ggml_float sum = 0.0;
-            {
-#ifdef GGML_SOFT_MAX_ACCELERATE
-                max = -max;
-                vDSP_vsadd(S, 1, &max, S, 1, Mup);
-                vvexpf(S, S, &Mup);
-                ggml_vec_sum_f32(Mup, &sum, S);
-#else
-                uint16_t   scvt[GGML_SOFT_MAX_UNROLL];
-                ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
-
-                for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
-                    float * SS = S + i;
-
-                    for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
-                        if (SS[j] == -INFINITY) {
-                            SS[j] = 0.0f;
-                        } else {
-                            ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
-                            memcpy(&scvt[j], &s, sizeof(uint16_t));
-                            const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
-                            sump[j] += (ggml_float)val;
-                            SS[j] = val;
-                        }
-                    }
-                }
-
-                for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
-                    sum += sump[i];
-                }
-#endif
-            }
-
-            assert(sum > 0.0);
-
-            sum = 1.0/sum;
-            ggml_vec_scale_f32(M, S, sum);
-
-#ifndef NDEBUG
-            for (int i = 0; i < M; ++i) {
-                assert(!isnan(S[i]));
-                assert(!isinf(S[i]));
-            }
-#endif
-        }
-
-        ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
-
-        for (int64_t i = 0; i < M; i++) {
-            S16[i] = GGML_FP32_TO_FP16(S[i]);
-        }
-
-        if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
-            for (int64_t ic = 0; ic < nev1; ++ic) {
-                // dst indices
-                const int i1 = iq1;
-                const int i2 = iq2;
-                const int i3 = iq3;
-
-                ggml_vec_dot_f16(nek1,
-                        (float *)       ((char *) dst->data + (ic*nb0 + i1*nb1  + i2*nb2  + i3*nb3)),
-                        (ggml_fp16_t *) ((char *) v->data   + (         ic*nbv1 + i2*nbv2 + i3*nbv3)),
-                        S16);
-            }
-        } else {
-            for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
-                // dst indices
-                const int i1 = iq1;
-                const int i2 = iq2;
-                const int i3 = iq3;
-
-                ggml_vec_dot_f16_unroll(nek1, nbv1,
-                        (float *) ((char *) dst->data + (ic*nb0 + i1*nb1  + i2*nb2  + i3*nb3)),
-                        ((char *) v->data   + (         ic*nbv1 + i2*nbv2 + i3*nbv3)),
-                        S16);
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_flash_attn(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * q,
-        const struct ggml_tensor * k,
-        const struct ggml_tensor * v,
-        const bool masked,
-        struct ggml_tensor * dst) {
-    switch (q->type) {
-        case GGML_TYPE_F16:
-            {
-                ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_flash_ff
-
-static void ggml_compute_forward_flash_ff_f16(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * a,  // F16
-        const struct ggml_tensor * b0, // F16 fc_w
-        const struct ggml_tensor * b1, // F32 fc_b
-        const struct ggml_tensor * c0, // F16 proj_w
-        const struct ggml_tensor * c1, // F32 proj_b
-        struct ggml_tensor * dst) {
-    int64_t t0 = ggml_perf_time_us();
-    UNUSED(t0);
-
-    GGML_TENSOR_LOCALS(int64_t, nea,  a,   ne);
-    GGML_TENSOR_LOCALS(size_t,  nba,  a,   nb);
-    GGML_TENSOR_LOCALS(int64_t, neb0, b0,  ne);
-    GGML_TENSOR_LOCALS(size_t,  nbb0, b0,  nb);
-    GGML_TENSOR_LOCALS(int64_t, neb1, b1,  ne);
-    GGML_TENSOR_LOCALS(size_t,  nbb1, b1,  nb);
-    GGML_TENSOR_LOCALS(int64_t, nec0, c0,  ne);
-    GGML_TENSOR_LOCALS(size_t,  nbc0, c0,  nb);
-    GGML_TENSOR_LOCALS(int64_t, nec1, c1,  ne);
-    GGML_TENSOR_LOCALS(size_t,  nbc1, c1,  nb);
-    GGML_TENSOR_LOCALS(int64_t, ne,   dst, ne);
-    GGML_TENSOR_LOCALS(size_t,  nb,   dst, nb);
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int64_t D = nea0;
-    //const int64_t N = nea1;
-    const int64_t M = neb01;
-
-    GGML_ASSERT(ne0 == nea0);
-    GGML_ASSERT(ne1 == nea1);
-    GGML_ASSERT(ne2 == nea2);
-
-    GGML_ASSERT(nba0  == sizeof(ggml_fp16_t));
-    GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
-    GGML_ASSERT(nbb10 == sizeof(float));
-    GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
-    GGML_ASSERT(nbc10 == sizeof(float));
-
-    GGML_ASSERT(neb00 == D);
-    GGML_ASSERT(neb01 == M);
-    GGML_ASSERT(neb10 == M);
-    GGML_ASSERT(neb11 == 1);
-
-    GGML_ASSERT(nec00 == M);
-    GGML_ASSERT(nec01 == D);
-    GGML_ASSERT(nec10 == D);
-    GGML_ASSERT(nec11 == 1);
-
-    // dst cannot be transposed or permuted
-    GGML_ASSERT(nb0 == sizeof(float));
-    GGML_ASSERT(nb0 <= nb1);
-    GGML_ASSERT(nb1 <= nb2);
-    GGML_ASSERT(nb2 <= nb3);
-
-    if (params->type == GGML_TASK_INIT) {
-        return;
-    }
-
-    if (params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // parallelize by a rows using ggml_vec_dot_f32
-
-    // total rows in a
-    const int nr = nea1*nea2*nea3;
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int ir = ir0; ir < ir1; ++ir) {
-        // a indices
-        const int ia3 = ir/(nea2*nea1);
-        const int ia2 = (ir - ia3*nea2*nea1)/nea1;
-        const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
-
-        float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
-
-        for (int64_t ic = 0; ic < neb01; ++ic) {
-            // b0 indices
-            const int ib03 = ia3;
-            const int ib02 = ia2;
-            const int ib01 = ic;
-
-            // S indices
-            const int i1 = ib01;
-
-            ggml_vec_dot_f16(nea0,
-                    S + i1,
-                    (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
-                    (ggml_fp16_t *) ((char *)  a->data + ( ia1*nba1  +  ia2*nba2  +  ia3*nba3)));
-        }
-
-        ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
-        //ggml_vec_gelu_f32(neb01, S, S);
-
-        ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
-
-        for (int64_t i = 0; i < M; i++) {
-            S16[i] = GGML_FP32_TO_FP16(S[i]);
-        }
-
-        ggml_vec_gelu_f16(neb01, S16, S16);
-
-        {
-            // dst indices
-            const int i1 = ia1;
-            const int i2 = ia2;
-            const int i3 = ia3;
-
-            for (int64_t ic = 0; ic < nec01; ++ic) {
-
-                ggml_vec_dot_f16(neb01,
-                        (float *)       ((char *) dst->data + (ic*nb0 + i1*nb1   + i2*nb2   + i3*nb3)),
-                        (ggml_fp16_t *) ((char *) c0->data  + (         ic*nbc01 + i2*nbc02 + i3*nbc03)),
-                        S16);
-            }
-
-            ggml_vec_add_f32(nec01,
-                    (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
-                    (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
-                    (float *) c1->data);
-        }
-    }
-}
-
-static void ggml_compute_forward_flash_ff(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * a,
-        const struct ggml_tensor * b0,
-        const struct ggml_tensor * b1,
-        const struct ggml_tensor * c0,
-        const struct ggml_tensor * c1,
-        struct ggml_tensor * dst) {
-    switch (b0->type) {
-        case GGML_TYPE_F16:
-            {
-                ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
-            } break;
-        case GGML_TYPE_F32:
-            {
-                GGML_ASSERT(false); // TODO
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_flash_attn_back
-
-static void ggml_compute_forward_flash_attn_back_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * q,
-        const struct ggml_tensor * k,
-        const struct ggml_tensor * v,
-        const struct ggml_tensor * d,
-        const bool masked,
-              struct ggml_tensor * dst) {
-    int64_t t0 = ggml_perf_time_us();
-    UNUSED(t0);
-
-    GGML_TENSOR_LOCALS(int64_t, neq, q,   ne);
-    GGML_TENSOR_LOCALS(size_t,  nbq, q,   nb);
-    GGML_TENSOR_LOCALS(int64_t, nek, k,   ne);
-    GGML_TENSOR_LOCALS(size_t,  nbk, k,   nb);
-    GGML_TENSOR_LOCALS(int64_t, nev, v,   ne);
-    GGML_TENSOR_LOCALS(size_t,  nbv, v,   nb);
-    GGML_TENSOR_LOCALS(int64_t, ned, d,   ne);
-    GGML_TENSOR_LOCALS(size_t,  nbd, d,   nb);
-    GGML_TENSOR_LOCALS(int64_t, ne,  dst, ne);
-    GGML_TENSOR_LOCALS(size_t,  nb,  dst, nb);
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    const int64_t D = neq0;
-    const int64_t N = neq1;
-    const int64_t P = nek1 - N;
-    const int64_t M = P + N;
-
-    const int Mup  = ggml_up(M, GGML_SOFT_MAX_UNROLL);
-    const int mxDM = MAX(D, Mup);
-
-    // GGML_ASSERT(ne0 == D);
-    // GGML_ASSERT(ne1 == N);
-    GGML_ASSERT(P >= 0);
-
-    GGML_ASSERT(nbq0 == sizeof(float));
-    GGML_ASSERT(nbk0 == sizeof(float));
-    GGML_ASSERT(nbv0 == sizeof(float));
-
-    GGML_ASSERT(neq0 == D);
-    GGML_ASSERT(nek0 == D);
-    GGML_ASSERT(nev1 == D);
-    GGML_ASSERT(ned0 == D);
-
-    GGML_ASSERT(neq1 == N);
-    GGML_ASSERT(nek1 == N + P);
-    GGML_ASSERT(nev1 == D);
-    GGML_ASSERT(ned1 == N);
-
-    // dst cannot be transposed or permuted
-    GGML_ASSERT(nb0 == sizeof(float));
-    GGML_ASSERT(nb0 <= nb1);
-    GGML_ASSERT(nb1 <= nb2);
-    GGML_ASSERT(nb2 <= nb3);
-
-    if (params->type == GGML_TASK_INIT) {
-        if (ith == 0) {
-            memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
-        }
-        return;
-    }
-
-    if (params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    // parallelize by q rows using ggml_vec_dot_f32
-
-    // total rows in q
-    const int nr = neq2*neq3;
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    const float scale = 1.0f/sqrtf(D);
-
-    //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
-
-    for (int ir = ir0; ir < ir1; ++ir) {
-        // q indices
-        const int iq3 = ir/(neq2);
-        const int iq2 = ir - iq3*neq2;
-        for ( int iq1 = 0; iq1 < neq1; ++iq1) {
-
-
-            // not sure about CACHE_LINE_SIZE_F32..
-            // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
-            float * S  = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
-            float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
-
-            for (int i = M; i < Mup; ++i) {
-                S[i] = -INFINITY;
-            }
-
-            for (int64_t ic = 0; ic < nek1; ++ic) {
-                // k indices
-                const int ik3 = iq3;
-                const int ik2 = iq2;
-                const int ik1 = ic;
-
-                // S indices
-                const int i1 = ik1;
-
-                ggml_vec_dot_f32(neq0,
-                        S + i1,
-                        (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
-                        (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
-            }
-
-            // scale
-            ggml_vec_scale_f32(nek1, S, scale);
-
-            if (masked) {
-                for (int64_t i = P; i < M; i++) {
-                    if (i > P + iq1) {
-                        S[i] = -INFINITY;
-                    }
-                }
-            }
-
-            // softmax
-            {
-                float max = -INFINITY;
-                ggml_vec_max_f32(M, &max, S);
-
-                ggml_float sum = 0.0;
-                {
-#ifdef GGML_SOFT_MAX_ACCELERATE
-                    max = -max;
-                    vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
-                    vvexpf(SM, SM, &Mup);
-                    ggml_vec_sum_f32(Mup, &sum, SM);
-#else
-                    uint16_t   scvt[GGML_SOFT_MAX_UNROLL];
-                    ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
-
-                    for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
-                        float * SR =  S + i;
-                        float * SW = SM + i;
-
-                        for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
-                            if (SR[j] == -INFINITY) {
-                                SW[j] = 0.0f;
-                            } else {
-                                ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
-                                memcpy(&scvt[j], &s, sizeof(uint16_t));
-                                const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
-                                sump[j] += (ggml_float)val;
-                                SW[j] = val;
-                            }
-                        }
-                    }
-
-                    for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
-                        sum += sump[i];
-                    }
-#endif
-                }
-
-                assert(sum > 0.0);
-
-                sum = 1.0/sum;
-                ggml_vec_scale_f32(M, SM, sum);
-
-            }
-
-            // step-by-step explanation
-            {
-                // forward-process                   shape      grads from backward process
-                // parallel_for iq2,iq3:
-                //  k[:D,:M,:,:]                     [D,M,:,:]  grad[k][:D,:M,iq2,iq3]  += grad[kcur]
-                //  q[:D,:N,:,:]                     [D,N,:,:]  grad[q][:D,iq1,iq2,iq3] += grad[qcur]
-                //  v[:M,:D,:,:]                     [M,D,:,:]  grad[v][:M,:D,iq2,iq3]  += grad[vcur]
-                //  for iq1:
-                //   kcur   = k[:D,:M,iq2,iq3]       [D,M,1,1]  grad[kcur] = grad[S1].T @ qcur
-                //   qcur   = q[:D,iq1,iq2,iq3]      [D,1,1,1]  grad[qcur] = grad[S1]   @ kcur
-                //   vcur   = v[:M,:D,iq2,iq3]       [M,D,1,1]  grad[vcur] = grad[S5].T @ S4
-                //   S0     = -Inf                   [D,1,1,1]
-                //  ~S1[i]  = dot(kcur[:D,i], qcur)
-                //   S1     = qcur @ kcur.T          [M,1,1,1]  grad[S1]   = grad[S2] * scale
-                //   S2     = S1 * scale             [M,1,1,1]  grad[S2]   = diag_mask_zero(grad[S3], P)
-                //   S3     = diag_mask_inf(S2, P)   [M,1,1,1]  grad[S3]   = S4 * (grad[S4] - dot(S4, grad[S4]))
-                //   S4     = softmax(S3)            [M,1,1,1]  grad[S4]   = grad[S5] @ vcur
-                //  ~S5[i]  = dot(vcur[:,i], S4)
-                //   S5     = S4 @ vcur.T            [D,1,1,1]  grad[S5]   = d[:D,iq1,iq2,iq3]
-                //  ~dst[i,iq1,iq2,iq3]  = S5[i]              ^
-                //   dst[:D,iq1,iq2,iq3] = S5                 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
-                // dst                               backward-/ grad[dst]                 = d
-                //
-                // output gradients with their dependencies:
-                //
-                // grad[kcur] = grad[S1].T @ qcur
-                // grad[S1]   = diag_mask_zero(grad[S3], P) * scale
-                // grad[S3]   = S4 * (grad[S4] - dot(S4, grad[S4]))
-                // grad[S4]   = grad[S5] @ vcur
-                // grad[S4]   = d[:D,iq1,iq2,iq3] @ vcur
-                // grad[qcur] = grad[S1]   @ kcur
-                // grad[vcur] = grad[S5].T @ S4
-                // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
-                //
-                // in post-order:
-                //
-                // S1         = qcur @ kcur.T
-                // S2         = S1 * scale
-                // S3         = diag_mask_inf(S2, P)
-                // S4         = softmax(S3)
-                // grad[S4]   = d[:D,iq1,iq2,iq3] @ vcur
-                // grad[S3]   = S4 * (grad[S4] - dot(S4, grad[S4]))
-                // grad[S1]   = diag_mask_zero(grad[S3], P) * scale
-                // grad[qcur] = grad[S1]   @ kcur
-                // grad[kcur] = grad[S1].T @ qcur
-                // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
-                //
-                // using less variables (SM=S4):
-                //
-                // S             = diag_mask_inf(qcur @ kcur.T * scale, P)
-                // SM            = softmax(S)
-                // S             = d[:D,iq1,iq2,iq3] @ vcur
-                // dot_SM_gradSM = dot(SM, S)
-                // S             = SM * (S - dot(SM, S))
-                // S             = diag_mask_zero(S, P) * scale
-                //
-                // grad[q][:D,iq1,iq2,iq3] += S   @ kcur
-                // grad[k][:D,:M,iq2,iq3]  += S.T @ qcur
-                // grad[v][:M,:D,iq2,iq3]  += d[:D,iq1,iq2,iq3].T @ SM
-            }
-
-            // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
-            // S = d[:D,iq1,iq2,iq3] @ vcur
-            // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
-            ggml_vec_set_f32(M, S, 0);
-            for (int64_t ic = 0; ic < D; ++ic) {
-                // dst indices
-                const int i1 = iq1;
-                const int i2 = iq2;
-                const int i3 = iq3;
-
-                ggml_vec_mad_f32(M,
-                        S,
-                         (float *) ((char *) v->data + (          ic*nbv1 + i2*nbv2 + i3*nbv3)),
-                        *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
-            }
-
-            // S = SM * (S - dot(SM, S))
-            float dot_SM_gradSM = 0;
-            ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
-            ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
-            ggml_vec_mul_f32 (M, S, S, SM);
-
-            // S = diag_mask_zero(S, P) * scale
-            if (masked) {
-                // for (int64_t i = P + iq1 + 1; i < M; i++) {
-                //     S[i] = 0;
-                // }
-                for (int64_t i = P; i < M; i++) {
-                    if (i > P + iq1) {
-                        S[i] = 0;
-                    }
-                }
-            }
-            ggml_vec_scale_f32(M, S, scale);
-
-            void * grad_q = (char *) dst->data;
-            void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
-            void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
-
-            const size_t nbgq1 = nb0*neq0;
-            const size_t nbgq2 = nb0*neq0*neq1;
-            const size_t nbgq3 = nb0*neq0*neq1*neq2;
-
-            const size_t nbgk1 = nb0*nek0;
-            const size_t nbgk2 = nb0*nek0*nek1;
-            const size_t nbgk3 = nb0*nek0*nek1*neq2;
-
-            const size_t nbgv1 = nb0*nev0;
-            const size_t nbgv2 = nb0*nev0*nev1;
-            const size_t nbgv3 = nb0*nev0*nev1*neq2;
-
-            // S    shape [M,1]
-            // SM   shape [M,1]
-            // kcur shape [D,M]
-            // qcur shape [D,1]
-            // vcur shape [M,D]
-            //
-            // grad[q][:D,iq1,iq2,iq3] += S @ kcur
-            // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
-            // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
-            //
-            //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
-            //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
-            for (int64_t ic = 0; ic < M; ++ic) {
-                // dst indices
-                const int i1 = iq1;
-                const int i2 = iq2;
-                const int i3 = iq3;
-
-                ggml_vec_mad_f32(D,
-                        (float *) ((char *) grad_q  + (i1*nbgq1  + i2*nbgq2  + i3*nbgq3)),
-                        (float *) ((char *) k->data + (ic*nbk1   + i2*nbk2   + i3*nbk3)),
-                        S[ic]);
-            }
-
-            // grad[k][:D,:M,iq2,iq3] += S.T       @ qcur
-            // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
-            // grad[k][:D,ic,iq2,iq3] += S[ic]     * qcur[:D,0]
-            for (int64_t ic = 0; ic < M; ++ic) {
-                // dst indices
-                const int i1 = iq1;
-                const int i2 = iq2;
-                const int i3 = iq3;
-
-                // ggml_vec_set_f32(D,
-                //         (float *) ((char *) grad_k  + (ic*nbgk1  + i2*nbgk2  + i3*nbgk3)),
-                //         0);
-                ggml_vec_mad_f32(D,
-                        (float *) ((char *) grad_k  + (ic*nbgk1  + i2*nbgk2  + i3*nbgk3)),
-                        (float *) ((char *) q->data + (i1*nbq1   + i2*nbq2   + i3*nbq3)),
-                        S[ic]);
-            }
-
-            // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T       @ SM
-            // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
-            // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3]         * SM[:M]
-            for (int64_t ic = 0; ic < D; ++ic) {
-                // dst indices
-                const int i1 = iq1;
-                const int i2 = iq2;
-                const int i3 = iq3;
-
-                // ggml_vec_set_f32(M,
-                //         (float *) ((char *) grad_v   + (          ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
-                //         0);
-                ggml_vec_mad_f32(M,
-                        (float *) ((char *) grad_v   + (          ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
-                        SM,
-                        *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1  + i2*nbd2  + i3*nbd3)));
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_flash_attn_back(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * q,
-        const struct ggml_tensor * k,
-        const struct ggml_tensor * v,
-        const struct ggml_tensor * d,
-        const bool masked,
-        struct ggml_tensor * dst) {
-    switch (q->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_win_part
-
-static void ggml_compute_forward_win_part_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
-    GGML_TENSOR_LOCALS(int64_t, ne,  dst,  ne);
-
-    const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
-    const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
-    const int32_t w    = ((const int32_t *)(dst->op_params))[2];
-
-    assert(ne00 == ne0);
-    assert(ne3  == nep0*nep1);
-
-    // TODO: optimize / multi-thread
-    for (int py = 0; py < nep1; ++py) {
-        for (int px = 0; px < nep0; ++px) {
-            const int64_t i3 = py*nep0 + px;
-            for (int64_t i2 = 0; i2 < ne2; ++i2) {
-                for (int64_t i1 = 0; i1 < ne1; ++i1) {
-                    for (int64_t i0 = 0; i0 < ne0; ++i0) {
-                        const int64_t i02 = py*w + i2;
-                        const int64_t i01 = px*w + i1;
-                        const int64_t i00 = i0;
-
-                        const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0    + i1*ne0   + i0;
-                        const int64_t j =                  i02*ne01*ne00 + i01*ne00 + i00;
-
-                        if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
-                            ((float *) dst->data)[i] = 0.0f;
-                        } else {
-                            ((float *) dst->data)[i] = ((float *) src0->data)[j];
-                        }
-                    }
-                }
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_win_part(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_win_part_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_win_unpart
-
-static void ggml_compute_forward_win_unpart_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
-    GGML_TENSOR_LOCALS(int64_t, ne,  dst,  ne);
-
-    const int32_t w = ((const int32_t *)(dst->op_params))[0];
-
-    // padding
-    const int px = (w - ne1%w)%w;
-    //const int py = (w - ne2%w)%w;
-
-    const int npx = (px + ne1)/w;
-    //const int npy = (py + ne2)/w;
-
-    assert(ne0 == ne00);
-
-    // TODO: optimize / multi-thread
-    for (int64_t i2 = 0; i2 < ne2; ++i2) {
-        for (int64_t i1 = 0; i1 < ne1; ++i1) {
-            for (int64_t i0 = 0; i0 < ne0; ++i0) {
-                const int ip2 = i2/w;
-                const int ip1 = i1/w;
-
-                const int64_t i02 = i2%w;
-                const int64_t i01 = i1%w;
-                const int64_t i00 = i0;
-
-                const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
-                const int64_t j =                                  i2*ne1*ne0    + i1*ne0   + i0;
-
-                ((float *) dst->data)[j] = ((float *) src0->data)[i];
-            }
-        }
-    }
-}
-
-static void ggml_compute_forward_win_unpart(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_win_unpart_f32(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-//gmml_compute_forward_unary
-
-static void ggml_compute_forward_unary(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst) {
-    const enum ggml_unary_op op = ggml_get_unary_op(dst);
-
-    switch (op) {
-        case GGML_UNARY_OP_ABS:
-            {
-                ggml_compute_forward_abs(params, src0, dst);
-            } break;
-        case GGML_UNARY_OP_SGN:
-            {
-                ggml_compute_forward_sgn(params, src0, dst);
-            } break;
-        case GGML_UNARY_OP_NEG:
-            {
-                ggml_compute_forward_neg(params, src0, dst);
-            } break;
-        case GGML_UNARY_OP_STEP:
-            {
-                ggml_compute_forward_step(params, src0, dst);
-            } break;
-        case GGML_UNARY_OP_TANH:
-            {
-                ggml_compute_forward_tanh(params, src0, dst);
-            } break;
-        case GGML_UNARY_OP_ELU:
-            {
-                ggml_compute_forward_elu(params, src0, dst);
-            } break;
-        case GGML_UNARY_OP_RELU:
-            {
-                ggml_compute_forward_relu(params, src0, dst);
-            } break;
-        case GGML_UNARY_OP_GELU:
-            {
-                ggml_compute_forward_gelu(params, src0, dst);
-            } break;
-        case GGML_UNARY_OP_GELU_QUICK:
-            {
-                ggml_compute_forward_gelu_quick(params, src0, dst);
-            } break;
-        case GGML_UNARY_OP_SILU:
-            {
-                ggml_compute_forward_silu(params, src0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_map_unary
-
-static void ggml_compute_forward_map_unary_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst,
-        const ggml_unary_op_f32_t fun) {
-    GGML_ASSERT(ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int n  = ggml_nrows(src0);
-    const int nc = src0->ne[0];
-
-    assert( dst->nb[0] == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
-
-    for (int i = 0; i < n; i++) {
-        fun(nc,
-                (float *) ((char *) dst->data  + i*( dst->nb[1])),
-                (float *) ((char *) src0->data + i*(src0->nb[1])));
-    }
-}
-
-
-static void ggml_compute_forward_map_unary(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        struct ggml_tensor * dst,
-        const ggml_unary_op_f32_t fun) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_map_binary
-
-static void ggml_compute_forward_map_binary_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst,
-        const ggml_binary_op_f32_t fun) {
-    assert(params->ith == 0);
-    assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const int n  = ggml_nrows(src0);
-    const int nc = src0->ne[0];
-
-    assert( dst->nb[0] == sizeof(float));
-    assert(src0->nb[0] == sizeof(float));
-    assert(src1->nb[0] == sizeof(float));
-
-    for (int i = 0; i < n; i++) {
-        fun(nc,
-                (float *) ((char *) dst->data  + i*( dst->nb[1])),
-                (float *) ((char *) src0->data + i*(src0->nb[1])),
-                (float *) ((char *) src1->data + i*(src1->nb[1])));
-    }
-}
-
-
-static void ggml_compute_forward_map_binary(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst,
-        const ggml_binary_op_f32_t fun) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_map_custom1
-
-static void ggml_compute_forward_map_custom1_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * a,
-        struct ggml_tensor * dst,
-        const ggml_custom1_op_f32_t fun) {
-    assert(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    fun(dst, a);
-}
-
-// ggml_compute_forward_map_custom2
-
-static void ggml_compute_forward_map_custom2_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * a,
-        const struct ggml_tensor * b,
-        struct ggml_tensor * dst,
-        const ggml_custom2_op_f32_t fun) {
-    assert(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    fun(dst, a, b);
-}
-
-
-// ggml_compute_forward_map_custom3
-
-static void ggml_compute_forward_map_custom3_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * a,
-        const struct ggml_tensor * b,
-        const struct ggml_tensor * c,
-        struct ggml_tensor * dst,
-        const ggml_custom3_op_f32_t fun) {
-    assert(params->ith == 0);
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    fun(dst, a, b, c);
-}
-
-// ggml_compute_forward_map_custom1
-
-static void ggml_compute_forward_map_custom1(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * a,
-              struct ggml_tensor * dst) {
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
-
-    p->fun(dst, a, params->ith, params->nth, p->userdata);
-}
-
-// ggml_compute_forward_map_custom2
-
-static void ggml_compute_forward_map_custom2(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * a,
-        const struct ggml_tensor * b,
-              struct ggml_tensor * dst) {
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
-
-    p->fun(dst, a, b, params->ith, params->nth, p->userdata);
-}
-
-// ggml_compute_forward_map_custom3
-
-static void ggml_compute_forward_map_custom3(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * a,
-        const struct ggml_tensor * b,
-        const struct ggml_tensor * c,
-              struct ggml_tensor * dst) {
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
-
-    p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
-}
-
-// ggml_compute_forward_cross_entropy_loss
-
-static void ggml_compute_forward_cross_entropy_loss_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_is_contiguous(src0));
-    GGML_ASSERT(ggml_is_contiguous(src1));
-    GGML_ASSERT(ggml_is_scalar(dst));
-    GGML_ASSERT(ggml_are_same_shape(src0, src1));
-
-    const int ith = params->ith;
-    const int nth = params->nth;
-
-    float * sums = (float *) params->wdata;
-
-    // TODO: handle transposed/permuted matrices
-    const int nc = src0->ne[0];
-    const int nr = ggml_nrows(src0);
-
-    if (params->type == GGML_TASK_INIT) {
-        if (ith == 0) {
-            memset(sums, 0, sizeof(float) * (nth + nth * nc));
-        }
-        return;
-    }
-
-    if (params->type == GGML_TASK_FINALIZE) {
-        if (ith == 0) {
-            float * dp = (float *) dst->data;
-            ggml_vec_sum_f32(nth, dp, sums);
-            dp[0] *= -1.0f;
-        }
-        return;
-    }
-
-    const double eps = 1e-9;
-
-    // rows per thread
-    const int dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int ir0 = dr*ith;
-    const int ir1 = MIN(ir0 + dr, nr);
-
-    for (int i1 = ir0; i1 < ir1; i1++) {
-        float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
-        float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
-        float * st = (float *) params->wdata + nth + ith*nc;
-
-#ifndef NDEBUG
-        for (int i = 0; i < nc; ++i) {
-            //printf("p[%d] = %f\n", i, p[i]);
-            assert(!isnan(s0[i]));
-            assert(!isnan(s1[i]));
-        }
-#endif
-        // soft_max
-        ggml_float sum = 0.0;
-        {
-            float max = -INFINITY;
-            ggml_vec_max_f32(nc, &max, s0);
-
-            uint16_t scvt;
-            for (int i = 0; i < nc; i++) {
-                if (s0[i] == -INFINITY) {
-                    st[i] = 0.0f;
-                } else {
-                    // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
-                    ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
-                    memcpy(&scvt, &s, sizeof(scvt));
-                    const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
-                    sum += (ggml_float)val;
-                    st[i] = val;
-                }
-            }
-
-            assert(sum > 0.0);
-            // sum = 1.0/sum;
-        }
-        // avoid log(0) by rescaling from [0..1] to [eps..1]
-        sum = (1.0 - eps) / sum;
-        ggml_vec_scale_f32(nc, st, sum);
-        ggml_vec_add1_f32(nc, st, st, eps);
-        ggml_vec_log_f32(nc, st, st);
-        ggml_vec_mul_f32(nc, st, st, s1);
-
-        ggml_vec_sum_f32(nc, sums + ith, st);
-
-#ifndef NDEBUG
-        for (int i = 0; i < nc; ++i) {
-            assert(!isnan(st[i]));
-            assert(!isinf(st[i]));
-        }
-#endif
-    }
-
-}
-
-static void ggml_compute_forward_cross_entropy_loss(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-// ggml_compute_forward_cross_entropy_loss_back
-
-static void ggml_compute_forward_cross_entropy_loss_back_f32(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        const struct ggml_tensor * opt0,
-        struct ggml_tensor * dst) {
-    GGML_ASSERT(ggml_is_contiguous(dst));
-    GGML_ASSERT(ggml_is_contiguous(src0));
-    GGML_ASSERT(ggml_is_contiguous(src1));
-    GGML_ASSERT(ggml_is_contiguous(opt0));
-    GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
-
-    const int64_t ith = params->ith;
-    const int64_t nth = params->nth;
-
-    if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
-        return;
-    }
-
-    const float eps = 1e-9f;
-
-    // TODO: handle transposed/permuted matrices
-    const int64_t nc = src0->ne[0];
-    const int64_t nr = ggml_nrows(src0);
-
-    // rows per thread
-    const int64_t dr = (nr + nth - 1)/nth;
-
-    // row range for this thread
-    const int64_t ir0 = dr*ith;
-    const int64_t ir1 = MIN(ir0 + dr, nr);
-
-    float * d   = (float *) opt0->data;
-
-    for (int64_t i1 = ir0; i1 < ir1; i1++) {
-        float * ds0 = (float *)((char *) dst->data  + i1*dst->nb[1]);
-        float * s0  = (float *)((char *) src0->data + i1*src0->nb[1]);
-        float * s1  = (float *)((char *) src1->data + i1*src1->nb[1]);
-        float * sm  = (float *) params->wdata + ith*nc;
-
-#ifndef NDEBUG
-        for (int i = 0; i < nc; ++i) {
-            //printf("p[%d] = %f\n", i, p[i]);
-            assert(!isnan(s0[i]));
-            assert(!isnan(s1[i]));
-        }
-#endif
-        // step by step explanation:
-        {
-            //float * sums = (float *) params->wdata;
-
-            // forward pass with annotated gradients from backward pass
-            // (built by going in reverse operation order, adding to gradients of current operation args)
-            // st0 = exp(s0-max(s0))                                                       grad[st0] = grad[st1]*(1.0 - eps)/sum
-                                                          // from softmax_back:            grad[s0]  = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
-            // ggml_vec_scale_f32(nc, st, sum);           // st1 = st0*/sum = softmax(s0)  grad[st1] = grad[st2]*(1.0 - eps)
-            // ggml_vec_scale_f32(nc, st, (1.0f - eps));  // st2 = st1*(1.0 - eps)         grad[st2] = grad[st3]
-            // ggml_vec_add1_f32(nc, st, st, eps);        // st3 = st2 + eps               grad[st3] = grad[st4]/st3
-            // ggml_vec_log_f32(nc, st, st);              // st4 = log(st3)                grad[st4] = grad[st5] * s1
-            // ggml_vec_mul_f32(nc, st, st, s1);          // st5 = st4 * s1                grad[st5] = grad[sums[ith]]
-            // ggml_vec_sum_f32(nc, sums + ith, st);      // sums[ith] = st5               grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
-
-            // substitute into grad[st1], because we can reuse softmax_back from this point on
-            // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
-            // postorder:
-            // grad[st1] := softmax(s0)
-            // grad[st1] := grad[st1]*(1.0 - eps)
-            // grad[st1] := grad[st1] + eps
-            // grad[st1] := s1 / grad[st1]
-            // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
-
-            // src0 gradients by going through softmax_back
-            // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
-            //   from softmax_back:
-            //   dxk = yk * (dyk - dot(y, dy))
-            //   dot_y_dy := dot(y, dy)
-            //   dx := dy
-            //   dx := dx - dot_y_dy
-            //   dx := dx * y
-            //   postorder:
-            //   dot_st1_dst1 := dot(st1, grad[st1])
-            //   grad[s0] := grad[st1]
-            //   grad[s0] := grad[s0] - dot_st1_dst1
-            //   grad[s0] := grad[s0] * st1
-
-            // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
-            // sm           := softmax(s0)
-            // grad[s0]     := sm*(1.0 - eps)
-            // grad[s0]     := grad[s0] + eps
-            // grad[s0]     := s1 / grad[s0]
-            // grad[s0]     := grad[s0]*(1.0-eps)*-grad[cel]
-            // dot_st1_dst1 := dot(sm, grad[s0])
-            // grad[s0]     := grad[s0] - dot_st1_dst1
-            // grad[s0]     := grad[s0] * sm
-        }
-
-        // soft_max
-        ggml_float sum = 0.0;
-        {
-            float max = -INFINITY;
-            ggml_vec_max_f32(nc, &max, s0);
-
-            uint16_t scvt;
-            for (int i = 0; i < nc; i++) {
-                if (s0[i] == -INFINITY) {
-                    sm[i] = 0.0f;
-                } else {
-                    // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
-                    ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
-                    memcpy(&scvt, &s, sizeof(scvt));
-                    const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
-                    sum += (ggml_float)val;
-                    sm[i] = val;
-                }
-            }
-
-            assert(sum > 0.0);
-            sum = 1.0/sum;
-        }
-
-        float dot_st1_dst1 = 0;
-        ggml_vec_scale_f32(nc, sm, sum);
-        ggml_vec_cpy_f32  (nc, ds0, sm);
-        ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
-        ggml_vec_add1_f32 (nc, ds0, ds0, eps);
-        ggml_vec_div_f32  (nc, ds0, s1, ds0);
-        ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
-        ggml_vec_dot_f32  (nc, &dot_st1_dst1, sm, ds0);
-        ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
-        ggml_vec_mul_f32  (nc, ds0, ds0, sm);
-
-#ifndef NDEBUG
-        for (int i = 0; i < nc; ++i) {
-            assert(!isnan(sm[i]));
-            assert(!isinf(sm[i]));
-            assert(!isnan(ds0[i]));
-            assert(!isinf(ds0[i]));
-        }
-#endif
-    }
-}
-
-static void ggml_compute_forward_cross_entropy_loss_back(
-        const struct ggml_compute_params * params,
-        const struct ggml_tensor * src0,
-        const struct ggml_tensor * src1,
-        const struct ggml_tensor * opt0,
-        struct ggml_tensor * dst) {
-    switch (src0->type) {
-        case GGML_TYPE_F32:
-            {
-                ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
-            } break;
-        default:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-
-/////////////////////////////////
-
-static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
-    GGML_ASSERT(params);
-
-#ifdef GGML_USE_CUBLAS
-    bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
-    if (skip_cpu) {
-        return;
-    }
-    GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
-    GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
-#endif // GGML_USE_CUBLAS
-
-    switch (tensor->op) {
-        case GGML_OP_DUP:
-            {
-                ggml_compute_forward_dup(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_ADD:
-            {
-                ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_ADD1:
-            {
-                ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_ACC:
-            {
-                ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_SUB:
-            {
-                ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_MUL:
-            {
-                ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_DIV:
-            {
-                ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_SQR:
-            {
-                ggml_compute_forward_sqr(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_SQRT:
-            {
-                ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_LOG:
-            {
-                ggml_compute_forward_log(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_SUM:
-            {
-                ggml_compute_forward_sum(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_SUM_ROWS:
-            {
-                ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_MEAN:
-            {
-                ggml_compute_forward_mean(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_ARGMAX:
-            {
-                ggml_compute_forward_argmax(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_REPEAT:
-            {
-                ggml_compute_forward_repeat(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_REPEAT_BACK:
-            {
-                ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_SILU_BACK:
-            {
-                ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_NORM:
-            {
-                ggml_compute_forward_norm(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_RMS_NORM:
-            {
-                ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_RMS_NORM_BACK:
-            {
-                ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_MUL_MAT:
-            {
-                ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_OUT_PROD:
-            {
-                ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_SCALE:
-            {
-                ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_SET:
-            {
-                ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_CPY:
-            {
-                ggml_compute_forward_cpy(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_CONT:
-            {
-                ggml_compute_forward_cont(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_RESHAPE:
-            {
-                ggml_compute_forward_reshape(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_VIEW:
-            {
-                ggml_compute_forward_view(params, tensor->src[0]);
-            } break;
-        case GGML_OP_PERMUTE:
-            {
-                ggml_compute_forward_permute(params, tensor->src[0]);
-            } break;
-        case GGML_OP_TRANSPOSE:
-            {
-                ggml_compute_forward_transpose(params, tensor->src[0]);
-            } break;
-        case GGML_OP_GET_ROWS:
-            {
-                ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_GET_ROWS_BACK:
-            {
-                ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
-            } break;
-        case GGML_OP_DIAG:
-            {
-                ggml_compute_forward_diag(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_DIAG_MASK_INF:
-            {
-                ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_DIAG_MASK_ZERO:
-            {
-                ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_SOFT_MAX:
-            {
-                ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_SOFT_MAX_BACK:
-            {
-                ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_ROPE:
-            {
-                ggml_compute_forward_rope(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_ROPE_BACK:
-            {
-                ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_ALIBI:
-            {
-                ggml_compute_forward_alibi(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_CLAMP:
-            {
-                ggml_compute_forward_clamp(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_CONV_1D:
-            {
-                ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_CONV_2D:
-            {
-                ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
-            } break;
-        case GGML_OP_POOL_1D:
-            {
-                ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_POOL_2D:
-            {
-                ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_FLASH_ATTN:
-            {
-                const int32_t t = ggml_get_op_params_i32(tensor, 0);
-                GGML_ASSERT(t == 0 || t == 1);
-                const bool masked = t != 0;
-                ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
-            } break;
-        case GGML_OP_FLASH_FF:
-            {
-                ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
-            } break;
-        case GGML_OP_FLASH_ATTN_BACK:
-            {
-                int32_t t = ggml_get_op_params_i32(tensor, 0);
-                GGML_ASSERT(t == 0 || t == 1);
-                bool masked = t != 0;
-                ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
-            } break;
-        case GGML_OP_WIN_PART:
-            {
-                ggml_compute_forward_win_part(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_WIN_UNPART:
-            {
-                ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_UNARY:
-            {
-                ggml_compute_forward_unary(params, tensor->src[0], tensor);
-            } break;
-        case GGML_OP_MAP_UNARY:
-            {
-                ggml_unary_op_f32_t fun;
-                memcpy(&fun, tensor->op_params, sizeof(fun));
-                ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
-            }
-            break;
-        case GGML_OP_MAP_BINARY:
-            {
-                ggml_binary_op_f32_t fun;
-                memcpy(&fun, tensor->op_params, sizeof(fun));
-                ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
-            }
-            break;
-        case GGML_OP_MAP_CUSTOM1_F32:
-            {
-                ggml_custom1_op_f32_t fun;
-                memcpy(&fun, tensor->op_params, sizeof(fun));
-                ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
-            }
-            break;
-        case GGML_OP_MAP_CUSTOM2_F32:
-            {
-                ggml_custom2_op_f32_t fun;
-                memcpy(&fun, tensor->op_params, sizeof(fun));
-                ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
-            }
-            break;
-        case GGML_OP_MAP_CUSTOM3_F32:
-            {
-                ggml_custom3_op_f32_t fun;
-                memcpy(&fun, tensor->op_params, sizeof(fun));
-                ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
-            }
-            break;
-        case GGML_OP_MAP_CUSTOM1:
-            {
-                ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
-            }
-            break;
-        case GGML_OP_MAP_CUSTOM2:
-            {
-                ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
-            }
-            break;
-        case GGML_OP_MAP_CUSTOM3:
-            {
-                ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
-            }
-            break;
-        case GGML_OP_CROSS_ENTROPY_LOSS:
-            {
-                ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
-            }
-            break;
-        case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
-            {
-                ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
-            }
-            break;
-        case GGML_OP_NONE:
-            {
-                // nop
-            } break;
-        case GGML_OP_COUNT:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
-    struct ggml_tensor * src0 = tensor->src[0];
-    struct ggml_tensor * src1 = tensor->src[1];
-
-    switch (tensor->op) {
-        case GGML_OP_DUP:
-            {
-                if (src0->grad) {
-                    src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
-                }
-            } break;
-        case GGML_OP_ADD:
-            {
-                if (src0->grad) {
-                    src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
-                }
-                if (src1->grad) {
-                    src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
-                }
-            } break;
-        case GGML_OP_ADD1:
-            {
-                if (src0->grad) {
-                    src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
-                }
-                if (src1->grad) {
-                    src1->grad = ggml_add_impl(ctx,
-                        src1->grad,
-                        ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
-                        inplace);
-                }
-            } break;
-        case GGML_OP_ACC:
-            {
-                if (src0->grad) {
-                    src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
-                }
-                if (src1->grad) {
-                    const size_t nb1     = ((int32_t *) tensor->op_params)[0];
-                    const size_t nb2     = ((int32_t *) tensor->op_params)[1];
-                    const size_t nb3     = ((int32_t *) tensor->op_params)[2];
-                    const size_t offset  = ((int32_t *) tensor->op_params)[3];
-
-                    struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
-                        tensor->grad,
-                        src1->grad->ne[0],
-                        src1->grad->ne[1],
-                        src1->grad->ne[2],
-                        src1->grad->ne[3],
-                        nb1, nb2, nb3, offset);
-
-                    src1->grad =
-                        ggml_add_impl(ctx,
-                            src1->grad,
-                            ggml_reshape(ctx,
-                                ggml_cont(ctx, tensor_grad_view),
-                                src1->grad),
-                            inplace);
-                }
-            } break;
-        case GGML_OP_SUB:
-            {
-                if (src0->grad) {
-                    src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
-                }
-                if (src1->grad) {
-                    src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
-                }
-            } break;
-        case GGML_OP_MUL:
-            {
-                if (src0->grad) {
-                    src0->grad =
-                        ggml_add_impl(ctx,
-                                src0->grad,
-                                ggml_mul(ctx, src1, tensor->grad),
-                                inplace);
-                }
-                if (src1->grad) {
-                    src1->grad =
-                        ggml_add_impl(ctx,
-                                src1->grad,
-                                ggml_mul(ctx, src0, tensor->grad),
-                                inplace);
-                }
-            } break;
-        case GGML_OP_DIV:
-            {
-                if (src0->grad) {
-                    src0->grad =
-                        ggml_add_impl(ctx,
-                                src0->grad,
-                                ggml_div(ctx, tensor->grad, src1),
-                                inplace);
-                }
-                if (src1->grad) {
-                    src1->grad =
-                        ggml_sub_impl(ctx,
-                                src1->grad,
-                                ggml_mul(ctx,
-                                    tensor->grad,
-                                    ggml_div(ctx, tensor, src1)),
-                                inplace);
-                }
-            } break;
-        case GGML_OP_SQR:
-            {
-                if (src0->grad) {
-                    src0->grad =
-                        ggml_add_impl(ctx,
-                                src0->grad,
-                                ggml_scale(ctx,
-                                    ggml_mul(ctx, src0, tensor->grad),
-                                    ggml_new_f32(ctx, 2.0f)),
-                                inplace);
-                }
-            } break;
-        case GGML_OP_SQRT:
-            {
-                if (src0->grad) {
-                    src0->grad =
-                        ggml_add_impl(ctx,
-                                src0->grad,
-                                ggml_scale(ctx,
-                                    ggml_div(ctx,
-                                        tensor->grad,
-                                        tensor),
-                                    ggml_new_f32(ctx, 0.5f)),
-                                inplace);
-                }
-            } break;
-        case GGML_OP_LOG:
-            {
-                if (src0->grad) {
-                    src0->grad =
-                        ggml_add_impl(ctx,
-                                src0->grad,
-                                ggml_div(ctx,
-                                    tensor->grad,
-                                    src0),
-                                inplace);
-                }
-            } break;
-        case GGML_OP_SUM:
-            {
-                if (src0->grad) {
-                    src0->grad =
-                        ggml_add1_impl(ctx,
-                                src0->grad,
-                                tensor->grad,
-                                inplace);
-                }
-            } break;
-        case GGML_OP_SUM_ROWS:
-            {
-                if (src0->grad) {
-                    src0->grad =
-                        ggml_add_impl(ctx,
-                                src0->grad,
-                                ggml_repeat(ctx,
-                                    tensor->grad,
-                                    src0->grad),
-                                inplace);
-                }
-            } break;
-        case GGML_OP_MEAN:
-        case GGML_OP_ARGMAX:
-            {
-                GGML_ASSERT(false); // TODO: implement
-            } break;
-        case GGML_OP_REPEAT:
-            {
-                // necessary for llama
-                if (src0->grad) {
-                    src0->grad = ggml_add_impl(ctx,
-                            src0->grad,
-                            ggml_repeat_back(ctx, tensor->grad, src0->grad),
-                            inplace);
-                }
-            } break;
-        case GGML_OP_REPEAT_BACK:
-            {
-                if (src0->grad) {
-                    // TODO: test this
-                    src0->grad = ggml_add_impl(ctx,
-                            src0->grad,
-                            ggml_repeat(ctx, tensor->grad, src0->grad),
-                            inplace);
-                }
-            } break;
-        case GGML_OP_SILU_BACK:
-            {
-                GGML_ASSERT(false); // TODO: not implemented
-            } break;
-        case GGML_OP_NORM:
-            {
-                GGML_ASSERT(false); // TODO: not implemented
-            } break;
-        case GGML_OP_RMS_NORM:
-            {
-                // necessary for llama
-                if (src0->grad) {
-                    src0->grad = ggml_add_impl(ctx,
-                            src0->grad,
-                            ggml_rms_norm_back(ctx, src0, tensor->grad),
-                            inplace);
-                }
-            } break;
-        case GGML_OP_RMS_NORM_BACK:
-            {
-                GGML_ASSERT(false); // TODO: not implemented
-            } break;
-        case GGML_OP_MUL_MAT:
-            {
-                // https://cs231n.github.io/optimization-2/#staged
-                // # forward pass
-                // s0 = np.random.randn(5, 10)
-                // s1 = np.random.randn(10, 3)
-                // t = s0.dot(s1)
-
-                // # now suppose we had the gradient on t from above in the circuit
-                // dt = np.random.randn(*t.shape) # same shape as t
-                // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
-                // ds1 = t.T.dot(dt)
-
-                // tensor.shape [m,p]
-                // src0.shape   [n,m]
-                // src1.shape   [n,p]
-
-                // necessary for llama
-                if (src0->grad) {
-                    src0->grad =
-                        ggml_add_impl(ctx,
-                                src0->grad,
-                                ggml_out_prod(ctx, // [n,m]
-                                    src1,          // [n,p]
-                                    tensor->grad), // [m,p]
-                                inplace);
-                }
-                if (src1->grad) {
-                    src1->grad =
-                        ggml_add_impl(ctx,
-                                src1->grad,
-                                // ggml_mul_mat(ctx,                   // [n,p]
-                                //     ggml_cont(ctx,                  // [m,n]
-                                //         ggml_transpose(ctx, src0)), // [m,n]
-                                //     tensor->grad),                  // [m,p]
-
-                                // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
-                                // // avoid transpose of src0, rather transpose smaller tensor->grad
-                                // // and then use ggml_out_prod
-                                ggml_out_prod(ctx,                  // [n,p]
-                                    src0,                           // [n,m]
-                                    ggml_transpose(ctx,             // [p,m]
-                                        tensor->grad)),             // [m,p]
-                                inplace);
-                }
-            } break;
-        case GGML_OP_OUT_PROD:
-            {
-                GGML_ASSERT(false); // TODO: not implemented
-            } break;
-        case GGML_OP_SCALE:
-            {
-                // necessary for llama
-                if (src0->grad) {
-                    src0->grad =
-                        ggml_add_impl(ctx,
-                            src0->grad,
-                            ggml_scale_impl(ctx, tensor->grad, src1, false),
-                            inplace);
-                }
-                if (src1->grad) {
-                    src1->grad =
-                        ggml_add_impl(ctx,
-                            src1->grad,
-                            ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
-                            inplace);
-                }
-            } break;
-        case GGML_OP_SET:
-            {
-                const size_t nb1     = ((int32_t *) tensor->op_params)[0];
-                const size_t nb2     = ((int32_t *) tensor->op_params)[1];
-                const size_t nb3     = ((int32_t *) tensor->op_params)[2];
-                const size_t offset  = ((int32_t *) tensor->op_params)[3];
-
-                struct ggml_tensor * tensor_grad_view = NULL;
-
-                if (src0->grad || src1->grad) {
-                    GGML_ASSERT(src0->type == tensor->type);
-                    GGML_ASSERT(tensor->grad->type == tensor->type);
-                    GGML_ASSERT(tensor->grad->type == src1->grad->type);
-
-                    tensor_grad_view = ggml_view_4d(ctx,
-                        tensor->grad,
-                        src1->grad->ne[0],
-                        src1->grad->ne[1],
-                        src1->grad->ne[2],
-                        src1->grad->ne[3],
-                        nb1, nb2, nb3, offset);
-                }
-
-                if (src0->grad) {
-                    src0->grad = ggml_add_impl(ctx,
-                        src0->grad,
-                        ggml_acc_impl(ctx,
-                            tensor->grad,
-                            ggml_neg(ctx, tensor_grad_view),
-                            nb1, nb2, nb3, offset, false),
-                        inplace);
-                }
-
-                if (src1->grad) {
-                    src1->grad =
-                        ggml_add_impl(ctx,
-                            src1->grad,
-                            ggml_reshape(ctx,
-                                ggml_cont(ctx, tensor_grad_view),
-                                src1->grad),
-                            inplace);
-                }
-            } break;
-        case GGML_OP_CPY:
-            {
-                // necessary for llama
-                // cpy overwrites value of src1 by src0 and returns view(src1)
-                // the overwriting is mathematically equivalent to:
-                // tensor = src0 * 1 + src1 * 0
-                if (src0->grad) {
-                    // dsrc0 = dtensor * 1
-                    src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
-                }
-                if (src1->grad) {
-                    // dsrc1 = dtensor * 0 -> noop
-                }
-            } break;
-        case GGML_OP_CONT:
-            {
-                // same as cpy
-                if (src0->grad) {
-                    GGML_ASSERT(ggml_is_contiguous(src0->grad));
-                    GGML_ASSERT(ggml_is_contiguous(tensor->grad));
-                    src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
-                }
-            } break;
-        case GGML_OP_RESHAPE:
-            {
-                // necessary for llama
-                if (src0->grad) {
-                    src0->grad =
-                        ggml_add_impl(ctx, src0->grad,
-                            ggml_reshape(ctx, tensor->grad, src0->grad),
-                        inplace);
-                }
-            } break;
-        case GGML_OP_VIEW:
-            {
-                // necessary for llama
-                if (src0->grad) {
-                    size_t offset;
-
-                    memcpy(&offset, tensor->op_params, sizeof(offset));
-
-                    size_t nb1     = tensor->nb[1];
-                    size_t nb2     = tensor->nb[2];
-                    size_t nb3     = tensor->nb[3];
-
-                    if (src0->type != src0->grad->type) {
-                        // gradient is typically F32, but src0 could be other type
-                        size_t ng = ggml_element_size(src0->grad);
-                        size_t n0 = ggml_element_size(src0);
-                        GGML_ASSERT(offset % n0 == 0);
-                        GGML_ASSERT(nb1 % n0 == 0);
-                        GGML_ASSERT(nb2 % n0 == 0);
-                        GGML_ASSERT(nb3 % n0 == 0);
-                        offset = (offset / n0) * ng;
-                        nb1 = (nb1 / n0) * ng;
-                        nb2 = (nb2 / n0) * ng;
-                        nb3 = (nb3 / n0) * ng;
-                    }
-
-                    src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
-                }
-            } break;
-        case GGML_OP_PERMUTE:
-            {
-                // necessary for llama
-                if (src0->grad) {
-                    int32_t * axes = (int32_t *) tensor->op_params;
-                    int axis0 = axes[0] & 0x3;
-                    int axis1 = axes[1] & 0x3;
-                    int axis2 = axes[2] & 0x3;
-                    int axis3 = axes[3] & 0x3;
-                    int axes_backward[4] = {0,0,0,0};
-                    axes_backward[axis0] = 0;
-                    axes_backward[axis1] = 1;
-                    axes_backward[axis2] = 2;
-                    axes_backward[axis3] = 3;
-                    src0->grad =
-                        ggml_add_impl(ctx, src0->grad,
-                            ggml_permute(ctx,
-                                tensor->grad,
-                                axes_backward[0],
-                                axes_backward[1],
-                                axes_backward[2],
-                                axes_backward[3]),
-                            inplace);
-                }
-            } break;
-        case GGML_OP_TRANSPOSE:
-            {
-                // necessary for llama
-                if (src0->grad) {
-                    src0->grad =
-                        ggml_add_impl(ctx, src0->grad,
-                            ggml_transpose(ctx, tensor->grad),
-                        inplace);
-                }
-            } break;
-        case GGML_OP_GET_ROWS:
-            {
-                // necessary for llama (only for tokenizer)
-                if (src0->grad) {
-                    src0->grad =
-                        ggml_add_impl(ctx, src0->grad,
-                            ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
-                        inplace);
-                }
-                if (src1->grad) {
-                    // noop
-                }
-            } break;
-        case GGML_OP_GET_ROWS_BACK:
-            {
-                GGML_ASSERT(false); // TODO: not implemented
-            } break;
-        case GGML_OP_DIAG:
-            {
-                GGML_ASSERT(false); // TODO: not implemented
-            } break;
-        case GGML_OP_DIAG_MASK_INF:
-            {
-                // necessary for llama
-                if (src0->grad) {
-                    const int n_past = ((int32_t *) tensor->op_params)[0];
-                    src0->grad =
-                        ggml_add_impl(ctx, src0->grad,
-                            ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
-                        inplace);
-                }
-            } break;
-        case GGML_OP_DIAG_MASK_ZERO:
-            {
-                // necessary for llama
-                if (src0->grad) {
-                    const int n_past = ((int32_t *) tensor->op_params)[0];
-                    src0->grad =
-                        ggml_add_impl(ctx, src0->grad,
-                            ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
-                        inplace);
-                }
-            } break;
-        case GGML_OP_SOFT_MAX:
-            {
-                // necessary for llama
-                if (src0->grad) {
-                    src0->grad =
-                        ggml_add_impl(ctx, src0->grad,
-                            ggml_soft_max_back(ctx, tensor->grad, tensor),
-                        inplace);
-                }
-
-            } break;
-        case GGML_OP_SOFT_MAX_BACK:
-            {
-                GGML_ASSERT(false); // TODO: not implemented
-            } break;
-        case GGML_OP_ROPE:
-            {
-                // necessary for llama
-                if (src0->grad) {
-                    const int n_past = ((int32_t *) tensor->op_params)[0];
-                    const int n_dims = ((int32_t *) tensor->op_params)[1];
-                    const int mode   = ((int32_t *) tensor->op_params)[2];
-                    const int n_ctx  = ((int32_t *) tensor->op_params)[3];
-                    src0->grad = ggml_add_impl(ctx,
-                            src0->grad,
-                            ggml_rope_back(ctx,
-                                tensor->grad,
-                                n_past,
-                                n_dims,
-                                mode,
-                                n_ctx),
-                            inplace);
-                }
-            } break;
-        case GGML_OP_ROPE_BACK:
-            {
-                if (src0->grad) {
-                    const int n_past = ((int32_t *) tensor->op_params)[0];
-                    const int n_dims = ((int32_t *) tensor->op_params)[1];
-                    const int mode   = ((int32_t *) tensor->op_params)[2];
-                    const int n_ctx  = ((int32_t *) tensor->op_params)[3];
-                    src0->grad = ggml_add_impl(ctx,
-                            src0->grad,
-                            ggml_rope(ctx,
-                                tensor->grad,
-                                n_past,
-                                n_dims,
-                                mode,
-                                n_ctx),
-                            inplace);
-                }
-            } break;
-        case GGML_OP_ALIBI:
-            {
-                GGML_ASSERT(false); // TODO: not implemented
-            } break;
-        case GGML_OP_CLAMP:
-            {
-                GGML_ASSERT(false); // TODO: not implemented
-            } break;
-        case GGML_OP_CONV_1D:
-            {
-                GGML_ASSERT(false); // TODO: not implemented
-            } break;
-        case GGML_OP_CONV_2D:
-            {
-                GGML_ASSERT(false); // TODO: not implemented
-            } break;
-        case GGML_OP_POOL_1D:
-            {
-                GGML_ASSERT(false); // TODO: not implemented
-            } break;
-        case GGML_OP_POOL_2D:
-            {
-                GGML_ASSERT(false); // TODO: not implemented
-            } break;
-        case GGML_OP_FLASH_ATTN:
-            {
-                struct ggml_tensor * flash_grad = NULL;
-                if (src0->grad || src1->grad || tensor->src[2]->grad) {
-                    int32_t t = ggml_get_op_params_i32(tensor, 0);
-                    GGML_ASSERT(t == 0 || t == 1);
-                    bool masked = t != 0;
-                    flash_grad =
-                        ggml_flash_attn_back(ctx,
-                            src0,
-                            src1,
-                            tensor->src[2],
-                            tensor->grad,
-                            masked);
-                }
-
-                if (src0->grad) {
-                    struct ggml_tensor * grad_q = NULL;
-                    const size_t nb0    = flash_grad->nb[0];
-                    const size_t offset = 0;
-                    switch(src0->n_dims) {
-                        case 2:
-                            {
-                                grad_q = ggml_view_2d(ctx,
-                                    flash_grad,
-                                    src0->ne[0],
-                                    src0->ne[1],
-                                    nb0*src0->ne[0],
-                                    offset);
-                            } break;
-                        case 3:
-                            {
-                                grad_q = ggml_view_3d(ctx,
-                                    flash_grad,
-                                    src0->ne[0],
-                                    src0->ne[1],
-                                    src0->ne[2],
-                                    nb0*src0->ne[0],
-                                    nb0*src0->ne[0]*src0->ne[1],
-                                    offset);
-                            } break;
-                        case 4:
-                            {
-                                grad_q = ggml_view_4d(ctx,
-                                    flash_grad,
-                                    src0->ne[0],
-                                    src0->ne[1],
-                                    src0->ne[2],
-                                    src0->ne[3],
-                                    nb0*src0->ne[0],
-                                    nb0*src0->ne[0]*src0->ne[1],
-                                    nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
-                                    offset);
-                            } break;
-                    }
-
-                    src0->grad = ggml_add_impl(ctx,
-                            src0->grad,
-                            grad_q,
-                            inplace);
-                }
-
-                if (src1->grad) {
-                    struct ggml_tensor * grad_k = NULL;
-                    const size_t nb0    = flash_grad->nb[0];
-                    const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
-                    switch(src1->n_dims) {
-                        case 2:
-                            {
-                                grad_k = ggml_view_2d(ctx,
-                                    flash_grad,
-                                    src1->ne[0],
-                                    src1->ne[1],
-                                    nb0*src1->ne[0],
-                                    offset);
-                            } break;
-                        case 3:
-                            {
-                                grad_k = ggml_view_3d(ctx,
-                                    flash_grad,
-                                    src1->ne[0],
-                                    src1->ne[1],
-                                    src1->ne[2],
-                                    nb0*src1->ne[0],
-                                    nb0*src1->ne[0]*src1->ne[1],
-                                    offset);
-                            } break;
-                        case 4:
-                            {
-                                grad_k = ggml_view_4d(ctx,
-                                    flash_grad,
-                                    src1->ne[0],
-                                    src1->ne[1],
-                                    src1->ne[2],
-                                    src1->ne[3],
-                                    nb0*src1->ne[0],
-                                    nb0*src1->ne[0]*src1->ne[1],
-                                    nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
-                                    offset);
-                            } break;
-                    }
-
-                    src1->grad = ggml_add_impl(ctx,
-                            src1->grad,
-                            grad_k,
-                            inplace);
-                }
-
-                struct ggml_tensor * opt0 = tensor->src[2];
-
-                if (opt0->grad) {
-                    struct ggml_tensor * grad_v = NULL;
-                    const size_t nb0    = flash_grad->nb[0];
-                    const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
-                                        + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
-                    switch(opt0->n_dims) {
-                        case 2:
-                            {
-                                grad_v = ggml_view_2d(ctx,
-                                    flash_grad,
-                                    opt0->ne[0],
-                                    opt0->ne[1],
-                                    nb0*opt0->ne[0],
-                                    offset);
-                            } break;
-                        case 3:
-                            {
-                                grad_v = ggml_view_3d(ctx,
-                                    flash_grad,
-                                    opt0->ne[0],
-                                    opt0->ne[1],
-                                    opt0->ne[2],
-                                    nb0*opt0->ne[0],
-                                    nb0*opt0->ne[0]*opt0->ne[1],
-                                    offset);
-                            } break;
-                        case 4:
-                            {
-                                grad_v = ggml_view_4d(ctx,
-                                    flash_grad,
-                                    opt0->ne[0],
-                                    opt0->ne[1],
-                                    opt0->ne[2],
-                                    opt0->ne[3],
-                                    nb0*opt0->ne[0],
-                                    nb0*opt0->ne[0]*opt0->ne[1],
-                                    nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
-                                    offset);
-                            } break;
-                    }
-
-                    opt0->grad = ggml_add_impl(ctx,
-                            opt0->grad,
-                            grad_v,
-                            inplace);
-                }
-            } break;
-        case GGML_OP_FLASH_FF:
-            {
-                GGML_ASSERT(false); // not supported
-            } break;
-        case GGML_OP_FLASH_ATTN_BACK:
-            {
-                GGML_ASSERT(false); // not supported
-            } break;
-        case GGML_OP_WIN_PART:
-        case GGML_OP_WIN_UNPART:
-        case GGML_OP_UNARY:
-            {
-                switch (ggml_get_unary_op(tensor)) {
-                    case GGML_UNARY_OP_ABS:
-                        {
-                            if (src0->grad) {
-                                src0->grad =
-                                    ggml_add_impl(ctx,
-                                            src0->grad,
-                                            ggml_mul(ctx,
-                                                ggml_sgn(ctx, src0),
-                                                tensor->grad),
-                                            inplace);
-                            }
-                        } break;
-                    case GGML_UNARY_OP_SGN:
-                        {
-                            if (src0->grad) {
-                                // noop
-                            }
-                        } break;
-                    case GGML_UNARY_OP_NEG:
-                        {
-                            if (src0->grad) {
-                                src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
-                            }
-                        } break;
-                    case GGML_UNARY_OP_STEP:
-                        {
-                            if (src0->grad) {
-                                // noop
-                            }
-                        } break;
-                    case GGML_UNARY_OP_TANH:
-                        {
-                            GGML_ASSERT(false); // TODO: not implemented
-                        } break;
-                    case GGML_UNARY_OP_ELU:
-                        {
-                            GGML_ASSERT(false); // TODO: not implemented
-                        } break;
-                    case GGML_UNARY_OP_RELU:
-                        {
-                            if (src0->grad) {
-                                src0->grad = ggml_add_impl(ctx,
-                                        src0->grad,
-                                        ggml_mul(ctx,
-                                            ggml_step(ctx, src0),
-                                            tensor->grad),
-                                        inplace);
-                            }
-                        } break;
-                    case GGML_UNARY_OP_GELU:
-                        {
-                            GGML_ASSERT(false); // TODO: not implemented
-                        } break;
-                    case GGML_UNARY_OP_GELU_QUICK:
-                        {
-                            GGML_ASSERT(false); // TODO: not implemented
-                        } break;
-                    case GGML_UNARY_OP_SILU:
-                        {
-                            // necessary for llama
-                            if (src0->grad) {
-                                src0->grad = ggml_add_impl(ctx,
-                                        src0->grad,
-                                        ggml_silu_back(ctx, src0, tensor->grad),
-                                        inplace);
-                            }
-                        } break;
-                    default:
-                        GGML_ASSERT(false);
-                }
-            } break;
-        case GGML_OP_MAP_UNARY:
-        case GGML_OP_MAP_BINARY:
-        case GGML_OP_MAP_CUSTOM1_F32:
-        case GGML_OP_MAP_CUSTOM2_F32:
-        case GGML_OP_MAP_CUSTOM3_F32:
-        case GGML_OP_MAP_CUSTOM1:
-        case GGML_OP_MAP_CUSTOM2:
-        case GGML_OP_MAP_CUSTOM3:
-            {
-                GGML_ASSERT(false); // not supported
-            } break;
-        case GGML_OP_CROSS_ENTROPY_LOSS:
-            {
-                if (src0->grad) {
-                    src0->grad = ggml_add_impl(ctx,
-                                src0->grad,
-                                ggml_cross_entropy_loss_back(ctx,
-                                    src0,
-                                    src1,
-                                    tensor->grad),
-                                inplace);
-                }
-            } break;
-        case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
-            {
-                GGML_ASSERT(false); // not supported
-            } break;
-        case GGML_OP_NONE:
-            {
-                // nop
-            } break;
-        case GGML_OP_COUNT:
-            {
-                GGML_ASSERT(false);
-            } break;
-    }
-}
-
-static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
-
-static size_t hash(void * p) {
-    return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
-}
-
-static bool hash_insert(void * hash_table[], void * p) {
-    size_t h = hash(p);
-
-    // linear probing
-    size_t i = h;
-    while (hash_table[i] != NULL && hash_table[i] != p) {
-        i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
-        if (i == h) {
-            // hash table is full
-            GGML_ASSERT(false);
-        }
-    }
-
-    if (hash_table[i] == p) {
-        return true;
-    }
-
-    // insert
-    hash_table[i] = p;
-    return false;
-}
-
-static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
-    if (node->grad == NULL) {
-        // this usually happens when we generate intermediate nodes from constants in the backward pass
-        // it can also happen during forward pass, if the user performs computations with constants
-        if (node->op != GGML_OP_NONE) {
-            //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
-        }
-    }
-
-    // check if already visited
-    if (hash_insert(cgraph->visited_hash_table, node)) {
-        return;
-    }
-
-    for (int i = 0; i < GGML_MAX_SRC; ++i) {
-        if (node->src[i]) {
-            ggml_visit_parents(cgraph, node->src[i]);
-        }
-    }
-
-    if (node->op == GGML_OP_NONE && node->grad == NULL) {
-        // reached a leaf node, not part of the gradient graph (e.g. a constant)
-        GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
-
-        if (strlen(node->name) == 0) {
-            ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
-        }
-
-        cgraph->leafs[cgraph->n_leafs] = node;
-        cgraph->n_leafs++;
-    } else {
-        GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
-
-        if (strlen(node->name) == 0) {
-            ggml_format_name(node, "node_%d", cgraph->n_nodes);
-        }
-
-        cgraph->nodes[cgraph->n_nodes] = node;
-        cgraph->grads[cgraph->n_nodes] = node->grad;
-        cgraph->n_nodes++;
-    }
-}
-
-static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
-    if (!expand) {
-        cgraph->n_nodes = 0;
-        cgraph->n_leafs = 0;
-    }
-
-    const int n0 = cgraph->n_nodes;
-    UNUSED(n0);
-
-    ggml_visit_parents(cgraph, tensor);
-
-    const int n_new = cgraph->n_nodes - n0;
-    GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
-
-    if (n_new > 0) {
-        // the last added node should always be starting point
-        GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
-    }
-}
-
-void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
-    ggml_build_forward_impl(cgraph, tensor, true);
-}
-
-struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
-    struct ggml_cgraph result = {
-        /*.n_nodes      =*/ 0,
-        /*.n_leafs      =*/ 0,
-        /*.nodes        =*/ { NULL },
-        /*.grads        =*/ { NULL },
-        /*.leafs        =*/ { NULL },
-        /*.hash_table   =*/ { NULL },
-        /*.perf_runs    =*/ 0,
-        /*.perf_cycles  =*/ 0,
-        /*.perf_time_us =*/ 0,
-    };
-
-    ggml_build_forward_impl(&result, tensor, false);
-
-    return result;
-}
-
-struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
-    struct ggml_cgraph result = *gf;
-
-    GGML_ASSERT(gf->n_nodes > 0);
-
-    // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
-    if (keep) {
-        for (int i = 0; i < gf->n_nodes; i++) {
-            struct ggml_tensor * node = gf->nodes[i];
-
-            if (node->grad) {
-                node->grad = ggml_dup_tensor(ctx, node);
-                gf->grads[i] = node->grad;
-            }
-        }
-    }
-
-    for (int i = gf->n_nodes - 1; i >= 0; i--) {
-        struct ggml_tensor * node = gf->nodes[i];
-
-        // because we detached the grad nodes from the original graph, we can afford inplace operations
-        if (node->grad) {
-            ggml_compute_backward(ctx, node, keep);
-        }
-    }
-
-    for (int i = gf->n_nodes - 1; i >= 0; i--) {
-        struct ggml_tensor * node = gf->nodes[i];
-
-        if (node->is_param) {
-            GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
-            ggml_build_forward_expand(&result, node->grad);
-        }
-    }
-
-    return result;
-}
-
-struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
-    struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
-    struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
-
-    *cgraph = (struct ggml_cgraph) {
-        /*.n_nodes      =*/ 0,
-        /*.n_leafs      =*/ 0,
-        /*.nodes        =*/ { NULL },
-        /*.grads        =*/ { NULL },
-        /*.leafs        =*/ { NULL },
-        /*.hash_table   =*/ { NULL },
-        /*.perf_runs    =*/ 0,
-        /*.perf_cycles  =*/ 0,
-        /*.perf_time_us =*/ 0,
-    };
-
-    return cgraph;
-}
-
-struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
-    struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
-    ggml_build_forward_impl(cgraph, tensor, false);
-    return cgraph;
-}
-
-size_t ggml_graph_overhead(void) {
-    return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
-}
-
-//
-// thread data
-//
-// synchronization is done via busy loops
-// I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
-//
-
-#ifdef __APPLE__
-
-//#include <os/lock.h>
-//
-//typedef os_unfair_lock ggml_lock_t;
-//
-//#define ggml_lock_init(x)    UNUSED(x)
-//#define ggml_lock_destroy(x) UNUSED(x)
-//#define ggml_lock_lock       os_unfair_lock_lock
-//#define ggml_lock_unlock     os_unfair_lock_unlock
-//
-//#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
-
-typedef int ggml_lock_t;
-
-#define ggml_lock_init(x)    UNUSED(x)
-#define ggml_lock_destroy(x) UNUSED(x)
-#define ggml_lock_lock(x)    UNUSED(x)
-#define ggml_lock_unlock(x)  UNUSED(x)
-
-#define GGML_LOCK_INITIALIZER 0
-
-typedef pthread_t ggml_thread_t;
-
-#define ggml_thread_create pthread_create
-#define ggml_thread_join   pthread_join
-
-#else
-
-//typedef pthread_spinlock_t ggml_lock_t;
-
-//#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
-//#define ggml_lock_destroy pthread_spin_destroy
-//#define ggml_lock_lock    pthread_spin_lock
-//#define ggml_lock_unlock  pthread_spin_unlock
-
-typedef int ggml_lock_t;
-
-#define ggml_lock_init(x)    UNUSED(x)
-#define ggml_lock_destroy(x) UNUSED(x)
-#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
-#define ggml_lock_lock(x)    _mm_pause()
-#else
-#define ggml_lock_lock(x)    UNUSED(x)
-#endif
-#define ggml_lock_unlock(x)  UNUSED(x)
-
-#define GGML_LOCK_INITIALIZER 0
-
-typedef pthread_t ggml_thread_t;
-
-#define ggml_thread_create pthread_create
-#define ggml_thread_join   pthread_join
-
-#endif
-
-// Android's libc implementation "bionic" does not support setting affinity
-#if defined(__linux__) && !defined(__BIONIC__)
-static void set_numa_thread_affinity(int thread_n, int n_threads) {
-    if (!ggml_is_numa()) {
-        return;
-    }
-
-    // run thread on node_num thread_n / (threads per node)
-    const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
-    struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
-    size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
-
-    cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
-    CPU_ZERO_S(setsize, cpus);
-    for (size_t i = 0; i < node->n_cpus; ++i) {
-        CPU_SET_S(node->cpus[i], setsize, cpus);
-    }
-
-    int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
-    if (rv) {
-            fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
-                    strerror(rv));
-    }
-
-    CPU_FREE(cpus);
-}
-
-static void clear_numa_thread_affinity(void) {
-    if (!ggml_is_numa()) {
-        return;
-    }
-
-    size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
-
-    cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
-    CPU_ZERO_S(setsize, cpus);
-    for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
-        CPU_SET_S(i, setsize, cpus);
-    }
-
-    int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
-    if (rv) {
-        fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
-            strerror(rv));
-    }
-
-    CPU_FREE(cpus);
-}
-#else
-// TODO: Windows etc.
-// (the linux implementation may also work on BSD, someone should test)
-static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads);  }
-static void clear_numa_thread_affinity(void) {}
-#endif
-
-struct ggml_compute_state_shared {
-    const struct ggml_cgraph * cgraph;
-    const struct ggml_cplan  * cplan;
-
-    int64_t perf_node_start_cycles;
-    int64_t perf_node_start_time_us;
-
-    const int n_threads;
-
-    // synchronization primitives
-    atomic_int n_active; // num active threads
-    atomic_int node_n;   // active graph node
-
-    bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
-    void * abort_callback_data;
-};
-
-struct ggml_compute_state {
-    ggml_thread_t thrd;
-    int ith;
-    struct ggml_compute_state_shared * shared;
-};
-
-static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
-    int64_t cycles_cur  = ggml_perf_cycles()  - st->perf_node_start_cycles;
-    int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
-
-    node->perf_runs++;
-    node->perf_cycles  += cycles_cur;
-    node->perf_time_us += time_us_cur;
-}
-
-static thread_ret_t ggml_graph_compute_thread(void * data) {
-    struct ggml_compute_state * state = (struct ggml_compute_state *) data;
-
-    const struct ggml_cgraph * cgraph = state->shared->cgraph;
-    const struct ggml_cplan  * cplan  = state->shared->cplan;
-
-    const int * n_tasks_arr = cplan->n_tasks;
-    const int   n_threads   = state->shared->n_threads;
-
-    set_numa_thread_affinity(state->ith, n_threads);
-
-    int node_n = -1;
-
-    while (true) {
-        if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
-            state->shared->node_n += 1;
-            return (thread_ret_t) GGML_EXIT_ABORTED;
-        }
-        if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
-            // all other threads are finished and spinning
-            // do finalize and init here so we don't have synchronize again
-            struct ggml_compute_params params = {
-                /*.type  =*/ GGML_TASK_FINALIZE,
-                /*.ith   =*/ 0,
-                /*.nth   =*/ 0,
-                /*.wsize =*/ cplan->work_size,
-                /*.wdata =*/ cplan->work_data,
-            };
-
-            if (node_n != -1) {
-                /* FINALIZE */
-                struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
-                if (GGML_OP_HAS_FINALIZE[node->op]) {
-                    params.nth = n_tasks_arr[node_n];
-                    ggml_compute_forward(&params, node);
-                }
-                ggml_graph_compute_perf_stats_node(node, state->shared);
-            }
-
-            // distribute new work or execute it direct if 1T
-            while (++node_n < cgraph->n_nodes) {
-                GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
-
-                struct ggml_tensor * node = cgraph->nodes[node_n];
-                const int n_tasks = n_tasks_arr[node_n];
-
-                state->shared->perf_node_start_cycles  = ggml_perf_cycles();
-                state->shared->perf_node_start_time_us = ggml_perf_time_us();
-
-                params.nth = n_tasks;
-
-                /* INIT */
-                if (GGML_OP_HAS_INIT[node->op]) {
-                    params.type = GGML_TASK_INIT;
-                    ggml_compute_forward(&params, node);
-                }
-
-                if (n_tasks == 1) {
-                    // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
-                    // they do something more efficient than spinning (?)
-                    params.type = GGML_TASK_COMPUTE;
-                    ggml_compute_forward(&params, node);
-
-                    if (GGML_OP_HAS_FINALIZE[node->op]) {
-                        params.type = GGML_TASK_FINALIZE;
-                        ggml_compute_forward(&params, node);
-                    }
-
-                    ggml_graph_compute_perf_stats_node(node, state->shared);
-                } else {
-                    break;
-                }
-
-                if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
-                    break;
-                }
-            }
-
-            atomic_store(&state->shared->n_active, n_threads);
-            atomic_store(&state->shared->node_n,   node_n);
-        } else {
-            // wait for other threads to finish
-            const int last = node_n;
-            do {
-                //sched_yield();
-                node_n = atomic_load(&state->shared->node_n);
-            } while (node_n == last);
-        }
-
-        // check if we should stop
-        if (node_n >= cgraph->n_nodes) break;
-
-        /* COMPUTE */
-        struct ggml_tensor * node = cgraph->nodes[node_n];
-        const int n_tasks = n_tasks_arr[node_n];
-
-        struct ggml_compute_params params = {
-            /*.type  =*/ GGML_TASK_COMPUTE,
-            /*.ith   =*/ state->ith,
-            /*.nth   =*/ n_tasks,
-            /*.wsize =*/ cplan->work_size,
-            /*.wdata =*/ cplan->work_data,
-        };
-
-        if (state->ith < n_tasks) {
-            ggml_compute_forward(&params, node);
-        }
-    }
-
-    return GGML_EXIT_SUCCESS;
-}
-
-struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
-    if (n_threads <= 0) {
-        n_threads = GGML_DEFAULT_N_THREADS;
-    }
-
-    size_t work_size = 0;
-
-    struct ggml_cplan cplan;
-    memset(&cplan, 0, sizeof(struct ggml_cplan));
-
-    // thread scheduling for the different operations + work buffer size estimation
-    for (int i = 0; i < cgraph->n_nodes; i++) {
-        int n_tasks = 1;
-
-        struct ggml_tensor * node = cgraph->nodes[i];
-
-        switch (node->op) {
-            case GGML_OP_CPY:
-            case GGML_OP_DUP:
-                {
-                    n_tasks = n_threads;
-
-                    size_t cur = 0;
-                    if (ggml_is_quantized(node->type)) {
-                        cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
-                    }
-
-                    work_size = MAX(work_size, cur);
-                } break;
-            case GGML_OP_ADD:
-            case GGML_OP_ADD1:
-                {
-                    n_tasks = n_threads;
-
-                    size_t cur = 0;
-
-                    if (ggml_is_quantized(node->src[0]->type)) {
-                        cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
-                    }
-
-                    work_size = MAX(work_size, cur);
-                } break;
-            case GGML_OP_ACC:
-                {
-                    n_tasks = n_threads;
-
-                    size_t cur = 0;
-
-                    if (ggml_is_quantized(node->src[0]->type)) {
-                        cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
-                    }
-
-                    work_size = MAX(work_size, cur);
-                } break;
-            case GGML_OP_SUB:
-            case GGML_OP_DIV:
-            case GGML_OP_SQR:
-            case GGML_OP_SQRT:
-            case GGML_OP_LOG:
-            case GGML_OP_SUM:
-            case GGML_OP_SUM_ROWS:
-            case GGML_OP_MEAN:
-            case GGML_OP_ARGMAX:
-            case GGML_OP_REPEAT:
-            case GGML_OP_REPEAT_BACK:
-            {
-                    n_tasks = 1;
-                } break;
-
-            case GGML_OP_UNARY:
-                {
-                    switch (ggml_get_unary_op(node)) {
-                        case GGML_UNARY_OP_ABS:
-                        case GGML_UNARY_OP_SGN:
-                        case GGML_UNARY_OP_NEG:
-                        case GGML_UNARY_OP_STEP:
-                        case GGML_UNARY_OP_TANH:
-                        case GGML_UNARY_OP_ELU:
-                        case GGML_UNARY_OP_RELU:
-                            {
-                                n_tasks = 1;
-                            } break;
-
-                        case GGML_UNARY_OP_GELU:
-                        case GGML_UNARY_OP_GELU_QUICK:
-                        case GGML_UNARY_OP_SILU:
-                            {
-                                n_tasks = n_threads;
-                            } break;
-                    }
-                } break;
-            case GGML_OP_SILU_BACK:
-            case GGML_OP_MUL:
-            case GGML_OP_NORM:
-            case GGML_OP_RMS_NORM:
-            case GGML_OP_RMS_NORM_BACK:
-                {
-                    n_tasks = n_threads;
-                } break;
-            case GGML_OP_MUL_MAT:
-            case GGML_OP_OUT_PROD:
-                {
-                    n_tasks = n_threads;
-
-                    // TODO: use different scheduling for different matrix sizes
-                    //const int nr0 = ggml_nrows(node->src[0]);
-                    //const int nr1 = ggml_nrows(node->src[1]);
-
-                    //n_tasks = MIN(n_threads, MAX(1, nr0/128));
-                    //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
-
-                    size_t cur = 0;
-                    const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
-
-#if defined(GGML_USE_CUBLAS)
-                    if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
-                        n_tasks = 1; // TODO: this actually is doing nothing
-                                     //       the threads are still spinning
-                    } else
-#elif defined(GGML_USE_CLBLAST)
-                    if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
-                        n_tasks = 1; // TODO: this actually is doing nothing
-                                     //       the threads are still spinning
-                        cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
-                    } else
-#endif
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
-                    if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
-                        n_tasks = 1; // TODO: this actually is doing nothing
-                                     //       the threads are still spinning
-                        if (node->src[0]->type != GGML_TYPE_F32) {
-                            // here we need memory just for single 2D matrix from src0
-                            cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
-                        }
-                    } else
-#endif
-                    if (node->src[1]->type != vec_dot_type) {
-                        cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
-                    } else {
-                        cur = 0;
-                    }
-
-                    work_size = MAX(work_size, cur);
-                } break;
-            case GGML_OP_SCALE:
-                {
-                    n_tasks = 1;
-                } break;
-            case GGML_OP_SET:
-            case GGML_OP_CONT:
-            case GGML_OP_RESHAPE:
-            case GGML_OP_VIEW:
-            case GGML_OP_PERMUTE:
-            case GGML_OP_TRANSPOSE:
-            case GGML_OP_GET_ROWS:
-            case GGML_OP_GET_ROWS_BACK:
-            case GGML_OP_DIAG:
-                {
-                    n_tasks = 1;
-                } break;
-            case GGML_OP_DIAG_MASK_ZERO:
-            case GGML_OP_DIAG_MASK_INF:
-            case GGML_OP_SOFT_MAX:
-            case GGML_OP_SOFT_MAX_BACK:
-            case GGML_OP_ROPE:
-            case GGML_OP_ROPE_BACK:
-                {
-                    n_tasks = n_threads;
-                } break;
-            case GGML_OP_ALIBI:
-                {
-                    n_tasks = 1; //TODO
-                } break;
-            case GGML_OP_CLAMP:
-                {
-                    n_tasks = 1; //TODO
-                } break;
-            case GGML_OP_CONV_1D:
-                {
-                    n_tasks = n_threads;
-
-                    GGML_ASSERT(node->src[0]->ne[3] == 1);
-                    GGML_ASSERT(node->src[1]->ne[2] == 1);
-                    GGML_ASSERT(node->src[1]->ne[3] == 1);
-
-                    size_t cur = 0;
-                    const int nk = node->src[0]->ne[0];
-
-                    if (node->src[0]->type == GGML_TYPE_F16 &&
-                            node->src[1]->type == GGML_TYPE_F32) {
-                        cur = sizeof(ggml_fp16_t)*(
-                                nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
-                                ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
-                                );
-                    } else if (node->src[0]->type == GGML_TYPE_F32 &&
-                            node->src[1]->type == GGML_TYPE_F32) {
-                        cur = sizeof(float)*(
-                                nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
-                                ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
-                                );
-                    } else {
-                        GGML_ASSERT(false);
-                    }
-
-                    work_size = MAX(work_size, cur);
-                } break;
-            case GGML_OP_CONV_2D:
-                {
-                    n_tasks = n_threads;
-
-                    const int64_t ne00 = node->src[0]->ne[0]; // W
-                    const int64_t ne01 = node->src[0]->ne[1]; // H
-                    const int64_t ne02 = node->src[0]->ne[2]; // C
-                    const int64_t ne03 = node->src[0]->ne[3]; // N
-
-                    const int64_t ne10 = node->src[1]->ne[0]; // W
-                    const int64_t ne11 = node->src[1]->ne[1]; // H
-                    const int64_t ne12 = node->src[1]->ne[2]; // C
-
-                    const int64_t ne0 = node->ne[0];
-                    const int64_t ne1 = node->ne[1];
-                    const int64_t ne2 = node->ne[2];
-                    const int64_t nk = ne00*ne01;
-                    const int64_t ew0 = nk * ne02;
-
-                    UNUSED(ne03);
-                    UNUSED(ne2);
-
-                    size_t cur = 0;
-
-                    if (node->src[0]->type == GGML_TYPE_F16 &&
-                        node->src[1]->type == GGML_TYPE_F32) {
-                        cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
-                    } else if (node->src[0]->type == GGML_TYPE_F32 &&
-                               node->src[1]->type == GGML_TYPE_F32) {
-                        cur = sizeof(float)*      (ne10*ne11*ne12);
-                    } else {
-                        GGML_ASSERT(false);
-                    }
-
-                    work_size = MAX(work_size, cur);
-                } break;
-            case GGML_OP_POOL_1D:
-            case GGML_OP_POOL_2D:
-                {
-                    n_tasks = 1;
-                } break;
-            case GGML_OP_FLASH_ATTN:
-                {
-                    n_tasks = n_threads;
-
-                    size_t cur = 0;
-
-                    const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
-
-                    if (node->src[1]->type == GGML_TYPE_F32) {
-                        cur  = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
-                        cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
-                    }
-
-                    if (node->src[1]->type == GGML_TYPE_F16) {
-                        cur  = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
-                        cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
-                    }
-
-                    work_size = MAX(work_size, cur);
-                } break;
-            case GGML_OP_FLASH_FF:
-                {
-                    n_tasks = n_threads;
-
-                    size_t cur = 0;
-
-                    if (node->src[1]->type == GGML_TYPE_F32) {
-                        cur  = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
-                        cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
-                    }
-
-                    if (node->src[1]->type == GGML_TYPE_F16) {
-                        cur  = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
-                        cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
-                    }
-
-                    work_size = MAX(work_size, cur);
-                } break;
-            case GGML_OP_FLASH_ATTN_BACK:
-                {
-                    n_tasks = n_threads;
-
-                    size_t cur = 0;
-
-                    const int64_t    D = node->src[0]->ne[0];
-                    const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
-                    const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
-                    if (node->src[1]->type == GGML_TYPE_F32) {
-                        cur  = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
-                        cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
-                    }
-
-                    if (node->src[1]->type == GGML_TYPE_F16) {
-                        cur  = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
-                        cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
-                    }
-
-                    work_size = MAX(work_size, cur);
-                } break;
-            case GGML_OP_WIN_PART:
-            case GGML_OP_WIN_UNPART:
-            case GGML_OP_MAP_UNARY:
-            case GGML_OP_MAP_BINARY:
-            case GGML_OP_MAP_CUSTOM1_F32:
-            case GGML_OP_MAP_CUSTOM2_F32:
-            case GGML_OP_MAP_CUSTOM3_F32:
-                {
-                    n_tasks = 1;
-                } break;
-            case GGML_OP_MAP_CUSTOM1:
-                {
-                    struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
-                    if (p->n_tasks == GGML_N_TASKS_MAX) {
-                        n_tasks = n_threads;
-                    } else {
-                        n_tasks = MIN(p->n_tasks, n_threads);
-                    }
-                } break;
-            case GGML_OP_MAP_CUSTOM2:
-                {
-                    struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
-                    if (p->n_tasks == GGML_N_TASKS_MAX) {
-                        n_tasks = n_threads;
-                    } else {
-                        n_tasks = MIN(p->n_tasks, n_threads);
-                    }
-                } break;
-            case GGML_OP_MAP_CUSTOM3:
-                {
-                    struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
-                    if (p->n_tasks == GGML_N_TASKS_MAX) {
-                        n_tasks = n_threads;
-                    } else {
-                        n_tasks = MIN(p->n_tasks, n_threads);
-                    }
-                } break;
-            case GGML_OP_CROSS_ENTROPY_LOSS:
-                {
-                    n_tasks = n_threads;
-
-                    size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
-
-                    work_size = MAX(work_size, cur);
-                } break;
-            case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
-                {
-                    n_tasks = n_threads;
-
-                    size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
-
-                    work_size = MAX(work_size, cur);
-                } break;
-            case GGML_OP_NONE:
-                {
-                    n_tasks = 1;
-                } break;
-            case GGML_OP_COUNT:
-                {
-                    GGML_ASSERT(false);
-                } break;
-        }
-
-        cplan.n_tasks[i] = n_tasks;
-    }
-
-    if (work_size > 0) {
-        work_size += CACHE_LINE_SIZE*(n_threads - 1);
-    }
-
-    cplan.n_threads = n_threads;
-    cplan.work_size = work_size;
-    cplan.work_data = NULL;
-
-    return cplan;
-}
-
-int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
-    {
-        GGML_ASSERT(cplan);
-        GGML_ASSERT(cplan->n_threads > 0);
-
-        if (cplan->work_size > 0) {
-            GGML_ASSERT(cplan->work_data);
-        }
-
-        for (int i = 0; i < cgraph->n_nodes; ++i) {
-            if (cgraph->nodes[i]->op != GGML_OP_NONE) {
-                GGML_ASSERT(cplan->n_tasks[i] > 0);
-            }
-        }
-    }
-
-    const int n_threads = cplan->n_threads;
-
-    struct ggml_compute_state_shared state_shared = {
-        /*.cgraph                  =*/ cgraph,
-        /*.cgraph_plan             =*/ cplan,
-        /*.perf_node_start_cycles  =*/ 0,
-        /*.perf_node_start_time_us =*/ 0,
-        /*.n_threads               =*/ n_threads,
-        /*.n_active                =*/ n_threads,
-        /*.node_n                  =*/ -1,
-        /*.abort_callback          =*/ NULL,
-        /*.abort_callback_data     =*/ NULL,
-    };
-    struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
-
-    // create thread pool
-    if (n_threads > 1) {
-        for (int j = 1; j < n_threads; ++j) {
-            workers[j] = (struct ggml_compute_state) {
-                .thrd   = 0,
-                .ith = j,
-                .shared = &state_shared,
-            };
-
-            const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
-            GGML_ASSERT(rc == 0);
-        }
-    }
-    workers[0].ith = 0;
-    workers[0].shared = &state_shared;
-
-    const int64_t perf_start_cycles  = ggml_perf_cycles();
-    const int64_t perf_start_time_us = ggml_perf_time_us();
-
-    // this is a work thread too
-    int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
-
-    // don't leave affinity set on the main thread
-    clear_numa_thread_affinity();
-
-    // join or kill thread pool
-    if (n_threads > 1) {
-        for (int j = 1; j < n_threads; j++) {
-            const int rc = ggml_thread_join(workers[j].thrd, NULL);
-            GGML_ASSERT(rc == 0);
-        }
-    }
-
-    // performance stats (graph)
-    {
-        int64_t perf_cycles_cur  = ggml_perf_cycles()  - perf_start_cycles;
-        int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
-
-        cgraph->perf_runs++;
-        cgraph->perf_cycles  += perf_cycles_cur;
-        cgraph->perf_time_us += perf_time_us_cur;
-
-        GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
-                __func__, cgraph->perf_runs,
-                (double) perf_cycles_cur      / (double) ggml_cycles_per_ms(),
-                (double) cgraph->perf_cycles  / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
-                (double) perf_time_us_cur     / 1000.0,
-                (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
-    }
-
-    return compute_status;
-}
-
-void ggml_graph_reset(struct ggml_cgraph * cgraph) {
-    for (int i = 0; i < cgraph->n_nodes; i++) {
-        struct ggml_tensor * grad = cgraph->grads[i];
-
-        if (grad) {
-            ggml_set_zero(grad);
-        }
-    }
-}
-
-void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
-    struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
-
-    struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
-
-    cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
-
-    ggml_graph_compute(cgraph, &cplan);
-}
-
-struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
-    for (int i = 0; i < cgraph->n_leafs; i++) {
-        struct ggml_tensor * leaf = cgraph->leafs[i];
-
-        if (strcmp(leaf->name, name) == 0) {
-            return leaf;
-        }
-    }
-
-    for (int i = 0; i < cgraph->n_nodes; i++) {
-        struct ggml_tensor * node = cgraph->nodes[i];
-
-        if (strcmp(node->name, name) == 0) {
-            return node;
-        }
-    }
-
-    return NULL;
-}
-
-static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
-    const int64_t * ne = tensor->ne;
-    const size_t  * nb = tensor->nb;
-
-    fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
-            ggml_type_name(tensor->type),
-            ggml_op_name  (tensor->op),
-            tensor->n_dims,
-            ne[0], ne[1], ne[2], ne[3],
-            nb[0], nb[1], nb[2], nb[3],
-            tensor->data,
-            tensor->name);
-}
-
-static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
-    const int64_t * ne = tensor->ne;
-    const size_t  * nb = tensor->nb;
-
-    fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
-            arg,
-            ggml_type_name(tensor->type),
-            ggml_op_name  (tensor->op),
-            tensor->n_dims,
-            ne[0], ne[1], ne[2], ne[3],
-            nb[0], nb[1], nb[2], nb[3],
-            tensor->data,
-            tensor->name);
-}
-
-void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
-    uint64_t size_eval = 0;
-
-    // compute size of intermediate results
-    // TODO: does not take into account scratch buffers !!!!
-    for (int i = 0; i < cgraph->n_nodes; ++i) {
-        size_eval += ggml_nbytes(cgraph->nodes[i]);
-    }
-
-    // print
-    {
-        FILE * fout = stdout;
-
-        fprintf(fout, "\n");
-        fprintf(fout, "%-16s %8x\n", "magic",        GGML_FILE_MAGIC);
-        fprintf(fout, "%-16s %8d\n", "version",      GGML_FILE_VERSION);
-        fprintf(fout, "%-16s %8d\n", "leafs",        cgraph->n_leafs);
-        fprintf(fout, "%-16s %8d\n", "nodes",        cgraph->n_nodes);
-        fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
-
-        // header
-        fprintf(fout, "\n");
-        fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
-                "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
-
-        for (int i = 0; i < cgraph->n_leafs; ++i) {
-            ggml_graph_export_leaf(cgraph->leafs[i], fout);
-
-            GGML_ASSERT(cgraph->leafs[i]->op   == GGML_OP_NONE);
-            GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
-            GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
-        }
-
-        // header
-        fprintf(fout, "\n");
-        fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
-                "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
-
-        for (int i = 0; i < cgraph->n_nodes; ++i) {
-            ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
-
-            for (int j = 0; j < GGML_MAX_SRC; ++j) {
-                if (cgraph->nodes[i]->src[j]) {
-                    ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
-                }
-            }
-
-            fprintf(fout, "\n");
-        }
-
-        fprintf(fout, "\n");
-    }
-
-    // write binary data
-    {
-        FILE * fout = fopen(fname, "wb");
-
-        if (!fout) {
-            fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
-            return;
-        }
-
-        // header
-        {
-            const uint32_t magic   = GGML_FILE_MAGIC;
-            const uint32_t version = GGML_FILE_VERSION;
-            const uint32_t n_leafs = cgraph->n_leafs;
-            const uint32_t nodes   = cgraph->n_nodes;
-
-            fwrite(&magic,     sizeof(uint32_t), 1, fout);
-            fwrite(&version,   sizeof(uint32_t), 1, fout);
-            fwrite(&n_leafs,   sizeof(uint32_t), 1, fout);
-            fwrite(&nodes,     sizeof(uint32_t), 1, fout);
-            fwrite(&size_eval, sizeof(uint64_t), 1, fout);
-        }
-
-        // leafs
-        {
-            for (int i = 0; i < cgraph->n_leafs; ++i) {
-                const struct ggml_tensor * tensor = cgraph->leafs[i];
-
-                const uint32_t type   = tensor->type;
-                const uint32_t op     = tensor->op;
-                const uint32_t n_dims = tensor->n_dims;
-
-                fwrite(&type,   sizeof(uint32_t), 1, fout);
-                fwrite(&op,     sizeof(uint32_t), 1, fout);
-                fwrite(&n_dims, sizeof(uint32_t), 1, fout);
-
-                for (int j = 0; j < GGML_MAX_DIMS; ++j) {
-                    const uint64_t ne = tensor->ne[j];
-                    const uint64_t nb = tensor->nb[j];
-
-                    fwrite(&ne, sizeof(uint64_t), 1, fout);
-                    fwrite(&nb, sizeof(uint64_t), 1, fout);
-                }
-
-                fwrite(tensor->name,      sizeof(char), GGML_MAX_NAME,      fout);
-                fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
-
-                // dump the data
-                // TODO: pad this to 32 byte boundary
-                {
-                    const size_t size = ggml_nbytes(tensor);
-
-                    fwrite(tensor->data, sizeof(char), size, fout);
-                }
-            }
-        }
-
-        // nodes
-        {
-            for (int i = 0; i < cgraph->n_nodes; ++i) {
-                const struct ggml_tensor * tensor = cgraph->nodes[i];
-
-                const uint32_t type   = tensor->type;
-                const uint32_t op     = tensor->op;
-                const uint32_t n_dims = tensor->n_dims;
-
-                fwrite(&type,   sizeof(uint32_t), 1, fout);
-                fwrite(&op,     sizeof(uint32_t), 1, fout);
-                fwrite(&n_dims, sizeof(uint32_t), 1, fout);
-
-                for (int j = 0; j < GGML_MAX_DIMS; ++j) {
-                    const uint64_t ne = tensor->ne[j];
-                    const uint64_t nb = tensor->nb[j];
-
-                    fwrite(&ne, sizeof(uint64_t), 1, fout);
-                    fwrite(&nb, sizeof(uint64_t), 1, fout);
-                }
-
-                fwrite(tensor->name,      sizeof(char), GGML_MAX_NAME,      fout);
-                fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
-
-                // output the op arguments
-                {
-                    struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
-
-                    for (int j = 0; j < GGML_MAX_SRC; ++j) {
-                        args[j] = tensor->src[j];
-                    }
-
-                    for (int j = 0; j < GGML_MAX_SRC; ++j) {
-                        if (args[j]) {
-                            int32_t idx = -1;
-
-                            // check if leaf
-                            {
-                                for (int k = 0; k < cgraph->n_leafs; ++k) {
-                                    if (args[j] == cgraph->leafs[k]) {
-                                        idx = k;
-                                        break;
-                                    }
-                                }
-                            }
-
-                            // check if node
-                            if (idx == -1) {
-                                for (int k = 0; k < cgraph->n_nodes; ++k) {
-                                    if (args[j] == cgraph->nodes[k]) {
-                                        idx = GGML_MAX_NODES + k;
-                                        break;
-                                    }
-                                }
-                            }
-
-                            if (idx == -1) {
-                                fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
-                                return;
-                            }
-
-                            fwrite(&idx, sizeof(int32_t), 1, fout);
-                        } else {
-                            const int32_t nul = -1;
-
-                            fwrite(&nul, sizeof(int32_t), 1, fout);
-                        }
-                    }
-                }
-            }
-        }
-
-        fclose(fout);
-    }
-}
-
-struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
-    assert(*ctx_data == NULL);
-    assert(*ctx_eval == NULL);
-
-    struct ggml_cgraph result = { 0 };
-
-    struct ggml_tensor * data = NULL;
-
-    // read file into data
-    {
-        FILE * fin = fopen(fname, "rb");
-        if (!fin) {
-            fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
-            return result;
-        }
-
-        size_t fsize = 0;
-
-        fseek(fin, 0, SEEK_END);
-        fsize = ftell(fin);
-        fseek(fin, 0, SEEK_SET);
-
-        // create the data context
-        {
-            const size_t overhead = 1*ggml_tensor_overhead();
-
-            struct ggml_init_params params = {
-                .mem_size   = fsize + overhead,
-                .mem_buffer = NULL,
-                .no_alloc   = false,
-            };
-
-            *ctx_data = ggml_init(params);
-
-            if (!*ctx_data) {
-                fprintf(stderr, "%s: failed to create ggml context\n", __func__);
-                fclose(fin);
-                return result;
-            }
-        }
-
-        data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
-
-        {
-            const size_t ret = fread(data->data, sizeof(char), fsize, fin);
-            if (ret != fsize) {
-                fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
-                fclose(fin);
-                return result;
-            }
-        }
-
-        fclose(fin);
-    }
-
-    // populate result
-    {
-        char * ptr = (char *) data->data;
-
-        const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
-
-        if (magic != GGML_FILE_MAGIC) {
-            fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
-            return result;
-        }
-
-        const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
-
-        if (version != GGML_FILE_VERSION) {
-            fprintf(stderr, "%s: invalid version number\n", __func__);
-            return result;
-        }
-
-        const uint32_t n_leafs   = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
-        const uint32_t n_nodes   = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
-        const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
-
-        result.n_leafs = n_leafs;
-        result.n_nodes = n_nodes;
-
-        // create the data context
-        {
-            const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
-
-            struct ggml_init_params params = {
-                .mem_size   = size_eval + overhead,
-                .mem_buffer = NULL,
-                .no_alloc   = true,
-            };
-
-            *ctx_eval = ggml_init(params);
-
-            if (!*ctx_eval) {
-                fprintf(stderr, "%s: failed to create ggml context\n", __func__);
-                return result;
-            }
-        }
-
-        // leafs
-        {
-            uint32_t type;
-            uint32_t op;
-            uint32_t n_dims;
-
-            for (uint32_t i = 0; i < n_leafs; ++i) {
-                type   = *(const uint32_t *) ptr; ptr += sizeof(type);
-                op     = *(const uint32_t *) ptr; ptr += sizeof(op);
-                n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
-
-                int64_t ne[GGML_MAX_DIMS];
-                size_t  nb[GGML_MAX_DIMS];
-
-                for (int j = 0; j < GGML_MAX_DIMS; ++j) {
-                    uint64_t ne_cur;
-                    uint64_t nb_cur;
-
-                    ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
-                    nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
-
-                    ne[j] = ne_cur;
-                    nb[j] = nb_cur;
-                }
-
-                struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
-
-                tensor->op = (enum ggml_op) op;
-
-                memcpy(tensor->name,      ptr, GGML_MAX_NAME);      ptr += GGML_MAX_NAME;
-                memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
-
-                tensor->data = (void *) ptr;
-
-                for (int j = 0; j < GGML_MAX_DIMS; ++j) {
-                    tensor->nb[j] = nb[j];
-                }
-
-                result.leafs[i] = tensor;
-
-                ptr += ggml_nbytes(tensor);
-
-                fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
-            }
-        }
-
-        ggml_set_no_alloc(*ctx_eval, false);
-
-        // nodes
-        {
-            uint32_t type;
-            uint32_t op;
-            uint32_t n_dims;
-
-            for (uint32_t i = 0; i < n_nodes; ++i) {
-                type   = *(const uint32_t *) ptr; ptr += sizeof(type);
-                op     = *(const uint32_t *) ptr; ptr += sizeof(op);
-                n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
-
-                enum ggml_op eop = (enum ggml_op) op;
-
-                int64_t ne[GGML_MAX_DIMS];
-                size_t  nb[GGML_MAX_DIMS];
-
-                for (int j = 0; j < GGML_MAX_DIMS; ++j) {
-                    uint64_t ne_cur;
-                    uint64_t nb_cur;
-
-                    ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
-                    nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
-
-                    ne[j] = ne_cur;
-                    nb[j] = nb_cur;
-                }
-
-                const char * ptr_name      = ptr; ptr += GGML_MAX_NAME;
-                const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
-
-                const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
-
-                struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
-
-                // parse args
-                for (int j = 0; j < GGML_MAX_SRC; ++j) {
-                    const int32_t arg_idx = ptr_arg_idx[j];
-
-                    if (arg_idx == -1) {
-                        continue;
-                    }
-
-                    if (arg_idx < GGML_MAX_NODES) {
-                        args[j] = result.leafs[arg_idx];
-                    } else {
-                        args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
-                    }
-                }
-
-                // create the tensor
-                // "view" operations are handled differently
-                // TODO: handle inplace ops - currently a copy is always made
-
-                struct ggml_tensor * tensor = NULL;
-
-                switch (eop) {
-                    // TODO: implement other view ops
-                    case GGML_OP_RESHAPE:
-                        {
-                            tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
-                        } break;
-                    case GGML_OP_VIEW:
-                        {
-                            tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
-
-                            size_t offs;
-                            memcpy(&offs, ptr_op_params, sizeof(offs));
-
-                            tensor->data = ((char *) tensor->data) + offs;
-                        } break;
-                    case GGML_OP_TRANSPOSE:
-                        {
-                            tensor = ggml_transpose(*ctx_eval, args[0]);
-                        } break;
-                    case GGML_OP_PERMUTE:
-                        {
-                            tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
-                        } break;
-                    default:
-                        {
-                            tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
-
-                            tensor->op = eop;
-                        } break;
-                }
-
-                memcpy(tensor->name,      ptr_name,      GGML_MAX_NAME);
-                memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
-
-                for (int j = 0; j < GGML_MAX_DIMS; ++j) {
-                    tensor->nb[j] = nb[j];
-                }
-
-                for (int j = 0; j < GGML_MAX_SRC; ++j) {
-                    tensor->src[j] = args[j];
-                }
-
-                result.nodes[i] = tensor;
-
-                fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
-            }
-        }
-    }
-
-    return result;
-}
-
-void ggml_graph_print(const struct ggml_cgraph * cgraph) {
-    int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
-
-    GGML_PRINT("=== GRAPH ===\n");
-
-    GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
-    for (int i = 0; i < cgraph->n_nodes; i++) {
-        struct ggml_tensor * node = cgraph->nodes[i];
-
-        perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
-
-        GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
-                i,
-                node->ne[0], node->ne[1], node->ne[2],
-                ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
-                (double) node->perf_cycles  / (double) ggml_cycles_per_ms(),
-                (double) node->perf_cycles  / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
-                (double) node->perf_time_us / 1000.0,
-                (double) node->perf_time_us / 1000.0 / node->perf_runs);
-    }
-
-    GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
-    for (int i = 0; i < cgraph->n_leafs; i++) {
-        struct ggml_tensor * node = cgraph->leafs[i];
-
-        GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
-                i,
-                node->ne[0], node->ne[1],
-                ggml_op_name(node->op));
-    }
-
-    for (int i = 0; i < GGML_OP_COUNT; i++) {
-        if (perf_total_per_op_us[i] == 0) {
-            continue;
-        }
-
-        GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
-    }
-
-    GGML_PRINT("========================================\n");
-}
-
-// check if node is part of the graph
-static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
-    if (cgraph == NULL) {
-        return true;
-    }
-
-    for (int i = 0; i < cgraph->n_nodes; i++) {
-        if (cgraph->nodes[i] == node) {
-            return true;
-        }
-    }
-
-    return false;
-}
-
-static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
-    for (int i = 0; i < cgraph->n_nodes; i++) {
-        struct ggml_tensor * parent = cgraph->nodes[i];
-
-        if (parent->grad == node) {
-            return parent;
-        }
-    }
-
-    return NULL;
-}
-
-static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label)  {
-    struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
-    struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
-    fprintf(fp, "  \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
-            gparent0 ? (void *) gparent0 : (void *) parent,
-            gparent0 ? "g" : "x",
-            gparent ? (void *) gparent : (void *) node,
-            gparent ? "g" : "x",
-            gparent ? "empty" : "vee",
-            gparent ? "dashed" : "solid",
-            label);
-}
-
-static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label)  {
-    fprintf(fp, "  \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
-            (void *) parent, "x",
-            (void *) node, "x",
-            label);
-}
-
-void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
-    char color[16];
-
-    FILE * fp = fopen(filename, "w");
-    GGML_ASSERT(fp);
-
-    fprintf(fp, "digraph G {\n");
-    fprintf(fp, "  newrank = true;\n");
-    fprintf(fp, "  rankdir = LR;\n");
-
-    for (int i = 0; i < gb->n_nodes; i++) {
-        struct ggml_tensor * node = gb->nodes[i];
-
-        if (ggml_graph_get_parent(gb, node) != NULL) {
-            continue;
-        }
-
-        if (node->is_param) {
-            snprintf(color, sizeof(color), "yellow");
-        } else if (node->grad) {
-            if (ggml_graph_find(gf, node)) {
-                snprintf(color, sizeof(color), "green");
-            } else {
-                snprintf(color, sizeof(color), "lightblue");
-            }
-        } else {
-            snprintf(color, sizeof(color), "white");
-        }
-
-        fprintf(fp, "  \"%p\" [ "
-                    "style = filled; fillcolor = %s; shape = record; "
-                    "label=\"",
-                (void *) node, color);
-
-        if (strlen(node->name) > 0) {
-            fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
-        } else {
-            fprintf(fp, "(%s)|", ggml_type_name(node->type));
-        }
-
-        if (node->n_dims == 2) {
-            fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
-        } else {
-            fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
-        }
-
-        if (node->grad) {
-            fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
-        } else {
-            fprintf(fp, "\"; ]\n");
-        }
-    }
-
-    for (int i = 0; i < gb->n_leafs; i++) {
-        struct ggml_tensor * node = gb->leafs[i];
-
-        snprintf(color, sizeof(color), "pink");
-
-        fprintf(fp, "  \"%p\" [ "
-                    "style = filled; fillcolor = %s; shape = record; "
-                    "label=\"<x>",
-                (void *) node, color);
-
-        if (strlen(node->name) > 0) {
-            fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
-        } else {
-            fprintf(fp, "(%s)|", ggml_type_name(node->type));
-        }
-
-        fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
-        if (ggml_nelements(node) < 5) {
-            fprintf(fp, " | (");
-            for (int j = 0; j < ggml_nelements(node); j++) {
-                if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
-                    fprintf(fp, "%d", ggml_get_i32_1d(node, j));
-                }
-                else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
-                    fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
-                }
-                else {
-                    fprintf(fp, "#");
-                }
-                if (j < ggml_nelements(node) - 1) {
-                    fprintf(fp, ", ");
-                }
-            }
-            fprintf(fp, ")");
-        }
-        fprintf(fp, "\"; ]\n");
-    }
-
-    for (int i = 0; i < gb->n_nodes; i++) {
-        struct ggml_tensor * node = gb->nodes[i];
-
-        for (int j = 0; j < GGML_MAX_SRC; j++) {
-            if (node->src[j]) {
-                char label[16];
-                snprintf(label, sizeof(label), "src %d", j);
-                ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
-            }
-        }
-    }
-
-    for (int i = 0; i < gb->n_leafs; i++) {
-        struct ggml_tensor * node = gb->leafs[i];
-
-        for (int j = 0; j < GGML_MAX_SRC; j++) {
-            if (node->src[j]) {
-                char label[16];
-                snprintf(label, sizeof(label), "src %d", j);
-                ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
-            }
-        }
-    }
-
-    fprintf(fp, "}\n");
-
-    fclose(fp);
-
-    GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
-    int i = 0;
-    for (int p = 0; p < np; ++p) {
-        const int64_t ne = ggml_nelements(ps[p]) ;
-        // TODO: add function to set tensor from array
-        for (int64_t j = 0; j < ne; ++j) {
-            ggml_set_f32_1d(ps[p], j, x[i++]);
-        }
-    }
-}
-
-static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
-    int i = 0;
-    for (int p = 0; p < np; ++p) {
-        const int64_t ne = ggml_nelements(ps[p]) ;
-        // TODO: add function to get all elements at once
-        for (int64_t j = 0; j < ne; ++j) {
-            x[i++] = ggml_get_f32_1d(ps[p], j);
-        }
-    }
-}
-
-static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
-    int i = 0;
-    for (int p = 0; p < np; ++p) {
-        const int64_t ne = ggml_nelements(ps[p]) ;
-        // TODO: add function to get all elements at once
-        for (int64_t j = 0; j < ne; ++j) {
-            g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
-        }
-    }
-}
-
-//
-// ADAM
-//
-//   ref: https://arxiv.org/pdf/1412.6980.pdf
-//
-
-static enum ggml_opt_result ggml_opt_adam(
-        struct ggml_context * ctx,
-        struct ggml_opt_context * opt,
-        struct ggml_opt_params params,
-        struct ggml_tensor * f,
-        struct ggml_cgraph * gf,
-        struct ggml_cgraph * gb) {
-    GGML_ASSERT(ggml_is_scalar(f));
-
-    // these will store the parameters we want to optimize
-    struct ggml_tensor * ps[GGML_MAX_PARAMS];
-
-    int np = 0;
-    int nx = 0;
-    for (int i = 0; i < gf->n_nodes; ++i) {
-        if (gf->nodes[i]->is_param) {
-            GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
-
-            GGML_ASSERT(np < GGML_MAX_PARAMS);
-
-            ps[np++] = gf->nodes[i];
-            nx += ggml_nelements(gf->nodes[i]);
-        }
-    }
-
-    if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
-        int iter = opt->iter;
-        ggml_opt_init(opt->ctx, opt, params, nx);
-        opt->iter = iter;
-    }
-
-    // constants
-    const float sched = params.adam.sched;
-    const float decay = params.adam.decay * sched;
-    const float alpha = params.adam.alpha * sched;
-    const float beta1 = params.adam.beta1;
-    const float beta2 = params.adam.beta2;
-    const float eps   = params.adam.eps;
-
-    float * x  = opt->adam.x->data;  // view of the parameters
-    float * g1 = opt->adam.g1->data; // gradient
-    float * g2 = opt->adam.g2->data; // gradient squared
-    float * m  = opt->adam.m->data;  // first moment
-    float * v  = opt->adam.v->data;  // second moment
-    float * mh = opt->adam.mh->data; // first moment hat
-    float * vh = opt->adam.vh->data; // second moment hat
-
-    float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
-
-    // update view
-    ggml_opt_get_params(np, ps, x);
-
-    // compute the function value
-    ggml_graph_reset  (gf);
-    ggml_set_f32      (f->grad, 1.0f);
-
-    ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
-
-    opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
-    opt->adam.fx_best = opt->adam.fx_prev;
-    if (pf) {
-        pf[opt->iter % params.past] = opt->adam.fx_prev;
-    }
-
-    // initialize
-    if (opt->just_initialized) {
-        opt->adam.n_no_improvement = 0;
-        opt->just_initialized = false;
-    }
-
-    float * fx_best = &opt->adam.fx_best;
-    float * fx_prev = &opt->adam.fx_prev;
-    int * n_no_improvement = &opt->adam.n_no_improvement;
-
-    int iter0 = opt->iter;
-
-    // run the optimizer
-    for (int t = 0; t < params.adam.n_iter; ++t) {
-        opt->iter = iter0 + t + 1;
-        GGML_PRINT_DEBUG  ("=== iter %d ===\n", t);
-
-        GGML_PRINT_DEBUG  ("f      = %10.6f\n", ggml_get_f32_1d(f, 0));
-        GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
-        GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
-
-        for (int i = 0; i < np; ++i) {
-            GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
-                    ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
-        }
-
-        const int64_t t_start_wall = ggml_time_us();
-        const int64_t t_start_cpu = ggml_cycles();
-        UNUSED(t_start_wall);
-        UNUSED(t_start_cpu);
-
-        {
-            // update the gradient
-            ggml_opt_get_grad(np, ps, g1);
-
-            // m_t = beta1*m_t-1 + (1 - beta1)*g_t
-            ggml_vec_scale_f32(nx, m, beta1);
-            ggml_vec_mad_f32  (nx, m, g1, 1.0f - beta1);
-
-            // g2 = g1^2
-            ggml_vec_sqr_f32  (nx, g2, g1);
-
-            // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
-            ggml_vec_scale_f32(nx, v, beta2);
-            ggml_vec_mad_f32  (nx, v, g2, 1.0f - beta2);
-
-            // m^hat = m_t / (1 - beta1^t)
-            // v^hat = v_t / (1 - beta2^t)
-            // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
-            // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
-            // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
-            // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
-            // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
-            ggml_vec_cpy_f32  (nx, mh, m);
-            ggml_vec_cpy_f32  (nx, vh, v);
-
-            ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
-            ggml_vec_scale_f32(nx, vh,  1.0f/(1.0f - powf(beta2, opt->iter)));
-
-            ggml_vec_sqrt_f32 (nx, vh, vh);
-            ggml_vec_acc1_f32 (nx, vh, eps);
-
-            ggml_vec_div_f32  (nx, mh, mh, vh);
-            ggml_vec_scale_f32(nx, x,  1.0f - decay);
-            ggml_vec_sub_f32  (nx, x,  x,  mh);
-
-            // update the parameters
-            ggml_opt_set_params(np, ps, x);
-        }
-
-        ggml_graph_reset  (gf);
-        ggml_set_f32      (f->grad, 1.0f);
-
-        ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
-
-        const float fx = ggml_get_f32_1d(f, 0);
-
-        // check convergence
-        if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
-            GGML_PRINT_DEBUG("converged\n");
-
-            return GGML_OPT_OK;
-        }
-
-        // delta-based convergence test
-        if (pf != NULL) {
-            // need at least params.past iterations to start checking for convergence
-            if (params.past <= iter0 + t) {
-                const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
-
-                if (fabsf(rate) < params.delta) {
-                    return GGML_OPT_OK;
-                }
-            }
-
-            pf[(iter0 + t)%params.past] = fx;
-        }
-
-        // check for improvement
-        if (params.max_no_improvement > 0) {
-            if (fx_best[0] > fx) {
-                fx_best[0] = fx;
-                n_no_improvement[0] = 0;
-            } else {
-                ++n_no_improvement[0];
-
-                if (n_no_improvement[0] >= params.max_no_improvement) {
-                    return GGML_OPT_OK;
-                }
-            }
-        }
-
-        fx_prev[0] = fx;
-
-        {
-            const int64_t t_end_cpu = ggml_cycles();
-            GGML_PRINT_DEBUG("time iter:      %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
-            UNUSED(t_end_cpu);
-
-            const int64_t t_end_wall = ggml_time_us();
-            GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
-            UNUSED(t_end_wall);
-        }
-    }
-
-    return GGML_OPT_DID_NOT_CONVERGE;
-}
-
-//
-// L-BFGS
-//
-// the L-BFGS implementation below is based on the following implementation:
-//
-//   https://github.com/chokkan/liblbfgs
-//
-
-struct ggml_lbfgs_iteration_data {
-    float alpha;
-    float ys;
-    float * s;
-    float * y;
-};
-
-static enum ggml_opt_result linesearch_backtracking(
-        struct ggml_context * ctx,
-        const struct ggml_opt_params * params,
-        int nx,
-        float * x,
-        float * fx,
-        float * g,
-        float * d,
-        float * step,
-        const float * xp,
-        struct ggml_tensor * f,
-        struct ggml_cgraph * gf,
-        struct ggml_cgraph * gb,
-        const int np,
-        struct ggml_tensor * ps[]) {
-    int count = 0;
-
-    float width  = 0.0f;
-    float dg     = 0.0f;
-    float finit  = 0.0f;
-    float dginit = 0.0f;
-    float dgtest = 0.0f;
-
-    const float dec = 0.5f;
-    const float inc = 2.1f;
-
-    if (*step <= 0.f) {
-        return GGML_LINESEARCH_INVALID_PARAMETERS;
-    }
-
-    // compute the initial gradient in the search direction
-    ggml_vec_dot_f32(nx, &dginit, g, d);
-
-    // make sure that d points to a descent direction
-    if (0 < dginit) {
-        return GGML_LINESEARCH_FAIL;
-    }
-
-    // initialize local variables
-    finit = *fx;
-    dgtest = params->lbfgs.ftol*dginit;
-
-    while (true) {
-        ggml_vec_cpy_f32(nx, x, xp);
-        ggml_vec_mad_f32(nx, x, d, *step);
-
-        // evaluate the function and gradient values
-        {
-            ggml_opt_set_params(np, ps, x);
-
-            ggml_graph_reset  (gf);
-            ggml_set_f32      (f->grad, 1.0f);
-
-            ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
-
-            ggml_opt_get_grad(np, ps, g);
-
-            *fx = ggml_get_f32_1d(f, 0);
-        }
-
-        ++count;
-
-        if (*fx > finit + (*step)*dgtest) {
-            width = dec;
-        } else {
-            // Armijo condition is satisfied
-            if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
-                return count;
-            }
-
-            ggml_vec_dot_f32(nx, &dg, g, d);
-
-            // check the Wolfe condition
-            if (dg < params->lbfgs.wolfe * dginit) {
-                width = inc;
-            } else {
-                if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
-                    // regular Wolfe conditions
-                    return count;
-                }
-
-                if(dg > -params->lbfgs.wolfe*dginit) {
-                    width = dec;
-                } else {
-                    // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
-                    return count;
-                }
-                return count;
-            }
-        }
-
-        if (*step < params->lbfgs.min_step) {
-            return GGML_LINESEARCH_MINIMUM_STEP;
-        }
-        if (*step > params->lbfgs.max_step) {
-            return GGML_LINESEARCH_MAXIMUM_STEP;
-        }
-        if (params->lbfgs.max_linesearch <= count) {
-            return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
-        }
-
-        (*step) *= width;
-    }
-
-    return GGML_LINESEARCH_FAIL;
-}
-
-static enum ggml_opt_result ggml_opt_lbfgs(
-        struct ggml_context * ctx,
-        struct ggml_opt_context * opt,
-        struct ggml_opt_params params,
-        struct ggml_tensor * f,
-        struct ggml_cgraph * gf,
-        struct ggml_cgraph * gb) {
-    if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
-        params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
-        if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
-            return GGML_OPT_INVALID_WOLFE;
-        }
-    }
-
-    const int m = params.lbfgs.m;
-
-    // these will store the parameters we want to optimize
-    struct ggml_tensor * ps[GGML_MAX_PARAMS];
-
-    int np = 0;
-    int nx = 0;
-    for (int i = 0; i < gf->n_nodes; ++i) {
-        if (gf->nodes[i]->is_param) {
-            GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
-
-            GGML_ASSERT(np < GGML_MAX_PARAMS);
-
-            ps[np++] = gf->nodes[i];
-            nx += ggml_nelements(gf->nodes[i]);
-        }
-    }
-
-    if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
-        int iter = opt->iter;
-        ggml_opt_init(ctx, opt, params, nx);
-        opt->iter = iter;
-    }
-
-    float * x  = opt->lbfgs.x->data;  // current parameters
-    float * xp = opt->lbfgs.xp->data; // previous parameters
-    float * g  = opt->lbfgs.g->data;  // current gradient
-    float * gp = opt->lbfgs.gp->data; // previous gradient
-    float * d  = opt->lbfgs.d->data;  // search direction
-
-    float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
-
-    float fx    = 0.0f; // cost function value
-    float xnorm = 0.0f; // ||x||
-    float gnorm = 0.0f; // ||g||
-
-    // initialize x from the graph nodes
-    ggml_opt_get_params(np, ps, x);
-
-    // the L-BFGS memory
-    float * lm_alpha = opt->lbfgs.lmal->data;
-    float * lm_ys    = opt->lbfgs.lmys->data;
-    float * lm_s     = opt->lbfgs.lms->data;
-    float * lm_y     = opt->lbfgs.lmy->data;
-
-    // evaluate the function value and its gradient
-    {
-        ggml_opt_set_params(np, ps, x);
-
-        ggml_graph_reset  (gf);
-        ggml_set_f32      (f->grad, 1.0f);
-
-        ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
-
-        ggml_opt_get_grad(np, ps, g);
-
-        fx = ggml_get_f32_1d(f, 0);
-    }
-
-    // search direction = -gradient
-    ggml_vec_neg_f32(nx, d, g);
-
-    // ||x||, ||g||
-    ggml_vec_norm_f32(nx, &xnorm, x);
-    ggml_vec_norm_f32(nx, &gnorm, g);
-
-    if (xnorm < 1.0f) {
-        xnorm = 1.0f;
-    }
-
-    // already optimized
-    if (gnorm/xnorm <= params.lbfgs.eps) {
-        return GGML_OPT_OK;
-    }
-
-    if (opt->just_initialized) {
-        if (pf) {
-            pf[0] = fx;
-        }
-        opt->lbfgs.fx_best = fx;
-
-        // initial step
-        ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
-        opt->lbfgs.j                = 0;
-        opt->lbfgs.k                = 1;
-        opt->lbfgs.end              = 0;
-        opt->lbfgs.n_no_improvement = 0;
-        opt->just_initialized       = false;
-    }
-
-    float * fx_best        = &opt->lbfgs.fx_best;
-    float * step           = &opt->lbfgs.step;
-    int * j                = &opt->lbfgs.j;
-    int * k                = &opt->lbfgs.k;
-    int * end              = &opt->lbfgs.end;
-    int * n_no_improvement = &opt->lbfgs.n_no_improvement;
-
-    int ls     = 0;
-    int bound  = 0;
-
-    float ys   = 0.0f;
-    float yy   = 0.0f;
-    float beta = 0.0f;
-
-    int it = 0;
-
-    while (true) {
-        // store the current position and gradient vectors
-        ggml_vec_cpy_f32(nx, xp, x);
-        ggml_vec_cpy_f32(nx, gp, g);
-
-        ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
-
-        if (ls < 0) {
-            // linesearch failed - go back to the previous point and return
-            ggml_vec_cpy_f32(nx, x, xp);
-            ggml_vec_cpy_f32(nx, g, gp);
-
-            return ls;
-        }
-
-        ggml_vec_norm_f32(nx, &xnorm, x);
-        ggml_vec_norm_f32(nx, &gnorm, g);
-
-        GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
-
-        if (xnorm < 1.0f) {
-            xnorm = 1.0f;
-        }
-        if (gnorm/xnorm <= params.lbfgs.eps) {
-            // converged
-            return GGML_OPT_OK;
-        }
-
-        // delta-based convergence test
-        if (pf != NULL) {
-            // need at least params.past iterations to start checking for convergence
-            if (params.past <= k[0]) {
-                const float rate = (pf[k[0]%params.past] - fx)/fx;
-
-                if (fabsf(rate) < params.delta) {
-                    return GGML_OPT_OK;
-                }
-            }
-
-            pf[k[0]%params.past] = fx;
-        }
-
-        // check for improvement
-        if (params.max_no_improvement > 0) {
-            if (fx < fx_best[0]) {
-                fx_best[0] = fx;
-                n_no_improvement[0] = 0;
-            } else {
-                n_no_improvement[0]++;
-
-                if (n_no_improvement[0] >= params.max_no_improvement) {
-                    return GGML_OPT_OK;
-                }
-            }
-        }
-
-        if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
-            // reached the maximum number of iterations
-            return GGML_OPT_DID_NOT_CONVERGE;
-        }
-
-        // update vectors s and y:
-        //   s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
-        //   y_{k+1} = g_{k+1} - g_{k}.
-        //
-        ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
-        ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
-
-        // compute scalars ys and yy:
-        //     ys = y^t \cdot s    -> 1 / \rho.
-        //     yy = y^t \cdot y.
-        //
-        ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
-        ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
-
-        lm_ys[end[0]] = ys;
-
-        // find new search direction
-        //   ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
-
-        bound = (m <= k[0]) ? m : k[0];
-        k[0]++;
-        it++;
-        end[0] = (end[0] + 1)%m;
-
-        // initialize search direction with -g
-        ggml_vec_neg_f32(nx, d, g);
-
-        j[0] = end[0];
-        for (int i = 0; i < bound; ++i) {
-            j[0] = (j[0] + m - 1) % m;
-            // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
-            ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
-            lm_alpha[j[0]] /= lm_ys[j[0]];
-            // q_{i} = q_{i+1} - \alpha_{i} y_{i}
-            ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
-        }
-
-        ggml_vec_scale_f32(nx, d, ys/yy);
-
-        for (int i = 0; i < bound; ++i) {
-            // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
-            ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
-            beta /= lm_ys[j[0]];
-            // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
-            ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
-            j[0] = (j[0] + 1)%m;
-        }
-
-        step[0] = 1.0;
-    }
-
-    return GGML_OPT_DID_NOT_CONVERGE;
-}
-
-struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
-    struct ggml_opt_params result;
-
-    switch (type) {
-        case GGML_OPT_ADAM:
-            {
-                result = (struct ggml_opt_params) {
-                    .type      = GGML_OPT_ADAM,
-                    .n_threads = 1,
-                    .past      = 0,
-                    .delta     = 1e-5f,
-
-                    .max_no_improvement = 100,
-
-                    .print_forward_graph  = true,
-                    .print_backward_graph = true,
-
-                    .adam = {
-                        .n_iter = 10000,
-                        .sched  = 1.000f,
-                        .decay  = 0.001f,
-                        .alpha  = 0.001f,
-                        .beta1  = 0.9f,
-                        .beta2  = 0.999f,
-                        .eps    = 1e-8f,
-                        .eps_f  = 1e-5f,
-                        .eps_g  = 1e-3f,
-                    },
-                };
-            } break;
-        case GGML_OPT_LBFGS:
-            {
-                result = (struct ggml_opt_params) {
-                    .type      = GGML_OPT_LBFGS,
-                    .n_threads = 1,
-                    .past      = 0,
-                    .delta     = 1e-5f,
-
-                    .max_no_improvement = 0,
-
-                    .print_forward_graph  = true,
-                    .print_backward_graph = true,
-
-                    .lbfgs = {
-                        .m              = 6,
-                        .n_iter         = 100,
-                        .max_linesearch = 20,
-
-                        .eps      = 1e-5f,
-                        .ftol     = 1e-4f,
-                        .wolfe    = 0.9f,
-                        .min_step = 1e-20f,
-                        .max_step = 1e+20f,
-
-                        .linesearch = GGML_LINESEARCH_DEFAULT,
-                    },
-                };
-            } break;
-    }
-
-    return result;
-}
-
-GGML_API void ggml_opt_init(
-        struct ggml_context * ctx,
-        struct ggml_opt_context * opt,
-        struct ggml_opt_params params,
-        int64_t nx) {
-    opt->ctx = ctx;
-    opt->params = params;
-    opt->iter = 0;
-    opt->nx = nx;
-    opt->just_initialized = true;
-    switch (opt->params.type) {
-        case GGML_OPT_ADAM:
-            {
-                opt->adam.x  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
-                opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
-                opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
-                opt->adam.m  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
-                opt->adam.v  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
-                opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
-                opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
-                opt->adam.pf = params.past > 0
-                    ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
-                    : NULL;
-                ggml_set_zero(opt->adam.x);
-                ggml_set_zero(opt->adam.g1);
-                ggml_set_zero(opt->adam.g2);
-                ggml_set_zero(opt->adam.m);
-                ggml_set_zero(opt->adam.v);
-                ggml_set_zero(opt->adam.mh);
-                ggml_set_zero(opt->adam.vh);
-                if (opt->adam.pf) {
-                    ggml_set_zero(opt->adam.pf);
-                }
-            } break;
-        case GGML_OPT_LBFGS:
-            {
-                opt->lbfgs.x  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
-                opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
-                opt->lbfgs.g  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
-                opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
-                opt->lbfgs.d  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
-                opt->lbfgs.pf = params.past > 0
-                    ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
-                    : NULL;
-                opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
-                opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
-                opt->lbfgs.lms  = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
-                opt->lbfgs.lmy  = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
-                ggml_set_zero(opt->lbfgs.x);
-                ggml_set_zero(opt->lbfgs.xp);
-                ggml_set_zero(opt->lbfgs.g);
-                ggml_set_zero(opt->lbfgs.gp);
-                ggml_set_zero(opt->lbfgs.d);
-                if (opt->lbfgs.pf) {
-                    ggml_set_zero(opt->lbfgs.pf);
-                }
-                ggml_set_zero(opt->lbfgs.lmal);
-                ggml_set_zero(opt->lbfgs.lmys);
-                ggml_set_zero(opt->lbfgs.lms);
-                ggml_set_zero(opt->lbfgs.lmy);
-            } break;
-    }
-}
-
-enum ggml_opt_result ggml_opt(
-        struct ggml_context * ctx,
-        struct ggml_opt_params params,
-        struct ggml_tensor * f) {
-    bool free_ctx = false;
-    if (ctx == NULL) {
-        struct ggml_init_params params_ctx = {
-            .mem_size   = 16*1024*1024,
-            .mem_buffer = NULL,
-            .no_alloc   = false,
-        };
-
-        ctx = ggml_init(params_ctx);
-        if (ctx == NULL) {
-            return GGML_OPT_NO_CONTEXT;
-        }
-
-        free_ctx = true;
-    }
-
-    enum ggml_opt_result result = GGML_OPT_OK;
-
-    struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
-
-    ggml_opt_init(ctx, opt, params, 0);
-    result = ggml_opt_resume(ctx, opt, f);
-
-    if (free_ctx) {
-        ggml_free(ctx);
-    }
-
-    return result;
-}
-
-enum ggml_opt_result ggml_opt_resume(
-        struct ggml_context * ctx,
-        struct ggml_opt_context * opt,
-        struct ggml_tensor * f) {
-
-    // build forward + backward compute graphs
-    struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
-    struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
-
-    struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
-    struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
-
-    *gf = ggml_build_forward (f);
-    *gb = ggml_build_backward(ctx, gf, true);
-
-    return ggml_opt_resume_g(ctx, opt, f, gf, gb);
-}
-
-enum ggml_opt_result ggml_opt_resume_g(
-        struct ggml_context * ctx,
-        struct ggml_opt_context * opt,
-        struct ggml_tensor * f,
-        struct ggml_cgraph * gf,
-        struct ggml_cgraph * gb) {
-
-    // build forward + backward compute graphs
-    enum ggml_opt_result result = GGML_OPT_OK;
-
-    switch (opt->params.type) {
-        case GGML_OPT_ADAM:
-            {
-                result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
-            } break;
-        case GGML_OPT_LBFGS:
-            {
-                result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
-            } break;
-    }
-
-    if (opt->params.print_forward_graph) {
-        ggml_graph_print   (gf);
-        ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
-    }
-
-    if (opt->params.print_backward_graph) {
-        ggml_graph_print   (gb);
-        ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
-    }
-
-    return result;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
-    assert(k % QK4_0 == 0);
-    const int nb = k / QK4_0;
-
-    for (int b = 0; b < n; b += k) {
-        block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
-
-        quantize_row_q4_0_reference(src + b, y, k);
-
-        for (int i = 0; i < nb; i++) {
-            for (int j = 0; j < QK4_0; j += 2) {
-                const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
-                const uint8_t vi1 = y[i].qs[j/2] >> 4;
-
-                hist[vi0]++;
-                hist[vi1]++;
-            }
-        }
-    }
-
-    return (n/QK4_0*sizeof(block_q4_0));
-}
-
-size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
-    assert(k % QK4_1 == 0);
-    const int nb = k / QK4_1;
-
-    for (int b = 0; b < n; b += k) {
-        block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
-
-        quantize_row_q4_1_reference(src + b, y, k);
-
-        for (int i = 0; i < nb; i++) {
-            for (int j = 0; j < QK4_1; j += 2) {
-                const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
-                const uint8_t vi1 = y[i].qs[j/2] >> 4;
-
-                hist[vi0]++;
-                hist[vi1]++;
-            }
-        }
-    }
-
-    return (n/QK4_1*sizeof(block_q4_1));
-}
-
-size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
-    assert(k % QK5_0 == 0);
-    const int nb = k / QK5_0;
-
-    for (int b = 0; b < n; b += k) {
-        block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
-
-        quantize_row_q5_0_reference(src + b, y, k);
-
-        for (int i = 0; i < nb; i++) {
-            uint32_t qh;
-            memcpy(&qh, &y[i].qh, sizeof(qh));
-
-            for (int j = 0; j < QK5_0; j += 2) {
-                const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
-                const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
-
-                // cast to 16 bins
-                const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
-                const uint8_t vi1 = ((y[i].qs[j/2] >>   4) | vh1) / 2;
-
-                hist[vi0]++;
-                hist[vi1]++;
-            }
-        }
-    }
-
-    return (n/QK5_0*sizeof(block_q5_0));
-}
-
-size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
-    assert(k % QK5_1 == 0);
-    const int nb = k / QK5_1;
-
-    for (int b = 0; b < n; b += k) {
-        block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
-
-        quantize_row_q5_1_reference(src + b, y, k);
-
-        for (int i = 0; i < nb; i++) {
-            uint32_t qh;
-            memcpy(&qh, &y[i].qh, sizeof(qh));
-
-            for (int j = 0; j < QK5_1; j += 2) {
-                const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
-                const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
-
-                // cast to 16 bins
-                const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
-                const uint8_t vi1 = ((y[i].qs[j/2] >>   4) | vh1) / 2;
-
-                hist[vi0]++;
-                hist[vi1]++;
-            }
-        }
-    }
-
-    return (n/QK5_1*sizeof(block_q5_1));
-}
-
-size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
-    assert(k % QK8_0 == 0);
-    const int nb = k / QK8_0;
-
-    for (int b = 0; b < n; b += k) {
-        block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
-
-        quantize_row_q8_0_reference(src + b, y, k);
-
-        for (int i = 0; i < nb; i++) {
-            for (int j = 0; j < QK8_0; ++j) {
-                const int8_t vi = y[i].qs[j];
-
-                hist[vi/16 + 8]++;
-            }
-        }
-    }
-
-    return (n/QK8_0*sizeof(block_q8_0));
-}
-
-size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
-    size_t result = 0;
-    switch (type) {
-        case GGML_TYPE_Q4_0:
-            {
-                GGML_ASSERT(start % QK4_0 == 0);
-                block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
-                result = ggml_quantize_q4_0(src + start, block, n, n, hist);
-            } break;
-        case GGML_TYPE_Q4_1:
-            {
-                GGML_ASSERT(start % QK4_1 == 0);
-                block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
-                result = ggml_quantize_q4_1(src + start, block, n, n, hist);
-            } break;
-        case GGML_TYPE_Q5_0:
-            {
-                GGML_ASSERT(start % QK5_0 == 0);
-                block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
-                result = ggml_quantize_q5_0(src + start, block, n, n, hist);
-            } break;
-        case GGML_TYPE_Q5_1:
-            {
-                GGML_ASSERT(start % QK5_1 == 0);
-                block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
-                result = ggml_quantize_q5_1(src + start, block, n, n, hist);
-            } break;
-        case GGML_TYPE_Q8_0:
-            {
-                GGML_ASSERT(start % QK8_0 == 0);
-                block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
-                result = ggml_quantize_q8_0(src + start, block, n, n, hist);
-            } break;
-#ifdef GGML_USE_K_QUANTS
-        case GGML_TYPE_Q2_K:
-            {
-                GGML_ASSERT(start % QK_K == 0);
-                block_q2_K * block = (block_q2_K*)dst + start / QK_K;
-                result = ggml_quantize_q2_K(src + start, block, n, n, hist);
-            } break;
-        case GGML_TYPE_Q3_K:
-            {
-                GGML_ASSERT(start % QK_K == 0);
-                block_q3_K * block = (block_q3_K*)dst + start / QK_K;
-                result = ggml_quantize_q3_K(src + start, block, n, n, hist);
-            } break;
-        case GGML_TYPE_Q4_K:
-            {
-                GGML_ASSERT(start % QK_K == 0);
-                block_q4_K * block = (block_q4_K*)dst + start / QK_K;
-                result = ggml_quantize_q4_K(src + start, block, n, n, hist);
-            } break;
-        case GGML_TYPE_Q5_K:
-            {
-                GGML_ASSERT(start % QK_K == 0);
-                block_q5_K * block = (block_q5_K*)dst + start / QK_K;
-                result = ggml_quantize_q5_K(src + start, block, n, n, hist);
-            } break;
-        case GGML_TYPE_Q6_K:
-            {
-                GGML_ASSERT(start % QK_K == 0);
-                block_q6_K * block = (block_q6_K*)dst + start / QK_K;
-                result = ggml_quantize_q6_K(src + start, block, n, n, hist);
-            } break;
-#endif
-        case GGML_TYPE_F16:
-            {
-                int elemsize = sizeof(ggml_fp16_t);
-                ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
-                result = n * elemsize;
-            } break;
-        case GGML_TYPE_F32:
-            {
-                int elemsize = sizeof(float);
-                result = n * elemsize;
-                memcpy((uint8_t *)dst + start * elemsize, src + start, result);
-            } break;
-        default:
-            assert(false);
-    }
-    return result;
-}
-
-////////////////////////////////////////////////////////////////////////////////
-
-int ggml_cpu_has_avx(void) {
-#if defined(__AVX__)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_avx2(void) {
-#if defined(__AVX2__)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_avx512(void) {
-#if defined(__AVX512F__)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_avx512_vbmi(void) {
-#if defined(__AVX512VBMI__)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_avx512_vnni(void) {
-#if defined(__AVX512VNNI__)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_fma(void) {
-#if defined(__FMA__)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_neon(void) {
-#if defined(__ARM_NEON)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_arm_fma(void) {
-#if defined(__ARM_FEATURE_FMA)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_f16c(void) {
-#if defined(__F16C__)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_fp16_va(void) {
-#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_wasm_simd(void) {
-#if defined(__wasm_simd128__)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_blas(void) {
-#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_cublas(void) {
-#if defined(GGML_USE_CUBLAS)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_clblast(void) {
-#if defined(GGML_USE_CLBLAST)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_gpublas(void) {
-    return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
-}
-
-int ggml_cpu_has_sse3(void) {
-#if defined(__SSE3__)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-int ggml_cpu_has_vsx(void) {
-#if defined(__POWER9_VECTOR__)
-    return 1;
-#else
-    return 0;
-#endif
-}
-
-////////////////////////////////////////////////////////////////////////////////

+ 0 - 1780
llm/ggml.h

@@ -1,1780 +0,0 @@
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#pragma once
-
-//
-// GGML Tensor Library
-//
-// This documentation is still a work in progress.
-// If you wish some specific topics to be covered, feel free to drop a comment:
-//
-//   https://github.com/ggerganov/whisper.cpp/issues/40
-//
-// ## Overview
-//
-// This library implements:
-//
-//  - a set of tensor operations
-//  - automatic differentiation
-//  - basic optimization algorithms
-//
-// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
-// but is not limited to, the following:
-//
-//  - linear regression
-//  - support vector machines
-//  - neural networks
-//
-// The library allows the user to define a certain function using the available tensor operations. This function
-// definition is represented internally via a computation graph. Each tensor operation in the function definition
-// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
-// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
-// using one of the available optimization algorithms.
-//
-// For example, here we define the function: f(x) = a*x^2 + b
-//
-//   {
-//       struct ggml_init_params params = {
-//           .mem_size   = 16*1024*1024,
-//           .mem_buffer = NULL,
-//       };
-//
-//       // memory allocation happens here
-//       struct ggml_context * ctx = ggml_init(params);
-//
-//       struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
-//
-//       ggml_set_param(ctx, x); // x is an input variable
-//
-//       struct ggml_tensor * a  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
-//       struct ggml_tensor * b  = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
-//       struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
-//       struct ggml_tensor * f  = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
-//
-//       ...
-//   }
-//
-// Notice that the function definition above does not involve any actual computation. The computation is performed only
-// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
-//
-//   {
-//       ...
-//
-//       struct ggml_cgraph gf = ggml_build_forward(f);
-//
-//       // set the input variable and parameter values
-//       ggml_set_f32(x, 2.0f);
-//       ggml_set_f32(a, 3.0f);
-//       ggml_set_f32(b, 4.0f);
-//
-//       ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
-//
-//       printf("f = %f\n", ggml_get_f32_1d(f, 0));
-//
-//       ...
-//   }
-//
-// The actual computation is performed in the ggml_graph_compute() function.
-//
-// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
-// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
-// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
-// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
-// actually needed.
-//
-// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
-// differentiation and optimization algorithms.
-//
-// The described approach allows to define the function graph once and then compute its forward or backward graphs
-// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
-// the user can avoid the memory allocation overhead at runtime.
-//
-// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
-// citizens, but in theory the library can be extended to support FP8 and integer data types.
-//
-// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
-// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
-// clear that the library needs to support more complex operations. The way to support these operations is not clear
-// yet, but a few examples are demonstrated in the following operations:
-//
-//   - ggml_permute()
-//   - ggml_conv_1d_1s()
-//   - ggml_conv_1d_2s()
-//
-// For each tensor operator, the library implements a forward and backward computation function. The forward function
-// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
-// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
-// calculus class, or watch the following video:
-//
-//   What is Automatic Differentiation?
-//   https://www.youtube.com/watch?v=wG_nF1awSSY
-//
-//
-// ## Tensor data (struct ggml_tensor)
-//
-// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
-// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
-// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
-//
-//   {
-//       struct ggml_tensor * c = ggml_add(ctx, a, b);
-//
-//       assert(c->src[0] == a);
-//       assert(c->src[1] == b);
-//   }
-//
-// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
-// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
-// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
-// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
-// contiguous in memory.
-//
-// The data of the tensor is accessed via the "data" pointer. For example:
-//
-//   {
-//       struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
-//
-//       // a[2, 1] = 1.0f;
-//       *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
-//
-//       // a[0, 2] = 2.0f;
-//       *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
-//
-//       ...
-//   }
-//
-// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
-//
-// ## The matrix multiplication operator (ggml_mul_mat)
-//
-// TODO
-//
-//
-// ## Multi-threading
-//
-// TODO
-//
-//
-// ## Overview of ggml.c
-//
-// TODO
-//
-//
-// ## SIMD optimizations
-//
-// TODO
-//
-//
-// ## Debugging ggml
-//
-// TODO
-//
-//
-
-#ifdef GGML_SHARED
-#    if defined(_WIN32) && !defined(__MINGW32__)
-#        ifdef GGML_BUILD
-#            define GGML_API __declspec(dllexport)
-#        else
-#            define GGML_API __declspec(dllimport)
-#        endif
-#    else
-#        define GGML_API __attribute__ ((visibility ("default")))
-#    endif
-#else
-#    define GGML_API
-#endif
-
-// TODO: support for clang
-#ifdef __GNUC__
-#    define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
-#elif defined(_MSC_VER)
-#    define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
-#else
-#    define GGML_DEPRECATED(func, hint) func
-#endif
-
-#include <stdint.h>
-#include <stddef.h>
-#include <stdbool.h>
-
-#define GGML_FILE_MAGIC   0x67676d6c // "ggml"
-#define GGML_FILE_VERSION 1
-
-#define GGML_QNT_VERSION        2    // bump this on quantization format changes
-#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
-
-#define GGML_MAX_DIMS          4
-#define GGML_MAX_NODES         4096
-#define GGML_MAX_PARAMS        256
-#define GGML_MAX_CONTEXTS      64
-#define GGML_MAX_SRC           6
-#define GGML_MAX_NAME          48
-#define GGML_MAX_OP_PARAMS     32
-#define GGML_DEFAULT_N_THREADS 4
-
-
-#define GGML_EXIT_SUCCESS 0
-#define GGML_EXIT_ABORTED 1
-
-#define GGML_UNUSED(x) (void)(x)
-
-#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
-
-#define GGML_ASSERT(x) \
-    do { \
-        if (!(x)) { \
-            fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
-            abort(); \
-        } \
-    } while (0)
-
-// used to copy the number of elements and stride in bytes of tensors into local variables.
-// main purpose is to reduce code duplication and improve readability.
-//
-// example:
-//
-//    GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
-//    GGML_TENSOR_LOCALS(size_t,  nb1, src1, nb);
-//
-#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
-    const type prefix##0 = (pointer)->array[0]; \
-    GGML_UNUSED(prefix##0);
-#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
-    GGML_TENSOR_LOCALS_1    (type, prefix, pointer, array) \
-    const type prefix##1 = (pointer)->array[1]; \
-    GGML_UNUSED(prefix##1);
-#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
-    GGML_TENSOR_LOCALS_2    (type, prefix, pointer, array) \
-    const type prefix##2 = (pointer)->array[2]; \
-    GGML_UNUSED(prefix##2);
-#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
-    GGML_TENSOR_LOCALS_3  (type, prefix, pointer, array) \
-    const type prefix##3 = (pointer)->array[3]; \
-    GGML_UNUSED(prefix##3);
-
-#ifdef  __cplusplus
-extern "C" {
-#endif
-
-#ifdef __ARM_NEON
-    // we use the built-in 16-bit float type
-    typedef __fp16 ggml_fp16_t;
-#else
-    typedef uint16_t ggml_fp16_t;
-#endif
-
-    // convert FP16 <-> FP32
-    GGML_API float       ggml_fp16_to_fp32(ggml_fp16_t x);
-    GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
-
-    GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
-    GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
-
-    struct ggml_object;
-    struct ggml_context;
-
-    enum ggml_type {
-        GGML_TYPE_F32  = 0,
-        GGML_TYPE_F16  = 1,
-        GGML_TYPE_Q4_0 = 2,
-        GGML_TYPE_Q4_1 = 3,
-        // GGML_TYPE_Q4_2 = 4, support has been removed
-        // GGML_TYPE_Q4_3 (5) support has been removed
-        GGML_TYPE_Q5_0 = 6,
-        GGML_TYPE_Q5_1 = 7,
-        GGML_TYPE_Q8_0 = 8,
-        GGML_TYPE_Q8_1 = 9,
-        // k-quantizations
-        GGML_TYPE_Q2_K = 10,
-        GGML_TYPE_Q3_K = 11,
-        GGML_TYPE_Q4_K = 12,
-        GGML_TYPE_Q5_K = 13,
-        GGML_TYPE_Q6_K = 14,
-        GGML_TYPE_Q8_K = 15,
-        GGML_TYPE_I8,
-        GGML_TYPE_I16,
-        GGML_TYPE_I32,
-        GGML_TYPE_COUNT,
-    };
-
-    enum ggml_backend {
-        GGML_BACKEND_CPU = 0,
-        GGML_BACKEND_GPU = 10,
-        GGML_BACKEND_GPU_SPLIT = 20,
-    };
-
-    // model file types
-    enum ggml_ftype {
-        GGML_FTYPE_UNKNOWN     = -1,
-        GGML_FTYPE_ALL_F32     = 0,
-        GGML_FTYPE_MOSTLY_F16  = 1,  // except 1d tensors
-        GGML_FTYPE_MOSTLY_Q4_0 = 2,  // except 1d tensors
-        GGML_FTYPE_MOSTLY_Q4_1 = 3,  // except 1d tensors
-        GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
-        GGML_FTYPE_MOSTLY_Q8_0 = 7,  // except 1d tensors
-        GGML_FTYPE_MOSTLY_Q5_0 = 8,  // except 1d tensors
-        GGML_FTYPE_MOSTLY_Q5_1 = 9,  // except 1d tensors
-        GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
-        GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
-        GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
-        GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
-        GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
-    };
-
-    // available tensor operations:
-    enum ggml_op {
-        GGML_OP_NONE = 0,
-
-        GGML_OP_DUP,
-        GGML_OP_ADD,
-        GGML_OP_ADD1,
-        GGML_OP_ACC,
-        GGML_OP_SUB,
-        GGML_OP_MUL,
-        GGML_OP_DIV,
-        GGML_OP_SQR,
-        GGML_OP_SQRT,
-        GGML_OP_LOG,
-        GGML_OP_SUM,
-        GGML_OP_SUM_ROWS,
-        GGML_OP_MEAN,
-        GGML_OP_ARGMAX,
-        GGML_OP_REPEAT,
-        GGML_OP_REPEAT_BACK,
-        GGML_OP_SILU_BACK,
-        GGML_OP_NORM, // normalize
-        GGML_OP_RMS_NORM,
-        GGML_OP_RMS_NORM_BACK,
-
-        GGML_OP_MUL_MAT,
-        GGML_OP_OUT_PROD,
-
-        GGML_OP_SCALE,
-        GGML_OP_SET,
-        GGML_OP_CPY,
-        GGML_OP_CONT,
-        GGML_OP_RESHAPE,
-        GGML_OP_VIEW,
-        GGML_OP_PERMUTE,
-        GGML_OP_TRANSPOSE,
-        GGML_OP_GET_ROWS,
-        GGML_OP_GET_ROWS_BACK,
-        GGML_OP_DIAG,
-        GGML_OP_DIAG_MASK_INF,
-        GGML_OP_DIAG_MASK_ZERO,
-        GGML_OP_SOFT_MAX,
-        GGML_OP_SOFT_MAX_BACK,
-        GGML_OP_ROPE,
-        GGML_OP_ROPE_BACK,
-        GGML_OP_ALIBI,
-        GGML_OP_CLAMP,
-        GGML_OP_CONV_1D,
-        GGML_OP_CONV_2D,
-        GGML_OP_POOL_1D,
-        GGML_OP_POOL_2D,
-
-        GGML_OP_FLASH_ATTN,
-        GGML_OP_FLASH_FF,
-        GGML_OP_FLASH_ATTN_BACK,
-        GGML_OP_WIN_PART,
-        GGML_OP_WIN_UNPART,
-
-        GGML_OP_UNARY,
-
-        GGML_OP_MAP_UNARY,
-        GGML_OP_MAP_BINARY,
-
-        GGML_OP_MAP_CUSTOM1_F32,
-        GGML_OP_MAP_CUSTOM2_F32,
-        GGML_OP_MAP_CUSTOM3_F32,
-
-        GGML_OP_MAP_CUSTOM1,
-        GGML_OP_MAP_CUSTOM2,
-        GGML_OP_MAP_CUSTOM3,
-
-        GGML_OP_CROSS_ENTROPY_LOSS,
-        GGML_OP_CROSS_ENTROPY_LOSS_BACK,
-
-        GGML_OP_COUNT,
-    };
-
-    enum ggml_unary_op {
-        GGML_UNARY_OP_ABS,
-        GGML_UNARY_OP_SGN,
-        GGML_UNARY_OP_NEG,
-        GGML_UNARY_OP_STEP,
-        GGML_UNARY_OP_TANH,
-        GGML_UNARY_OP_ELU,
-        GGML_UNARY_OP_RELU,
-        GGML_UNARY_OP_GELU,
-        GGML_UNARY_OP_GELU_QUICK,
-        GGML_UNARY_OP_SILU,
-    };
-
-    enum ggml_object_type {
-        GGML_OBJECT_TENSOR,
-        GGML_OBJECT_GRAPH,
-        GGML_OBJECT_WORK_BUFFER
-    };
-
-    // ggml object
-    struct ggml_object {
-        size_t offs;
-        size_t size;
-
-        struct ggml_object * next;
-
-        enum ggml_object_type type;
-
-        char padding[4];
-    };
-
-    static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
-
-    // n-dimensional tensor
-    struct ggml_tensor {
-        enum ggml_type    type;
-        enum ggml_backend backend;
-
-        int     n_dims;
-        int64_t ne[GGML_MAX_DIMS]; // number of elements
-        size_t  nb[GGML_MAX_DIMS]; // stride in bytes:
-                                   // nb[0] = sizeof(type)
-                                   // nb[1] = nb[0]   * ne[0] + padding
-                                   // nb[i] = nb[i-1] * ne[i-1]
-
-        // compute data
-        enum ggml_op op;
-
-        // op params - allocated as int32_t for alignment
-        int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
-
-        bool is_param;
-
-        struct ggml_tensor * grad;
-        struct ggml_tensor * src[GGML_MAX_SRC];
-
-        // performance
-        int     perf_runs;
-        int64_t perf_cycles;
-        int64_t perf_time_us;
-
-        void * data;
-
-        char name[GGML_MAX_NAME];
-
-        void * extra; // extra things e.g. for ggml-cuda.cu
-
-        char padding[4];
-    };
-
-    static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
-
-    // the compute plan that needs to be prepared for ggml_graph_compute()
-    // since https://github.com/ggerganov/ggml/issues/287
-    struct ggml_cplan {
-        size_t    work_size; // size of work buffer, calculated by `ggml_graph_plan()`
-        uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
-
-        int n_threads;
-
-        // the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
-        int n_tasks[GGML_MAX_NODES];
-
-        // abort ggml_graph_compute when true
-        bool (*abort_callback)(void * data);
-        void * abort_callback_data;
-    };
-
-    // next prime after GGML_MAX_NODES
-    // #define GGML_GRAPH_HASHTABLE_SIZE 4099
-    // next prime after GGML_MAX_NODES * 2 (nodes + leafs)
-    #define GGML_GRAPH_HASHTABLE_SIZE 8273
-
-    // computation graph
-    struct ggml_cgraph {
-        int n_nodes;
-        int n_leafs;
-
-        struct ggml_tensor * nodes[GGML_MAX_NODES];
-        struct ggml_tensor * grads[GGML_MAX_NODES];
-        struct ggml_tensor * leafs[GGML_MAX_NODES];
-
-        void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
-
-        // performance
-        int     perf_runs;
-        int64_t perf_cycles;
-        int64_t perf_time_us;
-    };
-
-    static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
-
-    // scratch buffer
-    struct ggml_scratch {
-        size_t offs;
-        size_t size;
-        void * data;
-    };
-
-    struct ggml_init_params {
-        // memory pool
-        size_t mem_size;   // bytes
-        void * mem_buffer; // if NULL, memory will be allocated internally
-        bool   no_alloc;   // don't allocate memory for the tensor data
-    };
-
-
-    // compute types
-
-    // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
-    // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
-    enum ggml_task_type {
-        GGML_TASK_INIT = 0,
-        GGML_TASK_COMPUTE,
-        GGML_TASK_FINALIZE,
-    };
-
-    struct ggml_compute_params {
-        enum ggml_task_type type;
-
-        // ith = thread index, nth = number of threads
-        int ith, nth;
-
-        // work buffer for all threads
-        size_t wsize;
-        void * wdata;
-    };
-
-    // misc
-
-    GGML_API void    ggml_time_init(void); // call this once at the beginning of the program
-    GGML_API int64_t ggml_time_ms(void);
-    GGML_API int64_t ggml_time_us(void);
-    GGML_API int64_t ggml_cycles(void);
-    GGML_API int64_t ggml_cycles_per_ms(void);
-
-    GGML_API void    ggml_numa_init(void); // call once for better performance on NUMA systems
-    GGML_API bool    ggml_is_numa(void); // true if init detected that system has >1 NUMA node
-
-    GGML_API void    ggml_print_object (const struct ggml_object * obj);
-    GGML_API void    ggml_print_objects(const struct ggml_context * ctx);
-
-    GGML_API int64_t ggml_nelements   (const struct ggml_tensor * tensor);
-    GGML_API int64_t ggml_nrows       (const struct ggml_tensor * tensor);
-    GGML_API size_t  ggml_nbytes      (const struct ggml_tensor * tensor);
-    GGML_API size_t  ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
-
-    GGML_API int     ggml_blck_size (enum ggml_type type);
-    GGML_API size_t  ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
-    GGML_API float   ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
-
-    GGML_API const char * ggml_type_name(enum ggml_type type);
-    GGML_API const char * ggml_op_name  (enum ggml_op   op);
-    GGML_API const char * ggml_op_symbol(enum ggml_op   op);
-
-    GGML_API size_t  ggml_element_size(const struct ggml_tensor * tensor);
-
-    GGML_API bool    ggml_is_quantized(enum ggml_type type);
-
-    // TODO: temporary until model loading of ggml examples is refactored
-    GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
-
-    GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
-    GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
-    GGML_API bool ggml_is_permuted  (const struct ggml_tensor * tensor);
-
-    GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
-
-    // use this to compute the memory overhead of a tensor
-    GGML_API size_t ggml_tensor_overhead(void);
-
-    // main
-
-    GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
-    GGML_API void                  ggml_free(struct ggml_context * ctx);
-
-    GGML_API size_t  ggml_used_mem(const struct ggml_context * ctx);
-
-    GGML_API size_t  ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
-    GGML_API bool    ggml_get_no_alloc(struct ggml_context * ctx);
-    GGML_API void    ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
-
-    GGML_API void *  ggml_get_mem_buffer     (const struct ggml_context * ctx);
-    GGML_API size_t  ggml_get_mem_size       (const struct ggml_context * ctx);
-    GGML_API size_t  ggml_get_max_tensor_size(const struct ggml_context * ctx);
-
-    GGML_API struct ggml_tensor * ggml_new_tensor(
-            struct ggml_context * ctx,
-            enum   ggml_type type,
-            int    n_dims,
-            const int64_t *ne);
-
-    GGML_API struct ggml_tensor * ggml_new_tensor_1d(
-            struct ggml_context * ctx,
-            enum   ggml_type type,
-            int64_t ne0);
-
-    GGML_API struct ggml_tensor * ggml_new_tensor_2d(
-            struct ggml_context * ctx,
-            enum   ggml_type type,
-            int64_t ne0,
-            int64_t ne1);
-
-    GGML_API struct ggml_tensor * ggml_new_tensor_3d(
-            struct ggml_context * ctx,
-            enum   ggml_type type,
-            int64_t ne0,
-            int64_t ne1,
-            int64_t ne2);
-
-    GGML_API struct ggml_tensor * ggml_new_tensor_4d(
-            struct ggml_context * ctx,
-            enum   ggml_type type,
-            int64_t ne0,
-            int64_t ne1,
-            int64_t ne2,
-            int64_t ne3);
-
-    GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
-    GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
-
-    GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
-    GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
-
-    GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
-
-    GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
-    GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
-    GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
-
-    GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
-    GGML_API void    ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
-
-    GGML_API float   ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
-    GGML_API void    ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
-
-    GGML_API void *  ggml_get_data    (const struct ggml_tensor * tensor);
-    GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
-
-    GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
-
-    GGML_API const char *         ggml_get_name   (const struct ggml_tensor * tensor);
-    GGML_API struct ggml_tensor * ggml_set_name   (      struct ggml_tensor * tensor, const char * name);
-    GGML_API struct ggml_tensor * ggml_format_name(      struct ggml_tensor * tensor, const char * fmt, ...);
-
-    //
-    // operations on tensors with backpropagation
-    //
-
-    GGML_API struct ggml_tensor * ggml_dup(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    // in-place, returns view(a)
-    GGML_API struct ggml_tensor * ggml_dup_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_add(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    GGML_API struct ggml_tensor * ggml_add_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    GGML_API struct ggml_tensor * ggml_add1(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    GGML_API struct ggml_tensor * ggml_add1_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    GGML_API struct ggml_tensor * ggml_acc(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b,
-            size_t                nb1,
-            size_t                nb2,
-            size_t                nb3,
-            size_t                offset);
-
-    GGML_API struct ggml_tensor * ggml_acc_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b,
-            size_t                nb1,
-            size_t                nb2,
-            size_t                nb3,
-            size_t                offset);
-
-    GGML_API struct ggml_tensor * ggml_sub(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    GGML_API struct ggml_tensor * ggml_sub_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    GGML_API struct ggml_tensor * ggml_mul(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    GGML_API struct ggml_tensor * ggml_mul_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    GGML_API struct ggml_tensor * ggml_div(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    GGML_API struct ggml_tensor * ggml_div_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    GGML_API struct ggml_tensor * ggml_sqr(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_sqr_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_sqrt(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_sqrt_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_log(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_log_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    // return scalar
-    GGML_API struct ggml_tensor * ggml_sum(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
-    GGML_API struct ggml_tensor * ggml_sum_rows(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    // mean along rows
-    GGML_API struct ggml_tensor * ggml_mean(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    // argmax along rows
-    GGML_API struct ggml_tensor * ggml_argmax(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    // if a is the same shape as b, and a is not parameter, return a
-    // otherwise, return a new tensor: repeat(a) to fit in b
-    GGML_API struct ggml_tensor * ggml_repeat(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    GGML_API struct ggml_tensor * ggml_repeat_back(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    GGML_API struct ggml_tensor * ggml_abs(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_abs_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_sgn(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_sgn_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_neg(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_neg_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_step(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_step_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_tanh(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_tanh_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_elu(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_elu_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_relu(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_relu_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    // TODO: double-check this computation is correct
-    GGML_API struct ggml_tensor * ggml_gelu(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_gelu_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_gelu_quick(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_silu(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_silu_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    // a - x
-    // b - dy
-    GGML_API struct ggml_tensor * ggml_silu_back(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    // normalize along rows
-    // TODO: eps is hardcoded to 1e-5 for now
-    GGML_API struct ggml_tensor * ggml_norm(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_norm_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_rms_norm(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            float                 eps);
-
-    GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            float                 eps);
-
-    // a - x
-    // b - dy
-    // TODO: update with configurable eps
-    GGML_API struct ggml_tensor * ggml_rms_norm_back(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    // A: n columns, m rows
-    // B: n columns, p rows  (i.e. we transpose it internally)
-    // result is m columns, p rows
-    GGML_API struct ggml_tensor * ggml_mul_mat(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    // A: m columns, n rows,
-    // B: p columns, n rows,
-    // result is m columns, p rows
-    GGML_API struct ggml_tensor * ggml_out_prod(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    //
-    // operations on tensors without backpropagation
-    //
-
-    GGML_API struct ggml_tensor * ggml_scale(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    // in-place, returns view(a)
-    GGML_API struct ggml_tensor * ggml_scale_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    // b -> view(a,offset,nb1,nb2,3), return modified a
-    GGML_API struct ggml_tensor * ggml_set(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b,
-            size_t                nb1,
-            size_t                nb2,
-            size_t                nb3,
-            size_t                offset);
-
-    // b -> view(a,offset,nb1,nb2,3), return view(a)
-    GGML_API struct ggml_tensor * ggml_set_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b,
-            size_t                nb1,
-            size_t                nb2,
-            size_t                nb3,
-            size_t                offset);
-
-    GGML_API struct ggml_tensor * ggml_set_1d(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b,
-            size_t                offset);
-
-    GGML_API struct ggml_tensor * ggml_set_1d_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b,
-            size_t                offset);
-
-    // b -> view(a,offset,nb1,nb2,3), return modified a
-    GGML_API struct ggml_tensor * ggml_set_2d(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b,
-            size_t                nb1,
-            size_t                offset);
-
-    // b -> view(a,offset,nb1,nb2,3), return view(a)
-    GGML_API struct ggml_tensor * ggml_set_2d_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b,
-            size_t                nb1,
-            size_t                offset);
-
-
-    // a -> b, return view(b)
-    GGML_API struct ggml_tensor * ggml_cpy(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    // a -> b, in-place, return view(b)
-    GGML_API struct ggml_tensor * ggml_cpy_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    // make contiguous
-    GGML_API struct ggml_tensor * ggml_cont(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    // make contiguous, in-place
-    GGML_API struct ggml_tensor * ggml_cont_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    // return view(a), b specifies the new shape
-    // TODO: when we start computing gradient, make a copy instead of view
-    GGML_API struct ggml_tensor * ggml_reshape(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    // return view(a)
-    // TODO: when we start computing gradient, make a copy instead of view
-    GGML_API struct ggml_tensor * ggml_reshape_1d(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int64_t               ne0);
-
-    GGML_API struct ggml_tensor * ggml_reshape_2d(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int64_t               ne0,
-            int64_t               ne1);
-
-    // return view(a)
-    // TODO: when we start computing gradient, make a copy instead of view
-    GGML_API struct ggml_tensor * ggml_reshape_3d(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int64_t               ne0,
-            int64_t               ne1,
-            int64_t               ne2);
-
-    GGML_API struct ggml_tensor * ggml_reshape_4d(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int64_t               ne0,
-            int64_t               ne1,
-            int64_t               ne2,
-            int64_t               ne3);
-
-    // offset in bytes
-    GGML_API struct ggml_tensor * ggml_view_1d(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int64_t               ne0,
-            size_t                offset);
-
-    GGML_API struct ggml_tensor * ggml_view_2d(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int64_t               ne0,
-            int64_t               ne1,
-            size_t                nb1, // row stride in bytes
-            size_t                offset);
-
-    GGML_API struct ggml_tensor * ggml_view_3d(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int64_t               ne0,
-            int64_t               ne1,
-            int64_t               ne2,
-            size_t                nb1, // row   stride in bytes
-            size_t                nb2, // slice stride in bytes
-            size_t                offset);
-
-    GGML_API struct ggml_tensor * ggml_view_4d(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int64_t               ne0,
-            int64_t               ne1,
-            int64_t               ne2,
-            int64_t               ne3,
-            size_t                nb1, // row   stride in bytes
-            size_t                nb2, // slice stride in bytes
-            size_t                nb3,
-            size_t                offset);
-
-    GGML_API struct ggml_tensor * ggml_permute(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int                   axis0,
-            int                   axis1,
-            int                   axis2,
-            int                   axis3);
-
-    // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
-    GGML_API struct ggml_tensor * ggml_transpose(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_get_rows(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    GGML_API struct ggml_tensor * ggml_get_rows_back(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b,
-            struct ggml_tensor  * c);
-
-    GGML_API struct ggml_tensor * ggml_diag(
-        struct ggml_context     * ctx,
-        struct ggml_tensor      * a);
-
-    // set elements above the diagonal to -INF
-    GGML_API struct ggml_tensor * ggml_diag_mask_inf(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int                   n_past);
-
-    // in-place, returns view(a)
-    GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int                   n_past);
-
-    // set elements above the diagonal to 0
-    GGML_API struct ggml_tensor * ggml_diag_mask_zero(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int                   n_past);
-
-    // in-place, returns view(a)
-    GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int                   n_past);
-
-    GGML_API struct ggml_tensor * ggml_soft_max(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    // in-place, returns view(a)
-    GGML_API struct ggml_tensor * ggml_soft_max_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a);
-
-    GGML_API struct ggml_tensor * ggml_soft_max_back(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    // in-place, returns view(a)
-    GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b);
-
-    // rotary position embedding
-    // if mode & 1 == 1, skip n_past elements
-    // if mode & 2 == 1, GPT-NeoX style
-    // if mode & 4 == 1, ChatGLM style
-    // TODO: avoid creating a new tensor every time
-    GGML_API struct ggml_tensor * ggml_rope(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int                   n_past,
-            int                   n_dims,
-            int                   mode,
-            int                   n_ctx);
-
-    // in-place, returns view(a)
-    GGML_API struct ggml_tensor * ggml_rope_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int                   n_past,
-            int                   n_dims,
-            int                   mode,
-            int                   n_ctx);
-
-    // custom RoPE
-    GGML_API struct ggml_tensor * ggml_rope_custom(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int                   n_past,
-            int                   n_dims,
-            int                   mode,
-            int                   n_ctx,
-            float                 freq_base,
-            float                 freq_scale);
-
-    // in-place, returns view(a)
-    GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int                   n_past,
-            int                   n_dims,
-            int                   mode,
-            int                   n_ctx,
-            float                 freq_base,
-            float                 freq_scale);
-
-    // rotary position embedding backward, i.e compute dx from dy
-    // a - dy
-    GGML_API struct ggml_tensor * ggml_rope_back(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int                   n_past,
-            int                   n_dims,
-            int                   mode,
-            int                   n_ctx);
-
-    // alibi position embedding
-    // in-place, returns view(a)
-    struct ggml_tensor * ggml_alibi(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int                   n_past,
-            int                   n_head,
-            float                 bias_max);
-
-    // clamp
-    // in-place, returns view(a)
-    struct ggml_tensor * ggml_clamp(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            float                 min,
-            float                 max);
-
-    GGML_API struct ggml_tensor * ggml_conv_1d(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b,
-            int                   s0,  // stride
-            int                   p0,  // padding
-            int                   d0); // dilation
-
-    GGML_API struct ggml_tensor * ggml_conv_2d(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b,
-            int                   s0,
-            int                   s1,
-            int                   p0,
-            int                   p1,
-            int                   d0,
-            int                   d1);
-
-    // conv_1d with padding = half
-    // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
-    GGML_API struct ggml_tensor * ggml_conv_1d_ph(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b,
-            int                   s,
-            int                   d);
-
-    enum ggml_op_pool {
-        GGML_OP_POOL_MAX,
-        GGML_OP_POOL_AVG,
-        GGML_OP_POOL_COUNT,
-    };
-
-    GGML_API struct ggml_tensor * ggml_pool_1d(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            enum ggml_op_pool     op,
-            int                   k0, // kernel size
-            int                   s0, // stride
-            int                   p0); // padding
-
-    GGML_API struct ggml_tensor * ggml_pool_2d(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            enum ggml_op_pool     op,
-            int                   k0,
-            int                   k1,
-            int                   s0,
-            int                   s1,
-            int                   p0,
-            int                   p1);
-
-    GGML_API struct ggml_tensor * ggml_flash_attn(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * q,
-            struct ggml_tensor  * k,
-            struct ggml_tensor  * v,
-            bool                  masked);
-
-    GGML_API struct ggml_tensor * ggml_flash_attn_back(
-           struct ggml_context * ctx,
-           struct ggml_tensor  * q,
-           struct ggml_tensor  * k,
-           struct ggml_tensor  * v,
-           struct ggml_tensor  * d,
-           bool                  masked);
-
-    GGML_API struct ggml_tensor * ggml_flash_ff(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            struct ggml_tensor  * b0,
-            struct ggml_tensor  * b1,
-            struct ggml_tensor  * c0,
-            struct ggml_tensor  * c1);
-
-    // partition into non-overlapping windows with padding if needed
-    // example:
-    // a:   768   64   64    1
-    // w:    14
-    // res: 768   14   14    25
-    // used in sam
-    GGML_API struct ggml_tensor * ggml_win_part(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int                   w);
-
-    // reverse of ggml_win_part
-    // used in sam
-    GGML_API struct ggml_tensor * ggml_win_unpart(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * a,
-            int                   w0,
-            int                   h0,
-            int                   w);
-
-    GGML_API struct ggml_tensor * ggml_unary(
-            struct ggml_context * ctx,
-             struct ggml_tensor * a,
-             enum ggml_unary_op op);
-
-    GGML_API struct ggml_tensor * ggml_unary_inplace(
-        struct ggml_context * ctx,
-        struct ggml_tensor  * a,
-        enum ggml_unary_op op);
-
-    // custom operators
-
-    typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
-    typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
-
-    typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
-    typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
-    typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
-
-    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
-            struct ggml_context        * ctx,
-            struct ggml_tensor         * a,
-                   ggml_unary_op_f32_t   fun),
-        "use ggml_map_custom1 instead");
-
-    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
-            struct ggml_context        * ctx,
-            struct ggml_tensor         * a,
-                   ggml_unary_op_f32_t   fun),
-        "use ggml_map_custom1_inplace instead");
-
-    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
-            struct ggml_context         * ctx,
-            struct ggml_tensor          * a,
-            struct ggml_tensor          * b,
-                   ggml_binary_op_f32_t   fun),
-        "use ggml_map_custom2 instead");
-
-    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
-            struct ggml_context         * ctx,
-            struct ggml_tensor          * a,
-            struct ggml_tensor          * b,
-                   ggml_binary_op_f32_t   fun),
-        "use ggml_map_custom2_inplace instead");
-
-    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
-            struct ggml_context          * ctx,
-            struct ggml_tensor           * a,
-                   ggml_custom1_op_f32_t   fun),
-        "use ggml_map_custom1 instead");
-
-    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
-            struct ggml_context          * ctx,
-            struct ggml_tensor           * a,
-                   ggml_custom1_op_f32_t   fun),
-        "use ggml_map_custom1_inplace instead");
-
-    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
-            struct ggml_context          * ctx,
-            struct ggml_tensor           * a,
-            struct ggml_tensor           * b,
-                   ggml_custom2_op_f32_t   fun),
-        "use ggml_map_custom2 instead");
-
-    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
-            struct ggml_context          * ctx,
-            struct ggml_tensor           * a,
-            struct ggml_tensor           * b,
-                   ggml_custom2_op_f32_t   fun),
-        "use ggml_map_custom2_inplace instead");
-
-    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
-            struct ggml_context          * ctx,
-            struct ggml_tensor           * a,
-            struct ggml_tensor           * b,
-            struct ggml_tensor           * c,
-                   ggml_custom3_op_f32_t   fun),
-        "use ggml_map_custom3 instead");
-
-    GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
-            struct ggml_context          * ctx,
-            struct ggml_tensor           * a,
-            struct ggml_tensor           * b,
-            struct ggml_tensor           * c,
-                   ggml_custom3_op_f32_t   fun),
-        "use ggml_map_custom3_inplace instead");
-
-    // custom operators v2
-
-    typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
-    typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
-    typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
-
-    #define GGML_N_TASKS_MAX -1
-
-    GGML_API struct ggml_tensor * ggml_map_custom1(
-            struct ggml_context   * ctx,
-            struct ggml_tensor    * a,
-            ggml_custom1_op_t       fun,
-            int                     n_tasks,
-            void                  * userdata);
-
-    GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
-            struct ggml_context   * ctx,
-            struct ggml_tensor    * a,
-            ggml_custom1_op_t       fun,
-            int                     n_tasks,
-            void                  * userdata);
-
-    GGML_API struct ggml_tensor * ggml_map_custom2(
-            struct ggml_context   * ctx,
-            struct ggml_tensor    * a,
-            struct ggml_tensor    * b,
-            ggml_custom2_op_t       fun,
-            int                     n_tasks,
-            void                  * userdata);
-
-    GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
-            struct ggml_context   * ctx,
-            struct ggml_tensor    * a,
-            struct ggml_tensor    * b,
-            ggml_custom2_op_t       fun,
-            int                     n_tasks,
-            void                  * userdata);
-
-    GGML_API struct ggml_tensor * ggml_map_custom3(
-            struct ggml_context   * ctx,
-            struct ggml_tensor    * a,
-            struct ggml_tensor    * b,
-            struct ggml_tensor    * c,
-            ggml_custom3_op_t       fun,
-            int                     n_tasks,
-            void                  * userdata);
-
-    GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
-            struct ggml_context   * ctx,
-            struct ggml_tensor    * a,
-            struct ggml_tensor    * b,
-            struct ggml_tensor    * c,
-            ggml_custom3_op_t       fun,
-            int                     n_tasks,
-            void                  * userdata);
-
-    // loss function
-
-    GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
-            struct ggml_context         * ctx,
-            struct ggml_tensor          * a,
-            struct ggml_tensor          * b);
-
-    GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
-            struct ggml_context         * ctx,
-            struct ggml_tensor          * a,
-            struct ggml_tensor          * b,
-            struct ggml_tensor          * c);
-
-    //
-    // automatic differentiation
-    //
-
-    GGML_API void ggml_set_param(
-            struct ggml_context * ctx,
-            struct ggml_tensor  * tensor);
-
-
-    GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
-
-    GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
-    GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
-
-    // graph allocation in a context
-    GGML_API struct ggml_cgraph * ggml_new_graph        (struct ggml_context * ctx);
-    GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
-    GGML_API size_t ggml_graph_overhead(void);
-
-    // ggml_graph_plan() has to be called before ggml_graph_compute()
-    // when plan.work_size > 0, caller must allocate memory for plan.work_data
-    GGML_API struct ggml_cplan ggml_graph_plan   (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
-    GGML_API               int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
-    GGML_API              void ggml_graph_reset  (struct ggml_cgraph * cgraph);
-
-    // same as ggml_graph_compute() but the work data is allocated as a part of the context
-    // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
-    GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
-
-    GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
-
-    GGML_API void               ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
-    GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
-
-    // print info and performance information for the graph
-    GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
-
-    // dump the graph into a file using the dot format
-    GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
-
-    //
-    // optimization
-    //
-
-    // optimization methods
-    enum ggml_opt_type {
-        GGML_OPT_ADAM,
-        GGML_OPT_LBFGS,
-    };
-
-    // linesearch methods
-    enum ggml_linesearch {
-        GGML_LINESEARCH_DEFAULT = 1,
-
-        GGML_LINESEARCH_BACKTRACKING_ARMIJO       = 0,
-        GGML_LINESEARCH_BACKTRACKING_WOLFE        = 1,
-        GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
-    };
-
-    // optimization return values
-    enum ggml_opt_result {
-        GGML_OPT_OK = 0,
-        GGML_OPT_DID_NOT_CONVERGE,
-        GGML_OPT_NO_CONTEXT,
-        GGML_OPT_INVALID_WOLFE,
-        GGML_OPT_FAIL,
-
-        GGML_LINESEARCH_FAIL = -128,
-        GGML_LINESEARCH_MINIMUM_STEP,
-        GGML_LINESEARCH_MAXIMUM_STEP,
-        GGML_LINESEARCH_MAXIMUM_ITERATIONS,
-        GGML_LINESEARCH_INVALID_PARAMETERS,
-    };
-
-    // optimization parameters
-    //
-    //   see ggml.c (ggml_opt_default_params) for default values
-    //
-    struct ggml_opt_params {
-        enum ggml_opt_type type;
-
-        int n_threads;
-
-        // delta-based convergence test
-        //
-        //   if past == 0 - disabled
-        //   if past > 0:
-        //     stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
-        //
-        int past;
-        float delta;
-
-        // maximum number of iterations without improvement
-        //
-        //   if 0 - disabled
-        //   if > 0:
-        //     assume convergence if no cost improvement in this number of iterations
-        //
-        int max_no_improvement;
-
-        bool print_forward_graph;
-        bool print_backward_graph;
-
-        // ADAM parameters
-        struct {
-            int n_iter;
-
-            float sched; // schedule multiplier (fixed, decay or warmup)
-            float decay; // weight decay for AdamW, use 0.0f to disable
-            float alpha; // learning rate
-            float beta1;
-            float beta2;
-            float eps;   // epsilon for numerical stability
-            float eps_f; // epsilon for convergence test
-            float eps_g; // epsilon for convergence test
-        } adam;
-
-        // LBFGS parameters
-        struct {
-            int m; // number of corrections to approximate the inv. Hessian
-            int n_iter;
-            int max_linesearch;
-
-            float eps;      // convergence tolerance
-            float ftol;     // line search tolerance
-            float wolfe;
-            float min_step;
-            float max_step;
-
-            enum ggml_linesearch linesearch;
-        } lbfgs;
-    };
-
-    struct ggml_opt_context {
-        struct ggml_context * ctx;
-        struct ggml_opt_params params;
-
-        int iter;
-        int64_t nx; // number of parameter elements
-
-        bool just_initialized;
-
-        struct {
-            struct ggml_tensor * x;  // view of the parameters
-            struct ggml_tensor * g1; // gradient
-            struct ggml_tensor * g2; // gradient squared
-            struct ggml_tensor * m;  // first moment
-            struct ggml_tensor * v;  // second moment
-            struct ggml_tensor * mh; // first moment hat
-            struct ggml_tensor * vh; // second moment hat
-            struct ggml_tensor * pf; // past function values
-            float fx_best;
-            float fx_prev;
-            int n_no_improvement;
-        } adam;
-
-        struct {
-            struct ggml_tensor * x;    // current parameters
-            struct ggml_tensor * xp;   // previous parameters
-            struct ggml_tensor * g;    // current gradient
-            struct ggml_tensor * gp;   // previous gradient
-            struct ggml_tensor * d;    // search direction
-            struct ggml_tensor * pf;   // past function values
-            struct ggml_tensor * lmal; // the L-BFGS memory alpha
-            struct ggml_tensor * lmys; // the L-BFGS memory ys
-            struct ggml_tensor * lms;  // the L-BFGS memory s
-            struct ggml_tensor * lmy;  // the L-BFGS memory y
-            float fx_best;
-            float step;
-            int j;
-            int k;
-            int end;
-            int n_no_improvement;
-        } lbfgs;
-    };
-
-    GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
-
-    // optimize the function defined by the tensor f
-    GGML_API enum ggml_opt_result ggml_opt(
-            struct ggml_context * ctx,
-            struct ggml_opt_params params,
-            struct ggml_tensor * f);
-
-    // initialize optimizer context
-    GGML_API void ggml_opt_init(
-            struct ggml_context * ctx,
-            struct ggml_opt_context * opt,
-            struct ggml_opt_params params,
-            int64_t nx);
-
-    // continue optimizing the function defined by the tensor f
-    GGML_API enum ggml_opt_result ggml_opt_resume(
-            struct ggml_context * ctx,
-            struct ggml_opt_context * opt,
-            struct ggml_tensor * f);
-
-    // continue optimizing the function defined by the tensor f
-    GGML_API enum ggml_opt_result ggml_opt_resume_g(
-            struct ggml_context * ctx,
-            struct ggml_opt_context * opt,
-            struct ggml_tensor * f,
-            struct ggml_cgraph * gf,
-            struct ggml_cgraph * gb);
-
-    //
-    // quantization
-    //
-
-    GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
-    GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
-    GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
-    GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
-    GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
-
-    GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
-
-    //
-    // system info
-    //
-
-    GGML_API int ggml_cpu_has_avx        (void);
-    GGML_API int ggml_cpu_has_avx2       (void);
-    GGML_API int ggml_cpu_has_avx512     (void);
-    GGML_API int ggml_cpu_has_avx512_vbmi(void);
-    GGML_API int ggml_cpu_has_avx512_vnni(void);
-    GGML_API int ggml_cpu_has_fma        (void);
-    GGML_API int ggml_cpu_has_neon       (void);
-    GGML_API int ggml_cpu_has_arm_fma    (void);
-    GGML_API int ggml_cpu_has_f16c       (void);
-    GGML_API int ggml_cpu_has_fp16_va    (void);
-    GGML_API int ggml_cpu_has_wasm_simd  (void);
-    GGML_API int ggml_cpu_has_blas       (void);
-    GGML_API int ggml_cpu_has_cublas     (void);
-    GGML_API int ggml_cpu_has_clblast    (void);
-    GGML_API int ggml_cpu_has_gpublas    (void);
-    GGML_API int ggml_cpu_has_sse3       (void);
-    GGML_API int ggml_cpu_has_vsx        (void);
-
-    //
-    // Internal types and functions exposed for tests and benchmarks
-    //
-
-#ifdef  __cplusplus
-// restrict not standard in C++
-#define GGML_RESTRICT
-#else
-#define GGML_RESTRICT restrict
-#endif
-    typedef void (*ggml_to_float_t)  (const void  * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
-    typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void  * GGML_RESTRICT y, int k);
-    typedef void (*ggml_vec_dot_t)   (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
-
-    typedef struct {
-        ggml_to_float_t   to_float;
-        ggml_from_float_t from_float;
-        ggml_from_float_t from_float_reference;
-        ggml_vec_dot_t    vec_dot;
-        enum ggml_type    vec_dot_type;
-    } ggml_type_traits_t;
-
-    ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i);
-
-#ifdef  __cplusplus
-}
-#endif

+ 727 - 0
llm/ggml_llama.go

@@ -0,0 +1,727 @@
+package llm
+
+import (
+	"bufio"
+	"bytes"
+	"context"
+	"embed"
+	"encoding/json"
+	"errors"
+	"fmt"
+	"io"
+	"io/fs"
+	"log"
+	"math/rand"
+	"net/http"
+	"os"
+	"os/exec"
+	"path"
+	"path/filepath"
+	"runtime"
+	"strconv"
+	"strings"
+	"sync"
+	"time"
+
+	"github.com/jmorganca/ollama/api"
+)
+
+const ModelFamilyLlama ModelFamily = "llama"
+
+//go:embed llama.cpp/ggml/build/*/bin/*
+var llamaCppEmbed embed.FS
+
+var (
+	ggmlGPU = path.Join("llama.cpp", "ggml", "build", "gpu", "bin")
+	ggmlCPU = path.Join("llama.cpp", "ggml", "build", "cpu", "bin")
+)
+
+var (
+	ggmlInit       sync.Once
+	ggmlRunnerPath string
+)
+
+func osPath(llamaPath string) string {
+	if runtime.GOOS == "windows" {
+		return path.Join(llamaPath, "Release")
+	}
+	return llamaPath
+}
+
+func initGGML() {
+	ggmlInit.Do(func() {
+		tmpDir, err := os.MkdirTemp("", "llama-*")
+		if err != nil {
+			log.Fatalf("llama.cpp: failed to create temp dir: %v", err)
+		}
+
+		llamaPath := osPath(ggmlGPU)
+		if _, err := fs.Stat(llamaCppEmbed, llamaPath); err != nil {
+			llamaPath = osPath(ggmlCPU)
+			if _, err := fs.Stat(llamaCppEmbed, llamaPath); err != nil {
+				log.Fatalf("llama.cpp executable not found")
+			}
+		}
+
+		files := []string{"server"}
+		switch runtime.GOOS {
+		case "windows":
+			files = []string{"server.exe"}
+		case "darwin":
+			files = append(files, "ggml-metal.metal")
+		}
+
+		for _, f := range files {
+			srcPath := path.Join(llamaPath, f)
+			destPath := filepath.Join(tmpDir, f)
+
+			srcFile, err := llamaCppEmbed.Open(srcPath)
+			if err != nil {
+				log.Fatalf("read llama.cpp %s: %v", f, err)
+			}
+			defer srcFile.Close()
+
+			destFile, err := os.OpenFile(destPath, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0o755)
+			if err != nil {
+				log.Fatalf("write llama.cpp %s: %v", f, err)
+			}
+			defer destFile.Close()
+
+			if _, err := io.Copy(destFile, srcFile); err != nil {
+				log.Fatalf("copy llama.cpp %s: %v", f, err)
+			}
+		}
+
+		ggmlRunnerPath = filepath.Join(tmpDir, "server")
+		if runtime.GOOS == "windows" {
+			ggmlRunnerPath = filepath.Join(tmpDir, "server.exe")
+		}
+	})
+}
+
+type ModelRunner struct {
+	Path string // path to the model runner executable
+}
+
+func ggmlRunner() ModelRunner {
+	initGGML()
+	return ModelRunner{Path: ggmlRunnerPath}
+}
+
+type llamaModel struct {
+	hyperparameters llamaHyperparameters
+}
+
+func (llm *llamaModel) ModelFamily() ModelFamily {
+	return ModelFamilyLlama
+}
+
+func (llm *llamaModel) ModelType() ModelType {
+	switch llm.hyperparameters.NumLayer {
+	case 26:
+		return ModelType3B
+	case 32:
+		return ModelType7B
+	case 40:
+		return ModelType13B
+	case 48:
+		return ModelType34B
+	case 60:
+		return ModelType30B
+	case 80:
+		return ModelType65B
+	}
+
+	// TODO: find a better default
+	return ModelType7B
+}
+
+func (llm *llamaModel) FileType() FileType {
+	return llm.hyperparameters.FileType
+}
+
+type llamaHyperparameters struct {
+	// NumVocab is the size of the model's vocabulary.
+	NumVocab uint32
+
+	// NumEmbd is the size of the model's embedding layer.
+	NumEmbd uint32
+	NumMult uint32
+	NumHead uint32
+
+	// NumLayer is the number of layers in the model.
+	NumLayer uint32
+	NumRot   uint32
+
+	// FileType describes the quantization level of the model, e.g. Q4_0, Q5_K, etc.
+	FileType llamaFileType
+}
+
+type llamaFileType uint32
+
+const (
+	llamaFileTypeF32 llamaFileType = iota
+	llamaFileTypeF16
+	llamaFileTypeQ4_0
+	llamaFileTypeQ4_1
+	llamaFileTypeQ4_1_F16
+	llamaFileTypeQ8_0 llamaFileType = iota + 2
+	llamaFileTypeQ5_0
+	llamaFileTypeQ5_1
+	llamaFileTypeQ2_K
+	llamaFileTypeQ3_K_S
+	llamaFileTypeQ3_K_M
+	llamaFileTypeQ3_K_L
+	llamaFileTypeQ4_K_S
+	llamaFileTypeQ4_K_M
+	llamaFileTypeQ5_K_S
+	llamaFileTypeQ5_K_M
+	llamaFileTypeQ6_K
+)
+
+func (ft llamaFileType) String() string {
+	switch ft {
+	case llamaFileTypeF32:
+		return "F32"
+	case llamaFileTypeF16:
+		return "F16"
+	case llamaFileTypeQ4_0:
+		return "Q4_0"
+	case llamaFileTypeQ4_1:
+		return "Q4_1"
+	case llamaFileTypeQ4_1_F16:
+		return "Q4_1_F16"
+	case llamaFileTypeQ8_0:
+		return "Q8_0"
+	case llamaFileTypeQ5_0:
+		return "Q5_0"
+	case llamaFileTypeQ5_1:
+		return "Q5_1"
+	case llamaFileTypeQ2_K:
+		return "Q2_K"
+	case llamaFileTypeQ3_K_S:
+		return "Q3_K_S"
+	case llamaFileTypeQ3_K_M:
+		return "Q3_K_M"
+	case llamaFileTypeQ3_K_L:
+		return "Q3_K_L"
+	case llamaFileTypeQ4_K_S:
+		return "Q4_K_S"
+	case llamaFileTypeQ4_K_M:
+		return "Q4_K_M"
+	case llamaFileTypeQ5_K_S:
+		return "Q5_K_S"
+	case llamaFileTypeQ5_K_M:
+		return "Q5_K_M"
+	case llamaFileTypeQ6_K:
+		return "Q6_K"
+	default:
+		return "Unknown"
+	}
+}
+
+type Running struct {
+	Port   int
+	Cmd    *exec.Cmd
+	Cancel context.CancelFunc
+}
+
+type llama struct {
+	api.Options
+	Running
+}
+
+func newLlama(model string, adapters []string, runner ModelRunner, opts api.Options) (*llama, error) {
+	if _, err := os.Stat(model); err != nil {
+		return nil, err
+	}
+
+	if _, err := os.Stat(runner.Path); err != nil {
+		return nil, err
+	}
+
+	if len(adapters) > 1 {
+		return nil, errors.New("ollama supports only one lora adapter, but multiple were provided")
+	}
+
+	params := []string{
+		"--model", model,
+		"--ctx-size", fmt.Sprintf("%d", opts.NumCtx),
+		"--gqa", fmt.Sprintf("%d", opts.NumGQA),
+		"--rope-freq-base", fmt.Sprintf("%f", opts.RopeFrequencyBase),
+		"--rope-freq-scale", fmt.Sprintf("%f", opts.RopeFrequencyScale),
+		"--batch-size", fmt.Sprintf("%d", opts.NumBatch),
+		"--n-gpu-layers", fmt.Sprintf("%d", opts.NumGPU),
+		"--embedding",
+	}
+
+	if len(adapters) > 0 {
+		// TODO: applying multiple adapters is not supported by the llama.cpp server yet
+		params = append(params, "--lora", adapters[0])
+	}
+
+	if opts.NumThread > 0 {
+		params = append(params, "--threads", fmt.Sprintf("%d", opts.NumThread))
+	}
+
+	if !opts.F16KV {
+		params = append(params, "--memory-f32")
+	}
+	if opts.UseMLock {
+		params = append(params, "--mlock")
+	}
+	if !opts.UseMMap {
+		params = append(params, "--no-mmap")
+	}
+	if opts.UseNUMA {
+		params = append(params, "--numa")
+	}
+
+	// start the llama.cpp server with a retry in case the port is already in use
+	for try := 0; try < 3; try++ {
+		port := rand.Intn(65535-49152) + 49152 // get a random port in the ephemeral range
+		ctx, cancel := context.WithCancel(context.Background())
+		cmd := exec.CommandContext(
+			ctx,
+			runner.Path,
+			append(params, "--port", strconv.Itoa(port))...,
+		)
+		var stderr bytes.Buffer
+		cmd.Stderr = &stderr
+
+		llm := &llama{Options: opts, Running: Running{Port: port, Cmd: cmd, Cancel: cancel}}
+
+		if err := waitForServer(llm); err != nil {
+			log.Printf("error starting llama.cpp server: %v", err)
+			llm.Close()
+			// try again
+			continue
+		}
+		// server started successfully
+		return llm, nil
+	}
+
+	return nil, fmt.Errorf("max retry exceeded starting llama.cpp")
+}
+
+func waitForServer(llm *llama) error {
+	log.Print("starting llama.cpp server")
+	var stderr bytes.Buffer
+	llm.Cmd.Stderr = &stderr
+	err := llm.Cmd.Start()
+	if err != nil {
+		return fmt.Errorf("error starting the external llama.cpp server: %w", err)
+	}
+
+	exitChan := make(chan error, 1)
+
+	// the server is a long running process, watch for it exiting to keep track of something going wrong
+	go func() {
+		err := llm.Cmd.Wait()
+		log.Print(stderr.String())
+		exitChan <- err
+	}()
+
+	// wait for the server to start responding
+	start := time.Now()
+	expiresAt := time.Now().Add(30 * time.Second)
+	ticker := time.NewTicker(100 * time.Millisecond)
+
+	log.Print("waiting for llama.cpp server to start responding")
+
+	for {
+		select {
+		case <-ticker.C:
+			if time.Now().After(expiresAt) {
+				return fmt.Errorf("llama.cpp server did not start responding within 30 seconds, retrying")
+			}
+			if err := llm.Ping(context.Background()); err == nil {
+				log.Printf("llama.cpp server started in %f seconds", time.Since(start).Seconds())
+				return nil
+			}
+		case err := <-exitChan:
+			return fmt.Errorf("llama.cpp server exited unexpectedly: %w", err)
+		}
+	}
+}
+
+func (llm *llama) Close() {
+	llm.Running.Cmd.Cancel()
+}
+
+func (llm *llama) SetOptions(opts api.Options) {
+	llm.Options = opts
+}
+
+type Prediction struct {
+	Content string `json:"content"`
+	Stop    bool   `json:"stop"`
+}
+
+type GenerationSettings struct {
+	FrequencyPenalty float64       `json:"frequency_penalty"`
+	IgnoreEOS        bool          `json:"ignore_eos"`
+	LogitBias        []interface{} `json:"logit_bias"`
+	Mirostat         int           `json:"mirostat"`
+	MirostatEta      float64       `json:"mirostat_eta"`
+	MirostatTau      float64       `json:"mirostat_tau"`
+	Model            string        `json:"model"`
+	NCtx             int           `json:"n_ctx"`
+	NKeep            int           `json:"n_keep"`
+	NPredict         int           `json:"n_predict"`
+	NProbs           int           `json:"n_probs"`
+	PenalizeNl       bool          `json:"penalize_nl"`
+	PresencePenalty  float64       `json:"presence_penalty"`
+	RepeatLastN      int           `json:"repeat_last_n"`
+	RepeatPenalty    float64       `json:"repeat_penalty"`
+	Seed             uint32        `json:"seed"`
+	Stop             []string      `json:"stop"`
+	Stream           bool          `json:"stream"`
+	Temp             float64       `json:"temp"`
+	TfsZ             float64       `json:"tfs_z"`
+	TopK             int           `json:"top_k"`
+	TopP             float64       `json:"top_p"`
+	TypicalP         float64       `json:"typical_p"`
+}
+
+type Timings struct {
+	PredictedMS         float64 `json:"predicted_ms"`
+	PredictedN          int     `json:"predicted_n"`
+	PredictedPerSecond  float64 `json:"predicted_per_second"`
+	PredictedPerTokenMS float64 `json:"predicted_per_token_ms"`
+	PromptMS            float64 `json:"prompt_ms"`
+	PromptN             int     `json:"prompt_n"`
+	PromptPerSecond     float64 `json:"prompt_per_second"`
+	PromptPerTokenMS    float64 `json:"prompt_per_token_ms"`
+}
+
+type PredictComplete struct {
+	Content            string             `json:"content"`
+	GenerationSettings GenerationSettings `json:"generation_settings"`
+	Model              string             `json:"model"`
+	Prompt             string             `json:"prompt"`
+	Stop               bool               `json:"stop"`
+	StoppedEOS         bool               `json:"stopped_eos"`
+	StoppedLimit       bool               `json:"stopped_limit"`
+	StoppedWord        bool               `json:"stopped_word"`
+	StoppingWord       string             `json:"stopping_word"`
+	Timings            Timings            `json:"timings"`
+	TokensCached       int                `json:"tokens_cached"`
+	TokensEvaluated    int                `json:"tokens_evaluated"`
+	TokensPredicted    int                `json:"tokens_predicted"`
+	Truncated          bool               `json:"truncated"`
+}
+
+type PredictRequest struct {
+	Stream           bool            `json:"stream"`
+	NPredict         int             `json:"n_predict,omitempty"`
+	TopK             int             `json:"top_k,omitempty"`
+	TopP             float32         `json:"top_p,omitempty"`
+	TfsZ             float32         `json:"tfs_z,omitempty"`
+	TypicalP         float32         `json:"typical_p,omitempty"`
+	RepeatLastN      int             `json:"repeat_last_n,omitempty"`
+	Temperature      float32         `json:"temperature,omitempty"`
+	RepeatPenalty    float32         `json:"repeat_penalty,omitempty"`
+	PresencePenalty  float32         `json:"presence_penalty,omitempty"`
+	FrequencyPenalty float32         `json:"frequency_penalty,omitempty"`
+	Mirostat         int             `json:"mirostat,omitempty"`
+	MirostatTau      float32         `json:"mirostat_tau,omitempty"`
+	MirostatEta      float32         `json:"mirostat_eta,omitempty"`
+	PenalizeNl       bool            `json:"penalize_nl,omitempty"`
+	NKeep            int             `json:"n_keep,omitempty"`
+	Seed             int             `json:"seed,omitempty"`
+	Prompt           string          `json:"prompt,omitempty"`
+	NProbs           int             `json:"n_probs,omitempty"`
+	LogitBias        map[int]float32 `json:"logit_bias,omitempty"`
+	IgnoreEos        bool            `json:"ignore_eos,omitempty"`
+	Stop             []string        `json:"stop,omitempty"`
+}
+
+func (llm *llama) Predict(ctx context.Context, predictCtx []int, prompt string, fn func(api.GenerateResponse)) error {
+	// we need to find the trimmed prompt context before predicting so that we can return it to the client
+	trimmedPrompt, err := llm.marshalPrompt(ctx, predictCtx, prompt)
+	if err != nil {
+		return fmt.Errorf("marshaling prompt: %v", err)
+	}
+	endpoint := fmt.Sprintf("http://127.0.0.1:%d/completion", llm.Port)
+	predReq := PredictRequest{
+		Prompt:           trimmedPrompt,
+		Stream:           true,
+		NPredict:         llm.NumPredict,
+		NKeep:            llm.NumKeep,
+		Temperature:      llm.Temperature,
+		TopK:             llm.TopK,
+		TopP:             llm.TopP,
+		TfsZ:             llm.TFSZ,
+		TypicalP:         llm.TypicalP,
+		RepeatLastN:      llm.RepeatLastN,
+		RepeatPenalty:    llm.RepeatPenalty,
+		PresencePenalty:  llm.PresencePenalty,
+		FrequencyPenalty: llm.FrequencyPenalty,
+		Mirostat:         llm.Mirostat,
+		MirostatTau:      llm.MirostatTau,
+		MirostatEta:      llm.MirostatEta,
+		PenalizeNl:       llm.PenalizeNewline,
+		Stop:             llm.Stop,
+	}
+	data, err := json.Marshal(predReq)
+	if err != nil {
+		return fmt.Errorf("error marshaling data: %v", err)
+	}
+
+	req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
+	if err != nil {
+		return fmt.Errorf("error creating POST request: %v", err)
+	}
+	req.Header.Set("Content-Type", "application/json")
+
+	resp, err := http.DefaultClient.Do(req)
+	if err != nil {
+		return fmt.Errorf("POST predict: %v", err)
+	}
+	defer resp.Body.Close()
+
+	if resp.StatusCode >= 400 {
+		bodyBytes, err := io.ReadAll(resp.Body)
+		if err != nil {
+			return fmt.Errorf("failed reading llm error response: %w", err)
+		}
+		log.Printf("llm predict error: %s", bodyBytes)
+		return fmt.Errorf("%s", bodyBytes)
+	}
+
+	scanner := bufio.NewScanner(resp.Body)
+	genCtx := trimmedPrompt // start with the trimmed prompt
+	for scanner.Scan() {
+		select {
+		case <-ctx.Done():
+			// This handles the request cancellation
+			return ctx.Err()
+		default:
+			line := scanner.Text()
+			if line == "" {
+				continue
+			}
+
+			// Read data from the server-side event stream
+			if strings.HasPrefix(line, "data: ") {
+				evt := line[6:]
+				var complete PredictComplete
+				if err := json.Unmarshal([]byte(evt), &complete); err != nil {
+					return fmt.Errorf("error unmarshaling llm complete response: %v", err)
+				}
+
+				if complete.Timings.PredictedMS > 0 {
+					genCtx += complete.Content
+					embd, err := llm.Encode(ctx, genCtx)
+					if err != nil {
+						return fmt.Errorf("encoding context: %v", err)
+					}
+					fn(api.GenerateResponse{
+						Done:               true,
+						Context:            embd,
+						PromptEvalCount:    int(complete.Timings.PromptN),
+						PromptEvalDuration: parseDurationMs(float64(complete.Timings.PromptMS)),
+						EvalCount:          int(complete.Timings.PredictedN),
+						EvalDuration:       parseDurationMs(float64(complete.Timings.PredictedMS)),
+					})
+					return nil
+				}
+
+				var pred Prediction
+				if err := json.Unmarshal([]byte(evt), &pred); err != nil {
+					return fmt.Errorf("error unmarshaling llm prediction response: %v", err)
+				}
+				genCtx += pred.Content
+				fn(api.GenerateResponse{Response: pred.Content})
+			}
+		}
+	}
+
+	if err := scanner.Err(); err != nil {
+		return fmt.Errorf("error reading llm response: %v", err)
+	}
+
+	return nil
+}
+
+func (llm *llama) marshalPrompt(ctx context.Context, pCtx []int, prompt string) (string, error) {
+	pEncode, err := llm.Encode(ctx, prompt)
+	if err != nil {
+		return "", fmt.Errorf("encoding prompt context: %w", err)
+	}
+	tokens := append(pCtx, pEncode...)
+	if llm.NumKeep < 0 {
+		llm.NumKeep = len(tokens)
+	}
+
+	// min(llm.NumCtx - 4, llm.NumKeep)
+	if llm.NumCtx-4 < llm.NumKeep {
+		llm.NumKeep = llm.NumCtx - 4
+	}
+
+	if len(tokens) >= llm.NumCtx {
+		// truncate input
+		numLeft := (llm.NumCtx - llm.NumKeep) / 2
+		truncated := tokens[:llm.NumKeep]
+		erasedBlocks := (len(tokens) - llm.NumKeep - numLeft - 1) / numLeft
+		truncated = append(truncated, tokens[llm.NumKeep+erasedBlocks*numLeft:]...)
+		tokens = truncated
+		log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated))
+	}
+
+	return llm.Decode(ctx, tokens)
+}
+
+type TokenizeRequest struct {
+	Content string `json:"content"`
+}
+
+type TokenizeResponse struct {
+	Tokens []int `json:"tokens"`
+}
+
+func (llm *llama) Encode(ctx context.Context, prompt string) ([]int, error) {
+	endpoint := fmt.Sprintf("http://127.0.0.1:%d/tokenize", llm.Port)
+	data, err := json.Marshal(TokenizeRequest{Content: prompt})
+	if err != nil {
+		return nil, fmt.Errorf("marshaling encode data: %w", err)
+	}
+
+	req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
+	if err != nil {
+		return nil, fmt.Errorf("encode request: %w", err)
+	}
+	req.Header.Set("Content-Type", "application/json")
+
+	resp, err := http.DefaultClient.Do(req)
+	if err != nil {
+		return nil, fmt.Errorf("do encode request: %w", err)
+	}
+	defer resp.Body.Close()
+
+	body, err := io.ReadAll(resp.Body)
+	if err != nil {
+		return nil, fmt.Errorf("read encode request: %w", err)
+	}
+
+	if resp.StatusCode >= 400 {
+		log.Printf("llm encode error: %s", body)
+		return nil, fmt.Errorf("%s", body)
+	}
+
+	var encoded TokenizeResponse
+	if err := json.Unmarshal(body, &encoded); err != nil {
+		return nil, fmt.Errorf("unmarshal encode response: %w", err)
+	}
+
+	return encoded.Tokens, nil
+}
+
+type DetokenizeRequest struct {
+	Tokens []int `json:"tokens"`
+}
+
+type DetokenizeResponse struct {
+	Content string `json:"content"`
+}
+
+func (llm *llama) Decode(ctx context.Context, tokens []int) (string, error) {
+	if len(tokens) == 0 {
+		return "", nil
+	}
+	endpoint := fmt.Sprintf("http://127.0.0.1:%d/detokenize", llm.Port)
+	data, err := json.Marshal(DetokenizeRequest{Tokens: tokens})
+	if err != nil {
+		return "", fmt.Errorf("marshaling decode data: %w", err)
+	}
+
+	req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
+	if err != nil {
+		return "", fmt.Errorf("decode request: %w", err)
+	}
+	req.Header.Set("Content-Type", "application/json")
+
+	resp, err := http.DefaultClient.Do(req)
+	if err != nil {
+		return "", fmt.Errorf("do decode request: %w", err)
+	}
+	defer resp.Body.Close()
+
+	body, err := io.ReadAll(resp.Body)
+	if err != nil {
+		return "", fmt.Errorf("read decode request: %w", err)
+	}
+
+	if resp.StatusCode >= 400 {
+		log.Printf("llm decode error: %s", body)
+		return "", fmt.Errorf("%s", body)
+	}
+
+	var decoded DetokenizeResponse
+	if err := json.Unmarshal(body, &decoded); err != nil {
+		return "", fmt.Errorf("unmarshal encode response: %w", err)
+	}
+
+	// decoded content contains a leading whitespace
+	decoded.Content, _ = strings.CutPrefix(decoded.Content, "")
+
+	return decoded.Content, nil
+}
+
+type EmbeddingRequest struct {
+	Content string `json:"content"`
+}
+
+type EmbeddingResponse struct {
+	Embedding []float64 `json:"embedding"`
+}
+
+func (llm *llama) Embedding(ctx context.Context, input string) ([]float64, error) {
+	endpoint := fmt.Sprintf("http://127.0.0.1:%d/embedding", llm.Port)
+	data, err := json.Marshal(TokenizeRequest{Content: input})
+	if err != nil {
+		return nil, fmt.Errorf("error marshaling embed data: %w", err)
+	}
+
+	req, err := http.NewRequestWithContext(ctx, http.MethodPost, endpoint, bytes.NewBuffer(data))
+	if err != nil {
+		return nil, fmt.Errorf("error creating embed request: %w", err)
+	}
+	req.Header.Set("Content-Type", "application/json")
+
+	resp, err := http.DefaultClient.Do(req)
+	if err != nil {
+		return nil, fmt.Errorf("POST embedding: %w", err)
+	}
+	defer resp.Body.Close()
+
+	body, err := io.ReadAll(resp.Body)
+	if err != nil {
+		return nil, fmt.Errorf("error reading embed response: %w", err)
+	}
+
+	if resp.StatusCode >= 400 {
+		log.Printf("llm encode error: %s", body)
+		return nil, fmt.Errorf("%s", body)
+	}
+
+	var embedding EmbeddingResponse
+	if err := json.Unmarshal(body, &embedding); err != nil {
+		return nil, fmt.Errorf("unmarshal tokenize response: %w", err)
+	}
+
+	return embedding.Embedding, nil
+}
+
+// Ping checks that the server subprocess is still running and responding to requests
+func (llm *llama) Ping(ctx context.Context) error {
+	resp, err := http.Head(fmt.Sprintf("http://127.0.0.1:%d", llm.Running.Port))
+	if err != nil {
+		return fmt.Errorf("ping resp: %w", err)
+	}
+	if resp.StatusCode != http.StatusOK {
+		return fmt.Errorf("unexpected ping status: %s", resp.Status)
+	}
+	return nil
+}

+ 0 - 4252
llm/k_quants.c

@@ -1,4252 +0,0 @@
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#include "k_quants.h"
-#include "ggml.h"
-
-#include <math.h>
-#include <string.h>
-#include <assert.h>
-
-#ifdef __ARM_NEON
-
-// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
-//
-//   $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
-//
-#include <arm_neon.h>
-
-#else
-
-#ifdef __wasm_simd128__
-#include <wasm_simd128.h>
-#else
-#ifdef __POWER9_VECTOR__
-#include <altivec.h>
-#undef bool
-#define bool _Bool
-#else
-#if defined(_MSC_VER) || defined(__MINGW32__)
-#include <intrin.h>
-#else
-#if !defined(__riscv)
-#include <immintrin.h>
-#endif
-#endif
-#endif
-#endif
-#endif
-
-#undef MIN
-#undef MAX
-#define MIN(a, b) ((a) < (b) ? (a) : (b))
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
-
-#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
-
-//
-// 2-6 bit quantization in super-blocks
-//
-
-
-//
-// ===================== Helper functions
-//
-static inline int nearest_int(float fval) {
-    assert(fval <= 4194303.f);
-    float val = fval + 12582912.f;
-    int i; memcpy(&i, &val, sizeof(int));
-    return (i & 0x007fffff) - 0x00400000;
-}
-
-static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) {
-    float max = 0;
-    float amax = 0;
-    for (int i = 0; i < n; ++i) {
-        float ax = fabsf(x[i]);
-        if (ax > amax) { amax = ax; max = x[i]; }
-    }
-    if (!amax) { // all zero
-        for (int i = 0; i < n; ++i) {
-            L[i] = 0;
-        }
-        return 0.f;
-    }
-    float iscale = -nmax / max;
-    if (rmse_type == 0) {
-        for (int i = 0; i < n; ++i) {
-            int l = nearest_int(iscale * x[i]);
-            L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
-        }
-        return 1/iscale;
-    }
-    int weight_type = rmse_type%2;
-    float sumlx = 0;
-    float suml2 = 0;
-    for (int i = 0; i < n; ++i) {
-        int l = nearest_int(iscale * x[i]);
-        l = MAX(-nmax, MIN(nmax-1, l));
-        L[i] = l + nmax;
-        float w = weight_type == 1 ? x[i] * x[i] : 1;
-        sumlx += w*x[i]*l;
-        suml2 += w*l*l;
-    }
-    float scale = sumlx/suml2;
-    float best = scale * sumlx;
-    for (int itry = 0; itry < 3; ++itry) {
-        iscale = 1/scale;
-        float slx = 0;
-        float sl2 = 0;
-        bool changed = false;
-        for (int i = 0; i < n; ++i) {
-            int l = nearest_int(iscale * x[i]);
-            l = MAX(-nmax, MIN(nmax-1, l));
-            if (l + nmax != L[i]) { changed = true; }
-            float w = weight_type == 1 ? x[i] * x[i] : 1.f;
-            slx += w*x[i]*l;
-            sl2 += w*l*l;
-        }
-        if (!changed || sl2 == 0 || slx*slx <= best*sl2) { break; }
-        for (int i = 0; i < n; ++i) {
-            int l = nearest_int(iscale * x[i]);
-            L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
-        }
-        sumlx = slx; suml2 = sl2;
-        scale = sumlx/suml2;
-        best = scale * sumlx;
-    }
-    for (int itry = 0; itry < 5; ++itry) {
-        int n_changed = 0;
-        for (int i = 0; i < n; ++i) {
-            float w = weight_type == 1 ? x[i]*x[i] : 1;
-            int l = L[i] - nmax;
-            float slx = sumlx - w*x[i]*l;
-            if (slx > 0) {
-                float sl2 = suml2 - w*l*l;
-                int new_l = nearest_int(x[i] * sl2 / slx);
-                new_l = MAX(-nmax, MIN(nmax-1, new_l));
-                if (new_l != l) {
-                    slx += w*x[i]*new_l;
-                    sl2 += w*new_l*new_l;
-                    if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
-                        L[i] = nmax + new_l; sumlx = slx; suml2 = sl2;
-                        scale = sumlx / suml2; best = scale * sumlx;
-                        ++n_changed;
-                    }
-                }
-            }
-        }
-        if (!n_changed) { break; }
-    }
-    if (rmse_type < 3) {
-        return scale;
-    }
-    for (int is = -4; is <= 4; ++is) {
-        if (is == 0) {
-            continue;
-        }
-        iscale = -(nmax + 0.1f*is) / max;
-        sumlx = suml2 = 0;
-        for (int i = 0; i < n; ++i) {
-            int l = nearest_int(iscale * x[i]);
-            l = MAX(-nmax, MIN(nmax-1, l));
-            float w = weight_type == 1 ? x[i] * x[i] : 1;
-            sumlx += w*x[i]*l;
-            suml2 += w*l*l;
-        }
-        if (suml2 > 0 && sumlx*sumlx > best*suml2) {
-            for (int i = 0; i < n; ++i) {
-                int l = nearest_int(iscale * x[i]);
-                L[i] = nmax + MAX(-nmax, MIN(nmax-1, l));
-            }
-            scale = sumlx/suml2; best = scale*sumlx;
-        }
-    }
-    return scale;
-}
-
-static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) {
-    float max = 0;
-    float amax = 0;
-    for (int i = 0; i < n; ++i) {
-        float ax = fabsf(x[i]);
-        if (ax > amax) { amax = ax; max = x[i]; }
-    }
-    if (!amax) { // all zero
-        for (int i = 0; i < n; ++i) { L[i] = 0; }
-        return 0.f;
-    }
-    float iscale = -nmax / max;
-    if (do_rmse) {
-        float sumlx = 0;
-        float suml2 = 0;
-        for (int i = 0; i < n; ++i) {
-            int l = nearest_int(iscale * x[i]);
-            l = MAX(-nmax, MIN(nmax-1, l));
-            L[i] = l;
-            float w = x[i]*x[i];
-            sumlx += w*x[i]*l;
-            suml2 += w*l*l;
-        }
-        for (int itry = 0; itry < 5; ++itry) {
-            int n_changed = 0;
-            for (int i = 0; i < n; ++i) {
-                float w = x[i]*x[i];
-                float slx = sumlx - w*x[i]*L[i];
-                if (slx > 0) {
-                    float sl2 = suml2 - w*L[i]*L[i];
-                    int new_l = nearest_int(x[i] * sl2 / slx);
-                    new_l = MAX(-nmax, MIN(nmax-1, new_l));
-                    if (new_l != L[i]) {
-                        slx += w*x[i]*new_l;
-                        sl2 += w*new_l*new_l;
-                        if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) {
-                            L[i] = new_l; sumlx = slx; suml2 = sl2;
-                            ++n_changed;
-                        }
-                    }
-                }
-            }
-            if (!n_changed) {
-                break;
-            }
-        }
-        for (int i = 0; i < n; ++i) {
-            L[i] += nmax;
-        }
-        return sumlx / suml2;
-    }
-    for (int i = 0; i < n; ++i) {
-        int l = nearest_int(iscale * x[i]);
-        l = MAX(-nmax, MIN(nmax-1, l));
-        L[i] = l + nmax;
-    }
-    return 1/iscale;
-}
-
-static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, int ntry) {
-    float min = x[0];
-    float max = x[0];
-    for (int i = 1; i < n; ++i) {
-        if (x[i] < min) min = x[i];
-        if (x[i] > max) max = x[i];
-    }
-    if (max == min) {
-        for (int i = 0; i < n; ++i) L[i] = 0;
-        *the_min = 0;
-        return 0.f;
-    }
-    if (min > 0) min = 0;
-    float iscale = nmax/(max - min);
-    float scale = 1/iscale;
-    for (int itry = 0; itry < ntry; ++itry) {
-        float sumlx = 0; int suml2 = 0;
-        bool did_change = false;
-        for (int i = 0; i < n; ++i) {
-            int l = nearest_int(iscale*(x[i] - min));
-            l = MAX(0, MIN(nmax, l));
-            if (l != L[i]) {
-                L[i] = l;
-                did_change = true;
-            }
-            sumlx += (x[i] - min)*l;
-            suml2 += l*l;
-        }
-        scale = sumlx/suml2;
-        float sum = 0;
-        for (int i = 0; i < n; ++i) {
-            sum += x[i] - scale*L[i];
-        }
-        min = sum/n;
-        if (min > 0) min = 0;
-        iscale = 1/scale;
-        if (!did_change) break;
-    }
-    *the_min = -min;
-    return scale;
-}
-
-#if QK_K == 256
-static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) {
-    if (j < 4) {
-        *d = q[j] & 63; *m = q[j + 4] & 63;
-    } else {
-        *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
-        *m = (q[j+4] >>  4) | ((q[j-0] >> 6) << 4);
-    }
-}
-#endif
-
-//========================- 2-bit (de)-quantization
-
-void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    uint8_t L[QK_K];
-    float mins[QK_K/16];
-    float scales[QK_K/16];
-
-    const float q4scale = 15.f;
-
-    for (int i = 0; i < nb; i++) {
-
-        float max_scale = 0; // as we are deducting the min, scales are always positive
-        float max_min = 0;
-        for (int j = 0; j < QK_K/16; ++j) {
-            scales[j] = make_qkx1_quants(16, 3, x + 16*j, L + 16*j, &mins[j], 5);
-            float scale = scales[j];
-            if (scale > max_scale) {
-                max_scale = scale;
-            }
-            float min = mins[j];
-            if (min > max_min) {
-                max_min = min;
-            }
-        }
-
-        if (max_scale > 0) {
-            float iscale = q4scale/max_scale;
-            for (int j = 0; j < QK_K/16; ++j) {
-                int l = nearest_int(iscale*scales[j]);
-                y[i].scales[j] = l;
-            }
-            y[i].d = ggml_fp32_to_fp16(max_scale/q4scale);
-        } else {
-            for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0;
-            y[i].d = ggml_fp32_to_fp16(0.f);
-        }
-        if (max_min > 0) {
-            float iscale = q4scale/max_min;
-            for (int j = 0; j < QK_K/16; ++j) {
-                int l = nearest_int(iscale*mins[j]);
-                y[i].scales[j] |= (l << 4);
-            }
-            y[i].dmin = ggml_fp32_to_fp16(max_min/q4scale);
-        } else {
-            y[i].dmin = ggml_fp32_to_fp16(0.f);
-        }
-        for (int j = 0; j < QK_K/16; ++j) {
-            const float d = ggml_fp16_to_fp32(y[i].d) * (y[i].scales[j] & 0xF);
-            if (!d) continue;
-            const float dm = ggml_fp16_to_fp32(y[i].dmin) * (y[i].scales[j] >> 4);
-            for (int ii = 0; ii < 16; ++ii) {
-                int l = nearest_int((x[16*j + ii] + dm)/d);
-                l = MAX(0, MIN(3, l));
-                L[16*j + ii] = l;
-            }
-        }
-
-#if QK_K == 256
-        for (int j = 0; j < QK_K; j += 128) {
-            for (int l = 0; l < 32; ++l) {
-                y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
-            }
-        }
-#else
-        for (int l = 0; l < 16; ++l) {
-            y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
-        }
-#endif
-
-        x += QK_K;
-
-    }
-}
-
-void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    for (int i = 0; i < nb; i++) {
-
-        const float d = ggml_fp16_to_fp32(x[i].d);
-        const float min = ggml_fp16_to_fp32(x[i].dmin);
-
-        const uint8_t * q = x[i].qs;
-
-#if QK_K == 256
-        int is = 0;
-        float dl, ml;
-        for (int n = 0; n < QK_K; n += 128) {
-            int shift = 0;
-            for (int j = 0; j < 4; ++j) {
-
-                uint8_t sc = x[i].scales[is++];
-                dl = d * (sc & 0xF); ml = min * (sc >> 4);
-                for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
-
-                sc = x[i].scales[is++];
-                dl = d * (sc & 0xF); ml = min * (sc >> 4);
-                for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
-
-                shift += 2;
-            }
-            q += 32;
-        }
-#else
-        float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4);
-        float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4);
-        float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4);
-        float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4);
-        for (int l = 0; l < 16; ++l) {
-            y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1;
-            y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2;
-            y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3;
-            y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4;
-        }
-        y += QK_K;
-#endif
-    }
-}
-
-void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
-    quantize_row_q2_K_reference(x, vy, k);
-}
-
-size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
-    const int nb = k / QK_K;
-
-    // TODO - collect histograms - although, at a second thought, I don't really care about them
-    (void)hist;
-
-    for (int j = 0; j < nb; j += k) {
-        block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
-        quantize_row_q2_K_reference(src + j, y, k);
-    }
-    return (n/QK_K*sizeof(block_q2_K));
-}
-
-//========================= 3-bit (de)-quantization
-
-void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    int8_t L[QK_K];
-    float scales[QK_K / 16];
-
-    for (int i = 0; i < nb; i++) {
-
-        float max_scale = 0;
-        float amax = 0;
-        for (int j = 0; j < QK_K/16; ++j) {
-            scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true);
-            float scale = fabsf(scales[j]);
-            if (scale > amax) {
-                amax = scale; max_scale = scales[j];
-            }
-        }
-
-#if QK_K == 256
-        memset(y[i].scales, 0, 12);
-        if (max_scale) {
-            float iscale = -32.f/max_scale;
-            for (int j = 0; j < QK_K/16; ++j) {
-                int8_t l = nearest_int(iscale*scales[j]);
-                l = MAX(-32, MIN(31, l)) + 32;
-                if (j < 8) {
-                    y[i].scales[j] = l & 0xF;
-                } else {
-                    y[i].scales[j-8] |= ((l & 0xF) << 4);
-                }
-                l >>= 4;
-                y[i].scales[j%4 + 8] |= (l << (2*(j/4)));
-            }
-            y[i].d = ggml_fp32_to_fp16(1/iscale);
-        } else {
-            y[i].d = ggml_fp32_to_fp16(0.f);
-        }
-
-        int8_t sc;
-        for (int j = 0; j < QK_K/16; ++j) {
-            sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4;
-            sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32;
-            float d = ggml_fp16_to_fp32(y[i].d) * sc;
-            if (!d) {
-                continue;
-            }
-            for (int ii = 0; ii < 16; ++ii) {
-                int l = nearest_int(x[16*j + ii]/d);
-                l = MAX(-4, MIN(3, l));
-                L[16*j + ii] = l + 4;
-            }
-        }
-#else
-        if (max_scale) {
-            float iscale = -8.f/max_scale;
-            for (int j = 0; j < QK_K/16; j+=2) {
-                int l1 = nearest_int(iscale*scales[j]);
-                l1 = 8 + MAX(-8, MIN(7, l1));
-                int l2 = nearest_int(iscale*scales[j+1]);
-                l2 = 8 + MAX(-8, MIN(7, l2));
-                y[i].scales[j/2] = l1 | (l2 << 4);
-            }
-            y[i].d = ggml_fp32_to_fp16(1/iscale);
-        } else {
-            for (int j = 0; j < QK_K/16; j+=2) {
-                y[i].scales[j/2] = 0;
-            }
-            y[i].d = ggml_fp32_to_fp16(0.f);
-        }
-        for (int j = 0; j < QK_K/16; ++j) {
-            int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4;
-            float d = ggml_fp16_to_fp32(y[i].d) * (s - 8);
-            if (!d) {
-                continue;
-            }
-            for (int ii = 0; ii < 16; ++ii) {
-                int l = nearest_int(x[16*j + ii]/d);
-                l = MAX(-4, MIN(3, l));
-                L[16*j + ii] = l + 4;
-            }
-        }
-#endif
-
-        memset(y[i].hmask, 0, QK_K/8);
-        // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc.
-        int m = 0;
-        uint8_t hm = 1;
-        for (int j = 0; j < QK_K; ++j) {
-            if (L[j] > 3) {
-                y[i].hmask[m] |= hm;
-                L[j] -= 4;
-            }
-            if (++m == QK_K/8) {
-                m = 0; hm <<= 1;
-            }
-        }
-#if QK_K == 256
-        for (int j = 0; j < QK_K; j += 128) {
-            for (int l = 0; l < 32; ++l) {
-                y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6);
-            }
-        }
-#else
-        for (int l = 0; l < 16; ++l) {
-            y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6);
-        }
-#endif
-
-        x += QK_K;
-    }
-}
-
-#if QK_K == 256
-void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    const uint32_t kmask1 = 0x03030303;
-    const uint32_t kmask2 = 0x0f0f0f0f;
-
-    uint32_t aux[4];
-    const int8_t * scales = (const int8_t*)aux;
-
-    for (int i = 0; i < nb; i++) {
-
-        const float d_all = ggml_fp16_to_fp32(x[i].d);
-
-        const uint8_t * restrict q = x[i].qs;
-        const uint8_t * restrict hm = x[i].hmask;
-        uint8_t m = 1;
-
-        memcpy(aux, x[i].scales, 12);
-        uint32_t tmp = aux[2];
-        aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
-        aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
-        aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
-        aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
-
-        int is = 0;
-        float dl;
-        for (int n = 0; n < QK_K; n += 128) {
-            int shift = 0;
-            for (int j = 0; j < 4; ++j) {
-
-                dl = d_all * (scales[is++] - 32);
-                for (int l = 0; l < 16; ++l) {
-                    *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4));
-                }
-
-                dl = d_all * (scales[is++] - 32);
-                for (int l = 0; l < 16; ++l) {
-                    *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4));
-                }
-
-                shift += 2;
-                m <<= 1;
-            }
-            q += 32;
-        }
-
-    }
-}
-#else
-void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) {
-    assert(k % QK_K == 0);
-    assert(QK_K == 64);
-    const int nb = k / QK_K;
-
-    for (int i = 0; i < nb; i++) {
-
-        const float d_all = ggml_fp16_to_fp32(x[i].d);
-
-        const uint8_t * restrict q = x[i].qs;
-        const uint8_t * restrict hm = x[i].hmask;
-
-        const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
-        const float d2 = d_all * ((x[i].scales[0] >>  4) - 8);
-        const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
-        const float d4 = d_all * ((x[i].scales[1] >>  4) - 8);
-
-        for (int l=0; l<8; ++l) {
-            uint8_t h = hm[l];
-            y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4));
-            y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4));
-            y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4));
-            y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4));
-            y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4));
-            y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4));
-            y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4));
-            y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4));
-        }
-        y += QK_K;
-    }
-}
-#endif
-
-void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
-    quantize_row_q3_K_reference(x, vy, k);
-}
-
-size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
-    const int nb = k / QK_K;
-
-    // TODO - collect histograms - although, at a second thought, I don't really care about them
-    (void)hist;
-
-    for (int j = 0; j < nb; j += k) {
-        block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
-        quantize_row_q3_K_reference(src + j, y, k);
-    }
-    return (n/QK_K*sizeof(block_q3_K));
-}
-
-// ====================== 4-bit (de)-quantization
-
-void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    uint8_t L[QK_K];
-    float mins[QK_K/32];
-    float scales[QK_K/32];
-
-    for (int i = 0; i < nb; i++) {
-
-        float max_scale = 0; // as we are deducting the min, scales are always positive
-        float max_min = 0;
-        for (int j = 0; j < QK_K/32; ++j) {
-            scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 5);
-            float scale = scales[j];
-            if (scale > max_scale) {
-                max_scale = scale;
-            }
-            float min = mins[j];
-            if (min > max_min) {
-                max_min = min;
-            }
-        }
-
-#if QK_K == 256
-        float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
-        float inv_min   = max_min   > 0 ? 63.f/max_min   : 0.f;
-        for (int j = 0; j < QK_K/32; ++j) {
-            uint8_t ls = nearest_int(inv_scale*scales[j]);
-            uint8_t lm = nearest_int(inv_min*mins[j]);
-            ls = MIN(63, ls);
-            lm = MIN(63, lm);
-            if (j < 4) {
-                y[i].scales[j] = ls;
-                y[i].scales[j+4] = lm;
-            } else {
-                y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
-                y[i].scales[j-4] |= ((ls >> 4) << 6);
-                y[i].scales[j-0] |= ((lm >> 4) << 6);
-            }
-        }
-        y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
-        y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
-
-        uint8_t sc, m;
-        for (int j = 0; j < QK_K/32; ++j) {
-            get_scale_min_k4(j, y[i].scales, &sc, &m);
-            const float d = ggml_fp16_to_fp32(y[i].d) * sc;
-            if (!d) continue;
-            const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
-            for (int ii = 0; ii < 32; ++ii) {
-                int l = nearest_int((x[32*j + ii] + dm)/d);
-                l = MAX(0, MIN(15, l));
-                L[32*j + ii] = l;
-            }
-        }
-#else
-        const float s_factor = 15.f;
-        float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f;
-        float inv_min   = max_min   > 0 ? s_factor/max_min   : 0.f;
-        int d1 = nearest_int(inv_scale*scales[0]);
-        int m1 = nearest_int(inv_min*mins[0]);
-        int d2 = nearest_int(inv_scale*scales[1]);
-        int m2 = nearest_int(inv_min*mins[1]);
-        y[i].scales[0] = d1 | (m1 << 4);
-        y[i].scales[1] = d2 | (m2 << 4);
-        y[i].d[0] = ggml_fp32_to_fp16(max_scale/s_factor);
-        y[i].d[1] = ggml_fp32_to_fp16(max_min/s_factor);
-
-        float sumlx = 0;
-        int   suml2 = 0;
-        for (int j = 0; j < QK_K/32; ++j) {
-            const uint8_t sd = y[i].scales[j] & 0xF;
-            const uint8_t sm = y[i].scales[j] >>  4;
-            const float d = ggml_fp16_to_fp32(y[i].d[0]) * sd;
-            if (!d) continue;
-            const float m = ggml_fp16_to_fp32(y[i].d[1]) * sm;
-            for (int ii = 0; ii < 32; ++ii) {
-                int l = nearest_int((x[32*j + ii] + m)/d);
-                l = MAX(0, MIN(15, l));
-                L[32*j + ii] = l;
-                sumlx += (x[32*j + ii] + m)*l*sd;
-                suml2 += l*l*sd*sd;
-            }
-        }
-        if (suml2) {
-            y[i].d[0] = ggml_fp32_to_fp16(sumlx/suml2);
-        }
-#endif
-        uint8_t * q = y[i].qs;
-        for (int j = 0; j < QK_K; j += 64) {
-            for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4);
-            q += 32;
-        }
-
-        x += QK_K;
-
-    }
-}
-
-void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    for (int i = 0; i < nb; i++) {
-
-        const uint8_t * q = x[i].qs;
-
-#if QK_K == 256
-
-        const float d   = ggml_fp16_to_fp32(x[i].d);
-        const float min = ggml_fp16_to_fp32(x[i].dmin);
-
-        int is = 0;
-        uint8_t sc, m;
-        for (int j = 0; j < QK_K; j += 64) {
-            get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
-            const float d1 = d * sc; const float m1 = min * m;
-            get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
-            const float d2 = d * sc; const float m2 = min * m;
-            for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
-            for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l]  >> 4) - m2;
-            q += 32; is += 2;
-        }
-#else
-        const float dall = ggml_fp16_to_fp32(x[i].d[0]);
-        const float mall = ggml_fp16_to_fp32(x[i].d[1]);
-        const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4);
-        const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4);
-        for (int l = 0; l < 32; ++l) {
-            y[l+ 0] = d1 * (q[l] & 0xF) - m1;
-            y[l+32] = d2 * (q[l] >>  4) - m2;
-        }
-        y += QK_K;
-#endif
-
-    }
-}
-
-void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
-    assert(k % QK_K == 0);
-    block_q4_K * restrict y = vy;
-    quantize_row_q4_K_reference(x, y, k);
-}
-
-size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-    (void)hist; // TODO: collect histograms
-    for (int j = 0; j < nb; j += k) {
-        block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
-        quantize_row_q4_K_reference(src + j, y, k);
-    }
-    return (n/QK_K*sizeof(block_q4_K));
-}
-
-// ====================== 5-bit (de)-quantization
-
-void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-#if QK_K == 256
-    uint8_t L[QK_K];
-    float mins[QK_K/32];
-    float scales[QK_K/32];
-#else
-    int8_t L[QK_K];
-    float scales[QK_K/16];
-#endif
-
-    for (int i = 0; i < nb; i++) {
-
-#if QK_K == 256
-
-        float max_scale = 0; // as we are deducting the min, scales are always positive
-        float max_min = 0;
-        for (int j = 0; j < QK_K/32; ++j) {
-            scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 5);
-            float scale = scales[j];
-            if (scale > max_scale) {
-                max_scale = scale;
-            }
-            float min = mins[j];
-            if (min > max_min) {
-                max_min = min;
-            }
-        }
-
-        float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f;
-        float inv_min   = max_min   > 0 ? 63.f/max_min   : 0.f;
-        for (int j = 0; j < QK_K/32; ++j) {
-            uint8_t ls = nearest_int(inv_scale*scales[j]);
-            uint8_t lm = nearest_int(inv_min*mins[j]);
-            ls = MIN(63, ls);
-            lm = MIN(63, lm);
-            if (j < 4) {
-                y[i].scales[j] = ls;
-                y[i].scales[j+4] = lm;
-            } else {
-                y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4);
-                y[i].scales[j-4] |= ((ls >> 4) << 6);
-                y[i].scales[j-0] |= ((lm >> 4) << 6);
-            }
-        }
-        y[i].d = ggml_fp32_to_fp16(max_scale/63.f);
-        y[i].dmin = ggml_fp32_to_fp16(max_min/63.f);
-
-        uint8_t sc, m;
-        for (int j = 0; j < QK_K/32; ++j) {
-            get_scale_min_k4(j, y[i].scales, &sc, &m);
-            const float d = ggml_fp16_to_fp32(y[i].d) * sc;
-            if (!d) continue;
-            const float dm = ggml_fp16_to_fp32(y[i].dmin) * m;
-            for (int ii = 0; ii < 32; ++ii) {
-                int l = nearest_int((x[32*j + ii] + dm)/d);
-                l = MAX(0, MIN(31, l));
-                L[32*j + ii] = l;
-            }
-        }
-
-        uint8_t * restrict qh = y[i].qh;
-        uint8_t * restrict ql = y[i].qs;
-        memset(qh, 0, QK_K/8);
-
-        uint8_t m1 = 1, m2 = 2;
-        for (int n = 0; n < QK_K; n += 64) {
-            for (int j = 0; j < 32; ++j) {
-                int l1 = L[n + j];
-                if (l1 > 15) {
-                    l1 -= 16; qh[j] |= m1;
-                }
-                int l2 = L[n + j + 32];
-                if (l2 > 15) {
-                    l2 -= 16; qh[j] |= m2;
-                }
-                ql[j] = l1 | (l2 << 4);
-            }
-            m1 <<= 2; m2 <<= 2;
-            ql += 32;
-        }
-#else
-        float max_scale = 0, amax = 0;
-        for (int j = 0; j < QK_K/16; ++j) {
-            scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1);
-            float abs_scale = fabsf(scales[j]);
-            if (abs_scale > amax) {
-                amax = abs_scale;
-                max_scale = scales[j];
-            }
-        }
-
-        float iscale = -128.f/max_scale;
-        for (int j = 0; j < QK_K/16; ++j) {
-            int l = nearest_int(iscale*scales[j]);
-            y[i].scales[j] = MAX(-128, MIN(127, l));
-        }
-        y[i].d = ggml_fp32_to_fp16(1/iscale);
-
-        for (int j = 0; j < QK_K/16; ++j) {
-            const float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
-            if (!d) continue;
-            for (int ii = 0; ii < 16; ++ii) {
-                int l = nearest_int(x[16*j + ii]/d);
-                l = MAX(-16, MIN(15, l));
-                L[16*j + ii] = l + 16;
-            }
-        }
-
-        uint8_t * restrict qh = y[i].qh;
-        uint8_t * restrict ql = y[i].qs;
-        memset(qh, 0, QK_K/8);
-
-        for (int j = 0; j < 32; ++j) {
-            int jm = j%8;
-            int is = j/8;
-            int l1 = L[j];
-            if (l1 > 15) {
-                l1 -= 16; qh[jm] |= (1 << is);
-            }
-            int l2 = L[j + 32];
-            if (l2 > 15) {
-                l2 -= 16; qh[jm] |= (1 << (4 + is));
-            }
-            ql[j] = l1 | (l2 << 4);
-        }
-#endif
-
-        x += QK_K;
-
-    }
-}
-
-void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    for (int i = 0; i < nb; i++) {
-
-        const uint8_t * ql = x[i].qs;
-        const uint8_t * qh = x[i].qh;
-
-#if QK_K == 256
-
-        const float d = ggml_fp16_to_fp32(x[i].d);
-        const float min = ggml_fp16_to_fp32(x[i].dmin);
-
-        int is = 0;
-        uint8_t sc, m;
-        uint8_t u1 = 1, u2 = 2;
-        for (int j = 0; j < QK_K; j += 64) {
-            get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
-            const float d1 = d * sc; const float m1 = min * m;
-            get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
-            const float d2 = d * sc; const float m2 = min * m;
-            for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1;
-            for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l]  >> 4) + (qh[l] & u2 ? 16 : 0)) - m2;
-            ql += 32; is += 2;
-            u1 <<= 2; u2 <<= 2;
-        }
-#else
-        float d = ggml_fp16_to_fp32(x[i].d);
-        const int8_t * restrict s = x[i].scales;
-        for (int l = 0; l < 8; ++l) {
-            y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16));
-            y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16));
-            y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16));
-            y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16));
-            y[l+32] = d * s[2] * ((ql[l+ 0] >>  4) - (qh[l] & 0x10 ? 0 : 16));
-            y[l+40] = d * s[2] * ((ql[l+ 8] >>  4) - (qh[l] & 0x20 ? 0 : 16));
-            y[l+48] = d * s[3] * ((ql[l+16] >>  4) - (qh[l] & 0x40 ? 0 : 16));
-            y[l+56] = d * s[3] * ((ql[l+24] >>  4) - (qh[l] & 0x80 ? 0 : 16));
-        }
-        y += QK_K;
-#endif
-    }
-}
-
-void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
-    assert(k % QK_K == 0);
-    block_q5_K * restrict y = vy;
-    quantize_row_q5_K_reference(x, y, k);
-}
-
-size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-    (void)hist;
-    for (int j = 0; j < nb; j += k) {
-        block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
-        quantize_row_q5_K_reference(src + j, y, k);
-    }
-    return (n/QK_K*sizeof(block_q5_K));
-}
-
-// ====================== 6-bit (de)-quantization
-
-void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    int8_t L[QK_K];
-    float   scales[QK_K/16];
-
-    for (int i = 0; i < nb; i++) {
-
-        float max_scale = 0;
-        float max_abs_scale = 0;
-
-        for (int ib = 0; ib < QK_K/16; ++ib) {
-
-            const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1);
-            scales[ib] = scale;
-
-            const float abs_scale = fabsf(scale);
-            if (abs_scale > max_abs_scale) {
-                max_abs_scale = abs_scale;
-                max_scale = scale;
-            }
-
-        }
-
-        float iscale = -128.f/max_scale;
-        y[i].d = ggml_fp32_to_fp16(1/iscale);
-        for (int ib = 0; ib < QK_K/16; ++ib) {
-            y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib]));
-        }
-
-        for (int j = 0; j < QK_K/16; ++j) {
-            float d = ggml_fp16_to_fp32(y[i].d) * y[i].scales[j];
-            if (!d) {
-                continue;
-            }
-            for (int ii = 0; ii < 16; ++ii) {
-                int l = nearest_int(x[16*j + ii]/d);
-                l = MAX(-32, MIN(31, l));
-                L[16*j + ii] = l + 32;
-            }
-        }
-
-        uint8_t * restrict ql = y[i].ql;
-        uint8_t * restrict qh = y[i].qh;
-#if QK_K == 256
-        for (int j = 0; j < QK_K; j += 128) {
-            for (int l = 0; l < 32; ++l) {
-                const uint8_t q1 = L[j + l +  0] & 0xF;
-                const uint8_t q2 = L[j + l + 32] & 0xF;
-                const uint8_t q3 = L[j + l + 64] & 0xF;
-                const uint8_t q4 = L[j + l + 96] & 0xF;
-                ql[l+ 0] = q1 | (q3 << 4);
-                ql[l+32] = q2 | (q4 << 4);
-                qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6);
-            }
-            ql += 64;
-            qh += 32;
-        }
-#else
-        for (int l = 0; l < 32; ++l) {
-            const uint8_t q1 = L[l +  0] & 0xF;
-            const uint8_t q2 = L[l + 32] & 0xF;
-            ql[l] = q1 | (q2 << 4);
-        }
-        for (int l = 0; l < 16; ++l) {
-            qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6);
-        }
-#endif
-
-        x += QK_K;
-
-    }
-}
-
-void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    for (int i = 0; i < nb; i++) {
-
-        const float d = ggml_fp16_to_fp32(x[i].d);
-
-        const uint8_t * restrict ql = x[i].ql;
-        const uint8_t * restrict qh = x[i].qh;
-        const int8_t  * restrict sc = x[i].scales;
-
-#if QK_K == 256
-        for (int n = 0; n < QK_K; n += 128) {
-            for (int l = 0; l < 32; ++l) {
-                int is = l/16;
-                const int8_t q1 = (int8_t)((ql[l +  0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
-                const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
-                const int8_t q3 = (int8_t)((ql[l +  0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
-                const int8_t q4 = (int8_t)((ql[l + 32]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
-                y[l +  0] = d * sc[is + 0] * q1;
-                y[l + 32] = d * sc[is + 2] * q2;
-                y[l + 64] = d * sc[is + 4] * q3;
-                y[l + 96] = d * sc[is + 6] * q4;
-            }
-            y  += 128;
-            ql += 64;
-            qh += 32;
-            sc += 8;
-        }
-#else
-        for (int l = 0; l < 16; ++l) {
-            const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
-            const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
-            const int8_t q3 = (int8_t)((ql[l+ 0]  >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
-            const int8_t q4 = (int8_t)((ql[l+16]  >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
-            y[l+ 0] = d * sc[0] * q1;
-            y[l+16] = d * sc[1] * q2;
-            y[l+32] = d * sc[2] * q3;
-            y[l+48] = d * sc[3] * q4;
-        }
-        y  += 64;
-#endif
-
-    }
-}
-
-void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
-    assert(k % QK_K == 0);
-    block_q6_K * restrict y = vy;
-    quantize_row_q6_K_reference(x, y, k);
-}
-
-size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    (void)hist; // TODO
-
-    for (int j = 0; j < nb; j += k) {
-        block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
-        quantize_row_q6_K_reference(src + j, y, k);
-    }
-    return (n/QK_K*sizeof(block_q6_K));
-}
-
-//===================================== Q8_K ==============================================
-
-void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    for (int i = 0; i < nb; i++) {
-
-        float max = 0;
-        float amax = 0;
-        for (int j = 0; j < QK_K; ++j) {
-            float ax = fabsf(x[j]);
-            if (ax > amax) {
-                amax = ax; max = x[j];
-            }
-        }
-        if (!amax) {
-            y[i].d = 0;
-            memset(y[i].qs, 0, QK_K);
-            x += QK_K;
-            continue;
-        }
-        const float iscale = -128.f/max;
-        for (int j = 0; j < QK_K; ++j) {
-            int v = nearest_int(iscale*x[j]);
-            y[i].qs[j] = MIN(127, v);
-        }
-        for (int j = 0; j < QK_K/16; ++j) {
-            int sum = 0;
-            for (int ii = 0; ii < 16; ++ii) {
-                sum += y[i].qs[j*16 + ii];
-            }
-            y[i].bsums[j] = sum;
-        }
-        y[i].d = 1/iscale;
-        x += QK_K;
-    }
-}
-
-void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) {
-    assert(k % QK_K == 0);
-    const int nb = k / QK_K;
-
-    for (int i = 0; i < nb; i++) {
-        for (int j = 0; j < QK_K; ++j) {
-            *y++ = x[i].d * x[i].qs[j];
-        }
-    }
-}
-
-void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) {
-    quantize_row_q8_K_reference(x, y, k);
-}
-
-//===================================== Dot ptoducts =================================
-
-//
-// Helper functions
-//
-#if __AVX__ || __AVX2__ || __AVX512F__
-
-// horizontally add 8 floats
-static inline float hsum_float_8(const __m256 x) {
-    __m128 res = _mm256_extractf128_ps(x, 1);
-    res = _mm_add_ps(res, _mm256_castps256_ps128(x));
-    res = _mm_add_ps(res, _mm_movehl_ps(res, res));
-    res = _mm_add_ss(res, _mm_movehdup_ps(res));
-    return _mm_cvtss_f32(res);
-}
-
-// shuffles to pick the required scales in dot products
-static inline __m256i get_scale_shuffle_q3k(int i) {
-    static const uint8_t k_shuffle[128] = {
-         0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,     2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
-         4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,     6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
-         8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,    10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
-        12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,    14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,
-    };
-    return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
-}
-static inline __m256i get_scale_shuffle_k4(int i) {
-    static const uint8_t k_shuffle[256] = {
-         0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
-         2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
-         4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
-         6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
-         8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9,
-        10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,
-        12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,
-        14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15
-    };
-    return _mm256_loadu_si256((const __m256i*)k_shuffle + i);
-}
-static inline __m128i get_scale_shuffle(int i) {
-    static const uint8_t k_shuffle[128] = {
-         0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
-         2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
-         4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5,
-         6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7,
-         8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9,
-        10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11,
-        12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13,
-        14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15
-    };
-    return _mm_loadu_si128((const __m128i*)k_shuffle + i);
-}
-#endif
-
-#if QK_K == 256
-void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-
-    const block_q2_K * restrict x = vx;
-    const block_q8_K * restrict y = vy;
-
-    const int nb = n / QK_K;
-
-#ifdef __ARM_NEON
-
-    const uint8x16_t m3 = vdupq_n_u8(0x3);
-    const uint8x16_t m4 = vdupq_n_u8(0xF);
-    const int32x4_t  vzero = vdupq_n_s32(0);
-
-    int8x16x2_t q2bytes;
-    uint8_t aux[16];
-
-    float sum = 0;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-        const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
-        const uint8_t * restrict q2 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-        const uint8_t * restrict sc = x[i].scales;
-
-        const uint8x16_t mins_and_scales = vld1q_u8(sc);
-        const uint8x16_t scales = vandq_u8(mins_and_scales, m4);
-        vst1q_u8(aux, scales);
-
-        const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4);
-        const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
-        const int16x8x2_t mins16 = {vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))};
-        const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])),
-                                       vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0])));
-        const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])),
-                                       vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1])));
-        sum += dmin * vaddvq_s32(vaddq_s32(s0, s1));
-
-        int isum = 0;
-        int is = 0;
-
-// We use this macro instead of a function call because for some reason
-// the code runs 2-3% slower, even if the function is declared inline
-#if defined(__ARM_FEATURE_DOTPROD)
-#define MULTIPLY_ACCUM_WITH_SCALE(index)\
-        isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
-        isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
-#else
-#define MULTIPLY_ACCUM_WITH_SCALE(index)\
-        {\
-    const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
-                                   vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
-    const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
-                                   vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
-    isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
-        }
-#endif
-
-#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
-        q8bytes = vld1q_s8_x2(q8); q8 += 32;\
-        q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\
-        q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
-        MULTIPLY_ACCUM_WITH_SCALE((index));
-
-
-        for (int j = 0; j < QK_K/128; ++j) {
-
-            const uint8x16x2_t q2bits = vld1q_u8_x2(q2); q2 += 32;
-
-            int8x16x2_t q8bytes = vld1q_s8_x2(q8); q8 += 32;
-            q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
-            q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
-            MULTIPLY_ACCUM_WITH_SCALE(0);
-
-            SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
-
-            SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
-
-            SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
-
-            is += 8;
-        }
-        sum += d * isum;
-
-    }
-
-    *s = sum;
-
-#elif defined __AVX2__
-
-    const __m256i m3 = _mm256_set1_epi8(3);
-    const __m128i m4 = _mm_set1_epi8(0xF);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-        const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
-        const uint8_t * restrict q2 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
-        const __m128i scales8 = _mm_and_si128(mins_and_scales, m4);
-        const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
-        const __m256i mins = _mm256_cvtepi8_epi16(mins8);
-        const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums));
-
-        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc);
-
-        const __m256i all_scales = _mm256_cvtepi8_epi16(scales8);
-        const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
-        const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
-        const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
-
-        __m256i sumi = _mm256_setzero_si256();
-
-        for (int j = 0; j < QK_K/128; ++j) {
-
-            const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32;
-
-            const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-            const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-            const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-            const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-
-            const __m256i q2_0 = _mm256_and_si256(q2bits, m3);
-            const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3);
-            const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3);
-            const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3);
-
-            __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
-            __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
-            __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2);
-            __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3);
-
-            p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0);
-            p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1);
-            p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2);
-            p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3);
-
-            p0 = _mm256_add_epi32(p0, p1);
-            p2 = _mm256_add_epi32(p2, p3);
-
-            sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2));
-        }
-
-        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
-
-    }
-
-    *s = hsum_float_8(acc);
-
-#elif defined __AVX__
-
-    const __m128i m3 = _mm_set1_epi8(0x3);
-    const __m128i m4 = _mm_set1_epi8(0xF);
-    const __m128i m2 = _mm_set1_epi8(0x2);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
-        const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
-        const uint8_t * restrict q2 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        // load mins and scales from block_q2_K.scales[QK_K/16]
-        const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales);
-        const __m128i scales16 = _mm_and_si128(mins_and_scales, m4);
-        const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4);
-        const __m128i mins_0 = _mm_cvtepi8_epi16(mins16);
-        const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16));
-
-        // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2
-        const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0]));
-        const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8]));
-
-        // sumf += -dmin * summs in 32bits*8
-        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc);
-
-        const __m128i scales_0 = _mm_cvtepi8_epi16(scales16);
-        const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16));
-        const __m128i scales[2] = { scales_0, scales_1 };
-
-        __m128i sumi_0 = _mm_setzero_si128();
-        __m128i sumi_1 = _mm_setzero_si128();
-
-        for (int j = 0; j < QK_K/128; ++j) {
-
-            // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K]
-            const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-
-            // load 2bits*16*8 from block_q2_K.qs[QK_K/4]
-            __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
-            const __m128i q2_0 = _mm_and_si128(q2bits, m3);
-            const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
-            const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
-            const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
-            q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16;
-            const __m128i q2_1 = _mm_and_si128(q2bits, m3);
-            const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
-            const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
-            const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
-
-            // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8
-            __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0);
-            __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1);
-            __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2);
-            __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3);
-            __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4);
-            __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5);
-            __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6);
-            __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7);
-
-            // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8
-            __m128i shuffle = _mm_set1_epi16(0x0100);
-            p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7);
-
-            p0 = _mm_add_epi32(p0, p1);
-            p2 = _mm_add_epi32(p2, p3);
-            p4 = _mm_add_epi32(p4, p5);
-            p6 = _mm_add_epi32(p6, p7);
-
-            // isum in 32bits*4*2
-            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2));
-            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6));
-        }
-
-        // sumf += dall * isum - dmin * summs in 32bits
-        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
-        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc);
-    }
-
-    *s = hsum_float_8(acc);
-
-#else
-
-    float sumf = 0;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const uint8_t * q2 = x[i].qs;
-        const  int8_t * q8 = y[i].qs;
-        const uint8_t * sc = x[i].scales;
-
-        int summs = 0;
-        for (int j = 0; j < 16; ++j) {
-            summs += y[i].bsums[j] * (sc[j] >> 4);
-        }
-
-        const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
-        const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
-        int isum = 0;
-        int is = 0;
-        int d;
-        for (int k = 0; k < QK_K/128; ++k) {
-            int shift = 0;
-            for (int j = 0; j < 4; ++j) {
-                d = sc[is++] & 0xF;
-                int isuml = 0;
-                for (int l =  0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
-                isum += d * isuml;
-                d = sc[is++] & 0xF;
-                isuml = 0;
-                for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3);
-                isum += d * isuml;
-                shift += 2;
-                q8 += 32;
-            }
-            q2 += 32;
-        }
-        sumf += dall * isum - dmin * summs;
-    }
-    *s = sumf;
-#endif
-}
-
-#else
-
-void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-
-    const block_q2_K * restrict x = vx;
-    const block_q8_K * restrict y = vy;
-
-    const int nb = n / QK_K;
-
-#ifdef __ARM_NEON
-
-    const uint8x16_t m3 = vdupq_n_u8(0x3);
-    const int32x4_t  vzero = vdupq_n_s32(0);
-
-    int8x16x4_t q2bytes;
-
-    uint32_t aux32[2];
-    const uint8_t * scales = (const uint8_t *)aux32;
-
-    float sum = 0;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * (float)x[i].d;
-        const float dmin = -y[i].d * (float)x[i].dmin;
-
-        const uint8_t * restrict q2 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-        const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
-
-        aux32[0] = sc[0] & 0x0f0f0f0f;
-        aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f;
-
-        sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]);
-
-        int isum1 = 0, isum2 = 0;
-
-        const uint8x16_t q2bits = vld1q_u8(q2);
-
-        const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
-
-        q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3));
-        q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3));
-        q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
-        q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
-
-#if defined(__ARM_FEATURE_DOTPROD)
-        isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
-        isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
-        isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
-        isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
-#else
-        const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
-                                       vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));
-        const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
-                                       vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));
-        isum1 += vaddvq_s16(p1) * scales[0];
-        isum2 += vaddvq_s16(p2) * scales[1];
-
-        const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
-                                       vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2])));
-        const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
-                                       vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3])));
-        isum1 += vaddvq_s16(p3) * scales[2];
-        isum2 += vaddvq_s16(p4) * scales[3];
-#endif
-        sum += d * (isum1 + isum2);
-
-    }
-
-    *s = sum;
-
-#elif defined __AVX2__
-
-    const __m256i m3 = _mm256_set1_epi8(3);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    uint32_t ud, um;
-    const uint8_t * restrict db = (const uint8_t *)&ud;
-    const uint8_t * restrict mb = (const uint8_t *)&um;
-
-    float summs = 0;
-
-    // TODO: optimize this
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-        const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
-        const uint8_t * restrict q2 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
-        ud = (sc[0] >> 0) & 0x0f0f0f0f;
-        um = (sc[0] >> 4) & 0x0f0f0f0f;
-
-        int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
-        summs += dmin * smin;
-
-        const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
-        const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3);
-        const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3);
-
-        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
-        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
-
-        const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0);
-        const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1);
-
-        const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0));
-        const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1));
-        const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0));
-        const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1));
-
-        acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc);
-        acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc);
-        acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc);
-        acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc);
-    }
-
-    *s = hsum_float_8(acc) + summs;
-
-#elif defined __AVX__
-
-    const __m128i m3 = _mm_set1_epi8(3);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    uint32_t ud, um;
-    const uint8_t * restrict db = (const uint8_t *)&ud;
-    const uint8_t * restrict mb = (const uint8_t *)&um;
-
-    float summs = 0;
-
-    // TODO: optimize this
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-        const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
-        const uint8_t * restrict q2 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const uint32_t * restrict sc = (const uint32_t *)x[i].scales;
-        ud = (sc[0] >> 0) & 0x0f0f0f0f;
-        um = (sc[0] >> 4) & 0x0f0f0f0f;
-
-        int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3];
-        summs += dmin * smin;
-
-        const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2);
-        const __m128i q2_0 = _mm_and_si128(q2bits, m3);
-        const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3);
-        const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3);
-        const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3);
-
-        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
-        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
-
-        const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0));
-        const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1));
-        const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0));
-        const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1));
-
-        const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0));
-        const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1));
-        const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2));
-        const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3));
-
-        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc);
-        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc);
-        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc);
-        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc);
-    }
-
-    *s = hsum_float_8(acc) + summs;
-
-#else
-
-    float sumf = 0;
-
-    int isum[4];
-
-    for (int i = 0; i < nb; ++i) {
-
-        const uint8_t * q2 = x[i].qs;
-        const  int8_t * q8 = y[i].qs;
-        const uint8_t * sc = x[i].scales;
-
-        int summs = 0;
-        for (int j = 0; j < QK_K/16; ++j) {
-            summs += y[i].bsums[j] * (sc[j] >> 4);
-        }
-
-        const float dall = y[i].d * ggml_fp16_to_fp32(x[i].d);
-        const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
-        isum[0] = isum[1] = isum[2] = isum[3] = 0;
-        for (int l =  0; l < 16; ++l) {
-            isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3);
-            isum[1] += q8[l+16] * ((q2[l] >> 2) & 3);
-            isum[2] += q8[l+32] * ((q2[l] >> 4) & 3);
-            isum[3] += q8[l+48] * ((q2[l] >> 6) & 3);
-        }
-        for (int l = 0; l < 4; ++l) {
-            isum[l] *= (sc[l] & 0xF);
-        }
-        sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs;
-    }
-    *s = sumf;
-#endif
-}
-#endif
-
-#if QK_K == 256
-void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-    assert(n % QK_K == 0);
-
-    const uint32_t kmask1 = 0x03030303;
-    const uint32_t kmask2 = 0x0f0f0f0f;
-
-    const block_q3_K * restrict x = vx;
-    const block_q8_K * restrict y = vy;
-
-    const int nb = n / QK_K;
-
-#ifdef __ARM_NEON
-
-    uint32_t aux[3];
-    uint32_t utmp[4];
-
-    const uint8x16_t m3b = vdupq_n_u8(0x3);
-#ifdef __ARM_FEATURE_DOTPROD
-    const int32x4_t  vzero = vdupq_n_s32(0);
-#endif
-
-    const uint8x16_t m0 = vdupq_n_u8(1);
-    const uint8x16_t m1 = vshlq_n_u8(m0, 1);
-    const uint8x16_t m2 = vshlq_n_u8(m0, 2);
-    const uint8x16_t m3 = vshlq_n_u8(m0, 3);
-    const int8_t m32 = 32;
-
-    int8x16x4_t q3bytes;
-
-    float sum = 0;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-
-        const uint8_t * restrict q3 = x[i].qs;
-        const uint8_t * restrict qh = x[i].hmask;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        uint8x16x2_t qhbits = vld1q_u8_x2(qh);
-
-        uint8x16x4_t q3h;
-
-        int32_t isum = 0;
-
-        // Set up scales
-        memcpy(aux, x[i].scales, 12);
-        utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4);
-        utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4);
-        utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4);
-        utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4);
-
-        int8_t * scale = (int8_t *)utmp;
-        for (int j = 0; j < 16; ++j) scale[j] -= m32;
-
-        for (int j = 0; j < QK_K/128; ++j) {
-
-            const uint8x16x2_t q3bits = vld1q_u8_x2(q3); q3 += 32;
-            const int8x16x4_t q8bytes_1 = vld1q_s8_x4(q8); q8 += 64;
-            const int8x16x4_t q8bytes_2 = vld1q_s8_x4(q8); q8 += 64;
-
-            q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2);
-            q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2);
-            q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1);
-            q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1);
-
-            q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0]));
-            q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1]));
-            q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
-            q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
-
-#if defined(__ARM_FEATURE_DOTPROD)
-            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
-            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
-            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
-            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
-#else
-            int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
-                                     vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
-            int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
-                                     vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
-            int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
-                                     vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
-            int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
-                                     vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
-            isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
-#endif
-            scale += 4;
-
-            q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
-            q3h.val[1] = vbicq_u8(m2, qhbits.val[1]);
-            q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1);
-            q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1);
-
-            q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0]));
-            q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1]));
-            q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
-            q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
-
-#if defined(__ARM_FEATURE_DOTPROD)
-            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
-            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
-            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
-            isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
-#else
-            p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
-                           vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
-            p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
-                           vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
-            p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
-                           vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
-            p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
-                           vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
-            isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
-#endif
-            scale += 4;
-
-            if (j == 0) {
-                qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4);
-                qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4);
-            }
-
-        }
-        sum += d * isum;
-
-    }
-
-    *s = sum;
-
-#elif defined __AVX2__
-
-    const __m256i m3 = _mm256_set1_epi8(3);
-    const __m256i mone = _mm256_set1_epi8(1);
-    const __m128i m32 = _mm_set1_epi8(32);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    uint32_t aux[3];
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-
-        const uint8_t * restrict q3 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        // Set up scales
-        memcpy(aux, x[i].scales, 12);
-        __m128i scales128 = _mm_set_epi32(
-                ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
-                ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
-                (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
-                (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
-        scales128 = _mm_sub_epi8(scales128, m32);
-        const __m256i all_scales = _mm256_cvtepi8_epi16(scales128);
-        const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0);
-        const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1);
-        const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)};
-
-        // high bit
-        const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask);
-
-        // integer accumulator
-        __m256i sumi = _mm256_setzero_si256();
-
-        int bit = 0;
-        int is  = 0;
-
-        for (int j = 0; j < QK_K/128; ++j) {
-            // load low 2 bits
-            const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32;
-
-            // prepare low and high bits
-            const __m256i q3l_0 = _mm256_and_si256(q3bits, m3);
-            const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
-            ++bit;
-
-            const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3);
-            const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
-            ++bit;
-
-            const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3);
-            const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
-            ++bit;
-
-            const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3);
-            const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2);
-            ++bit;
-
-            // load Q8 quants
-            const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-            const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-            const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-            const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-
-            // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
-            // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
-            // and 2 if the high bit was set)
-            __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
-            __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
-            __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2);
-            __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3);
-
-            __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
-            __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
-            __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2);
-            __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3);
-
-            p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
-            p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
-            p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
-            p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
-
-            // multiply with scales
-            p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0);
-            p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1);
-            p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2);
-            p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3);
-
-            // accumulate
-            p16_0 = _mm256_add_epi32(p16_0, p16_1);
-            p16_2 = _mm256_add_epi32(p16_2, p16_3);
-            sumi  = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2));
-
-        }
-
-        // multiply with block scale and accumulate
-        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
-
-    }
-
-    *s = hsum_float_8(acc);
-
-#elif defined __AVX__
-
-    const __m128i m3 = _mm_set1_epi8(3);
-    const __m128i mone = _mm_set1_epi8(1);
-    const __m128i m32 = _mm_set1_epi8(32);
-    const __m128i m2 = _mm_set1_epi8(2);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    uint32_t *aux;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-
-        const uint8_t * restrict q3 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        // Set up scales
-        aux = (uint32_t *)x[i].scales;
-        __m128i scales128 = _mm_set_epi32(
-                ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4),
-                ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4),
-                (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4),
-                (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4));
-        scales128 = _mm_sub_epi8(scales128, m32);
-        const __m128i scales_0 = _mm_cvtepi8_epi16(scales128);
-        const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128));
-        const __m128i scales[2] = { scales_0, scales_1 };
-
-        // high bit *128*2 from block_q3_K.hmask[QK_K/8]
-        const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]);
-        const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]);
-
-        // integer accumulator
-        __m128i sumi_0 = _mm_setzero_si128();
-        __m128i sumi_1 = _mm_setzero_si128();
-
-        for (int j = 0; j < QK_K/128; ++j) {
-            // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4]
-            const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
-            const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16;
-
-            // prepare low and high bits
-            const int bit = j << 2;
-
-            const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3);
-            const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3);
-            const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2);
-            const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2);
-
-            const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3);
-            const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3);
-            const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
-            const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2);
-
-            const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3);
-            const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3);
-            const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
-            const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2);
-
-            const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3);
-            const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3);
-            const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
-            const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2);
-
-            // load Q8 quants from block_q8_K.qs[QK_K]
-            const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-
-            // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
-            // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
-            // and 2 if the high bit was set)
-            __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0);
-            __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1);
-            __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2);
-            __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3);
-            __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4);
-            __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5);
-            __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6);
-            __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7);
-
-            __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0);
-            __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1);
-            __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2);
-            __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3);
-            __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4);
-            __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5);
-            __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6);
-            __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7);
-
-            p16_0 = _mm_sub_epi16(p16_0, q8s_0);
-            p16_1 = _mm_sub_epi16(p16_1, q8s_1);
-            p16_2 = _mm_sub_epi16(p16_2, q8s_2);
-            p16_3 = _mm_sub_epi16(p16_3, q8s_3);
-            p16_4 = _mm_sub_epi16(p16_4, q8s_4);
-            p16_5 = _mm_sub_epi16(p16_5, q8s_5);
-            p16_6 = _mm_sub_epi16(p16_6, q8s_6);
-            p16_7 = _mm_sub_epi16(p16_7, q8s_7);
-
-            // multiply with scales
-            __m128i shuffle = _mm_set1_epi16(0x0100);
-            p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7);
-
-            // accumulate
-            p16_0 = _mm_add_epi32(p16_0, p16_1);
-            p16_2 = _mm_add_epi32(p16_2, p16_3);
-            p16_4 = _mm_add_epi32(p16_4, p16_5);
-            p16_6 = _mm_add_epi32(p16_6, p16_7);
-            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
-            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6));
-
-        }
-
-        // multiply with block scale and accumulate
-        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
-        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
-
-    }
-
-    *s = hsum_float_8(acc);
-
-#else
-    // scalar version
-    // This function is written like this so the compiler can manage to vectorize most of it
-    // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the
-    // manually vectorized version above. Every other version I tried would run at least 4 times slower.
-    // The ideal situation would be if we could just write the code once, and the compiler would
-    // automatically produce the best possible set of machine instructions, instead of us having to manually
-    // write vectorized versions for AVX, ARM_NEON, etc.
-
-    int8_t  aux8[QK_K];
-    int16_t aux16[8];
-    float   sums [8];
-    int32_t aux32[8];
-    memset(sums, 0, 8*sizeof(float));
-
-    uint32_t auxs[4];
-    const int8_t * scales = (const int8_t*)auxs;
-
-    float sumf = 0;
-    for (int i = 0; i < nb; ++i) {
-        const uint8_t * restrict q3 = x[i].qs;
-        const uint8_t * restrict hm = x[i].hmask;
-        const  int8_t * restrict q8 = y[i].qs;
-        memset(aux32, 0, 8*sizeof(int32_t));
-        int8_t * restrict a = aux8;
-        uint8_t m = 1;
-        for (int j = 0; j < QK_K; j += 128) {
-            for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3;
-            for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
-            a += 32; m <<= 1;
-            for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3;
-            for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
-            a += 32; m <<= 1;
-            for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3;
-            for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
-            a += 32; m <<= 1;
-            for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3;
-            for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4);
-            a += 32; m <<= 1;
-            q3 += 32;
-        }
-        a = aux8;
-
-        memcpy(auxs, x[i].scales, 12);
-        uint32_t tmp = auxs[2];
-        auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4);
-        auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4);
-        auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4);
-        auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4);
-        for (int j = 0; j < QK_K/16; ++j) {
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
-            q8 += 8; a += 8;
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l];
-            q8 += 8; a += 8;
-        }
-        const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
-        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
-    }
-    for (int l = 0; l < 8; ++l) sumf += sums[l];
-    *s = sumf;
-
-#endif
-
-}
-
-#else
-
-void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-    assert(n % QK_K == 0);
-
-    const block_q3_K * restrict x = vx;
-    const block_q8_K * restrict y = vy;
-
-    const int nb = n / QK_K;
-
-#ifdef __ARM_NEON
-
-#ifdef __ARM_FEATURE_DOTPROD
-    const int32x4_t  vzero = vdupq_n_s32(0);
-#endif
-
-    const uint8x16_t m3b = vdupq_n_u8(0x3);
-    const uint8x16_t mh  = vdupq_n_u8(4);
-
-    int8x16x4_t q3bytes;
-
-    uint16_t aux16[2];
-    int8_t * scales = (int8_t *)aux16;
-
-    float sum = 0;
-
-    for (int i = 0; i < nb; ++i) {
-
-        uint8x16x4_t q3h;
-
-        const uint8x8_t  hbits    = vld1_u8(x[i].hmask);
-        const uint8x16_t q3bits   = vld1q_u8(x[i].qs);
-        const int8x16x4_t q8bytes = vld1q_s8_x4(y[i].qs);
-
-        const uint16_t a = *(const uint16_t *)x[i].scales;
-        aux16[0] = a & 0x0f0f;
-        aux16[1] = (a >> 4) & 0x0f0f;
-
-        for (int j = 0; j < 4; ++j) scales[j] -= 8;
-
-        int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]);
-
-        const float d = y[i].d * (float)x[i].d;
-
-        const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1));
-        q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2));
-        q3h.val[1] = vandq_u8(mh, htmp);
-        q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2));
-        q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4));
-
-        q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b),                q3h.val[0]));
-        q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1]));
-        q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
-        q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6),                q3h.val[3]));
-
-#if defined(__ARM_FEATURE_DOTPROD)
-        isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
-        isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
-        isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
-        isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
-#else
-        const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
-                                       vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0])));
-        const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
-                                       vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1])));
-        const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
-                                       vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2])));
-        const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
-                                       vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3])));
-        isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3];
-#endif
-
-        sum += d * isum;
-
-    }
-
-    *s = sum;
-
-#elif defined __AVX2__
-
-    const __m256i m3 = _mm256_set1_epi8(3);
-    const __m256i m1 = _mm256_set1_epi8(1);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    uint64_t aux64;
-
-    uint16_t aux16[2];
-    const int8_t * aux8 = (const int8_t *)aux16;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-
-        const uint8_t * restrict q3 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const uint16_t a = *(const uint16_t *)x[i].scales;
-        aux16[0] = a & 0x0f0f;
-        aux16[1] = (a >> 4) & 0x0f0f;
-
-        const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8));
-        const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8));
-
-        memcpy(&aux64, x[i].hmask, 8);
-
-        const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
-        __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux);
-        __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4);
-        q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2);
-        q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2);
-
-        // load low 2 bits
-        const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
-
-        // prepare low and high bits
-        const __m256i q3aux  = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits);
-        const __m256i q3l_0 = _mm256_and_si256(q3aux, m3);
-        const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3);
-
-        // load Q8 quants
-        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
-        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
-
-        // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16,
-        // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
-        // and 2 if the high bit was set)
-        const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0);
-        const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1);
-
-        __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0);
-        __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1);
-
-        p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
-        p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
-
-        // multiply with scales
-        p16_0 = _mm256_madd_epi16(scale_0, p16_0);
-        p16_1 = _mm256_madd_epi16(scale_1, p16_1);
-
-        p16_0 = _mm256_add_epi32(p16_0, p16_1);
-
-        // multiply with block scale and accumulate
-        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc);
-
-    }
-
-    *s = hsum_float_8(acc);
-
-#elif defined __AVX__
-
-    const __m128i m3 = _mm_set1_epi8(3);
-    const __m128i m1 = _mm_set1_epi8(1);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    uint64_t aux64;
-
-    uint16_t aux16[2];
-    const int8_t * aux8 = (const int8_t *)aux16;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-
-        const uint8_t * restrict q3 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const uint16_t a = *(const uint16_t *)x[i].scales;
-        aux16[0] = a & 0x0f0f;
-        aux16[1] = (a >> 4) & 0x0f0f;
-
-        const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8);
-        const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8);
-        const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8);
-        const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8);
-
-        memcpy(&aux64, x[i].hmask, 8);
-
-        __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0);
-        __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2);
-        __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4);
-        __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6);
-        q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2);
-        q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2);
-        q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2);
-        q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2);
-
-        // load low 2 bits
-        const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3);
-
-        // prepare low and high bits
-        const __m128i q3l_0 = _mm_and_si128(q3bits, m3);
-        const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3);
-        const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3);
-        const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3);
-
-        // load Q8 quants
-        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
-        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
-
-        // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16,
-        // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set,
-        // and 2 if the high bit was set)
-        const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0));
-        const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1));
-        const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0));
-        const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1));
-
-        __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0));
-        __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1));
-        __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0));
-        __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1));
-
-        p16_0 = _mm_sub_epi16(p16_0, q8s_0);
-        p16_1 = _mm_sub_epi16(p16_1, q8s_1);
-        p16_2 = _mm_sub_epi16(p16_2, q8s_2);
-        p16_3 = _mm_sub_epi16(p16_3, q8s_3);
-
-        // multiply with scales
-        p16_0 = _mm_madd_epi16(scale_0, p16_0);
-        p16_1 = _mm_madd_epi16(scale_1, p16_1);
-        p16_2 = _mm_madd_epi16(scale_2, p16_2);
-        p16_3 = _mm_madd_epi16(scale_3, p16_3);
-
-        p16_0 = _mm_add_epi32(p16_0, p16_2);
-        p16_1 = _mm_add_epi32(p16_1, p16_3);
-        __m256i p16 = MM256_SET_M128I(p16_1, p16_0);
-
-        // multiply with block scale and accumulate
-        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc);
-
-    }
-
-    *s = hsum_float_8(acc);
-
-#else
-
-    int8_t  aux8[QK_K];
-    int16_t aux16[8];
-    float   sums [8];
-    int32_t aux32[8];
-    int32_t scales[4];
-    memset(sums, 0, 8*sizeof(float));
-
-    float sumf = 0;
-    for (int i = 0; i < nb; ++i) {
-        const uint8_t * restrict q3 = x[i].qs;
-        const uint8_t * restrict hm = x[i].hmask;
-        const  int8_t * restrict q8 = y[i].qs;
-        int8_t * restrict a = aux8;
-        for (int l = 0; l < 8; ++l) {
-            a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4);
-            a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4);
-            a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4);
-            a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4);
-            a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4);
-            a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4);
-            a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4);
-            a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4);
-        }
-
-        scales[0] = (x[i].scales[0] & 0xF) - 8;
-        scales[1] = (x[i].scales[0] >>  4) - 8;
-        scales[2] = (x[i].scales[1] & 0xF) - 8;
-        scales[3] = (x[i].scales[1] >>  4) - 8;
-
-        memset(aux32, 0, 8*sizeof(int32_t));
-        for (int j = 0; j < QK_K/16; ++j) {
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            q8 += 8; a += 8;
-            for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l];
-            q8 += 8; a += 8;
-            for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l];
-        }
-        const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
-        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
-    }
-    for (int l = 0; l < 8; ++l) sumf += sums[l];
-    *s = sumf;
-
-#endif
-
-}
-#endif
-
-#if QK_K == 256
-void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-    assert(n % QK_K == 0);
-
-    const block_q4_K * restrict x = vx;
-    const block_q8_K * restrict y = vy;
-
-    const int nb = n / QK_K;
-
-    static const uint32_t kmask1 = 0x3f3f3f3f;
-    static const uint32_t kmask2 = 0x0f0f0f0f;
-    static const uint32_t kmask3 = 0x03030303;
-
-    uint32_t utmp[4];
-
-#ifdef __ARM_NEON
-
-    const uint8x16_t m4b = vdupq_n_u8(0xf);
-#ifdef __ARM_FEATURE_DOTPROD
-    const int32x4_t mzero = vdupq_n_s32(0);
-#endif
-
-    int8x16x2_t q4bytes;
-    int8x16x2_t q8bytes;
-
-    float sumf = 0;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-        const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
-        const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
-
-        memcpy(utmp, x[i].scales, 12);
-
-        const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)};
-        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
-        utmp[0] &= kmask1;
-
-        const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8)));
-        const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
-                                         vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
-        sumf -= dmin * vaddvq_s32(prod);
-
-        const uint8_t * scales = (const uint8_t *)utmp;
-
-        const uint8_t * restrict q4 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        //int32x4_t isum = mzero;
-
-        int32_t sumi1 = 0;
-        int32_t sumi2 = 0;
-
-        for (int j = 0; j < QK_K/64; ++j) {
-
-            const uint8x16x2_t q4bits = vld1q_u8_x2(q4); q4 += 32;
-
-#ifdef __ARM_FEATURE_DOTPROD
-            q8bytes = vld1q_s8_x2(q8); q8 += 32;
-            q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[0], m4b));
-            q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[1], m4b));
-
-            const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
-            sumi1 += vaddvq_s32(p1) * scales[2*j+0];
-
-            q8bytes = vld1q_s8_x2(q8); q8 += 32;
-            q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
-            q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
-
-            const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
-
-            sumi2 += vaddvq_s32(p2) * scales[2*j+1];
-#else
-            q8bytes = vld1q_s8_x2(q8); q8 += 32;
-            q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[0], m4b));
-            q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[1], m4b));
-            const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
-                                           vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
-            const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
-                                           vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
-            sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
-
-            q8bytes = vld1q_s8_x2(q8); q8 += 32;
-            q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
-            q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
-            const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
-                                           vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
-            const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
-                                           vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
-            sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
-
-#endif
-        }
-
-        sumf += d * (sumi1 + sumi2);
-
-    }
-
-    *s = sumf;
-
-#elif defined __AVX2__
-
-    const __m256i m4 = _mm256_set1_epi8(0xF);
-
-    __m256 acc = _mm256_setzero_ps();
-    __m128 acc_m = _mm_setzero_ps();
-
-   for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-        const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
-        memcpy(utmp, x[i].scales, 12);
-        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
-        const uint32_t uaux = utmp[1] & kmask1;
-        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
-        utmp[2] = uaux;
-        utmp[0] &= kmask1;
-
-        const uint8_t * restrict q4 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
-
-        const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
-        const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
-        const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
-        acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m);
-
-        const __m128i sc128  = _mm256_extracti128_si256(mins_and_scales, 0);
-        const __m256i scales = MM256_SET_M128I(sc128, sc128);
-
-        __m256i sumi = _mm256_setzero_si256();
-
-        for (int j = 0; j < QK_K/64; ++j) {
-
-            const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
-            const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
-
-            const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
-            const __m256i q4l = _mm256_and_si256(q4bits, m4);
-            const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
-
-            const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-            __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
-            p16l = _mm256_madd_epi16(scale_l, p16l);
-            sumi = _mm256_add_epi32(sumi, p16l);
-
-            const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-            __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
-            p16h = _mm256_madd_epi16(scale_h, p16h);
-            sumi = _mm256_add_epi32(sumi, p16h);
-
-        }
-
-        __m256 vd = _mm256_set1_ps(d);
-        acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
-
-    }
-
-    acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
-    acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
-
-    *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
-
-#elif defined __AVX__
-
-    const __m128i m4 = _mm_set1_epi8(0xF);
-    const __m128i m2 = _mm_set1_epi8(0x2);
-
-    __m256 acc = _mm256_setzero_ps();
-    __m128 acc_m = _mm_setzero_ps();
-
-   for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-        const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
-        const uint8_t * restrict q4 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        memcpy(utmp, x[i].scales, 12);
-        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
-        const uint32_t uaux = utmp[1] & kmask1;
-        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
-        utmp[2] = uaux;
-        utmp[0] &= kmask1;
-
-        const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
-        const __m128i scales = _mm_cvtepu8_epi16(utmps);
-        const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
-
-        const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
-        const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
-        const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
-        const __m128i prod = _mm_madd_epi16(mins, q8s);
-        acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m);
-
-        __m128i sumi_0 = _mm_setzero_si128();
-        __m128i sumi_1 = _mm_setzero_si128();
-
-        __m128i shuffle = _mm_set1_epi16(0x0100);
-        for (int j = 0; j < QK_K/64; ++j) {
-
-            const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle);
-            shuffle = _mm_add_epi16(shuffle, m2);
-
-            __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
-            const __m128i q4l_0 = _mm_and_si128(q4bits, m4);
-            const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
-            q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
-            const __m128i q4l_1 = _mm_and_si128(q4bits, m4);
-            const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4);
-
-            const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0);
-            p16l = _mm_madd_epi16(scale_l, p16l);
-            sumi_0 = _mm_add_epi32(sumi_0, p16l);
-            const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            p16l = _mm_maddubs_epi16(q4l_1, q8l_1);
-            p16l = _mm_madd_epi16(scale_l, p16l);
-            sumi_1 = _mm_add_epi32(sumi_1, p16l);
-
-            const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0);
-            p16h = _mm_madd_epi16(scale_h, p16h);
-            sumi_0 = _mm_add_epi32(sumi_0, p16h);
-            const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            p16h = _mm_maddubs_epi16(q4h_1, q8h_1);
-            p16h = _mm_madd_epi16(scale_h, p16h);
-            sumi_1 = _mm_add_epi32(sumi_1, p16h);
-
-        }
-
-        __m256 vd = _mm256_set1_ps(d);
-        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
-        acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
-
-    }
-
-    acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m));
-    acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m));
-
-    *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m);
-
-#else
-
-
-    const uint8_t * scales = (const uint8_t*)&utmp[0];
-    const uint8_t * mins   = (const uint8_t*)&utmp[2];
-
-    int8_t  aux8[QK_K];
-    int16_t aux16[8];
-    float   sums [8];
-    int32_t aux32[8];
-    memset(sums, 0, 8*sizeof(float));
-
-    float sumf = 0;
-    for (int i = 0; i < nb; ++i) {
-        const uint8_t * restrict q4 = x[i].qs;
-        const  int8_t * restrict q8 = y[i].qs;
-        memset(aux32, 0, 8*sizeof(int32_t));
-        int8_t * restrict a = aux8;
-        for (int j = 0; j < QK_K/64; ++j) {
-            for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
-            a += 32;
-            for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l]  >> 4);
-            a += 32; q4 += 32;
-        }
-        memcpy(utmp, x[i].scales, 12);
-        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
-        const uint32_t uaux = utmp[1] & kmask1;
-        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
-        utmp[2] = uaux;
-        utmp[0] &= kmask1;
-
-        int sumi = 0;
-        for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
-        a = aux8;
-        int is = 0;
-        for (int j = 0; j < QK_K/32; ++j) {
-            int32_t scale = scales[is++];
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
-            q8 += 8; a += 8;
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
-            q8 += 8; a += 8;
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
-            q8 += 8; a += 8;
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
-            q8 += 8; a += 8;
-        }
-        const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
-        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
-        const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
-        sumf -= dmin * sumi;
-    }
-    for (int l = 0; l < 8; ++l) sumf += sums[l];
-    *s = sumf;
-#endif
-}
-#else
-void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-    assert(n % QK_K == 0);
-
-    const block_q4_K * restrict x = vx;
-    const block_q8_K * restrict y = vy;
-
-    const int nb = n / QK_K;
-
-#ifdef __ARM_NEON
-
-    const uint8x16_t m4b = vdupq_n_u8(0xf);
-
-#ifdef __ARM_FEATURE_DOTPROD
-    const int32x4_t mzero = vdupq_n_s32(0);
-#endif
-
-    float sumf = 0;
-
-    int8x16x2_t q4bytes;
-    int8x16x4_t q8bytes;
-
-    float sum_mins = 0.f;
-
-    uint16_t aux16[2];
-    const uint8_t * restrict scales = (const uint8_t *)aux16;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const uint8_t * restrict q4 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const uint16_t * restrict a = (const uint16_t *)x[i].scales;
-        aux16[0] = a[0] & 0x0f0f;
-        aux16[1] = (a[0] >> 4) & 0x0f0f;
-
-        const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]);
-        sum_mins += y[i].d * (float)x[i].d[1] * summi;
-
-        const float d = y[i].d * (float)x[i].d[0];
-
-        const uint8x16x2_t q4bits = vld1q_u8_x2(q4);
-
-#ifdef __ARM_FEATURE_DOTPROD
-        q8bytes = vld1q_s8_x4(q8);
-        q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[0], m4b));
-        q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[1], m4b));
-
-        const int32x4_t p1 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
-        const int32_t sumi1 = vaddvq_s32(p1) * scales[0];
-
-        q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
-        q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
-
-        const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
-        const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
-
-#else
-        q8bytes = vld1q_s8_x4(q8);
-        q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[0], m4b));
-        q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8  (q4bits.val[1], m4b));
-        const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
-                                       vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
-        const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
-                                       vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
-        int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0];
-
-        q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
-        q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
-        const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])),
-                                       vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2])));
-        const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])),
-                                       vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3])));
-        int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1];
-
-#endif
-        sumf += d * (sumi1 + sumi2);
-
-    }
-
-    *s = sumf - sum_mins;
-
-#elif defined __AVX2__
-
-    const __m256i m4 = _mm256_set1_epi8(0xF);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    float summs = 0;
-
-    uint16_t aux16[2];
-    const uint8_t * scales = (const uint8_t *)aux16;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
-        const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
-        const __m256 vd = _mm256_set1_ps(d);
-
-        const uint16_t * a = (const uint16_t *)x[i].scales;
-        aux16[0] = a[0] & 0x0f0f;
-        aux16[1] = (a[0] >> 4) & 0x0f0f;
-
-        summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
-
-        const uint8_t * restrict q4 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
-        const __m256i q4l = _mm256_and_si256(q4bits, m4);
-        const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4);
-
-        const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0));
-        const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32));
-
-        const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l);
-        const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h);
-
-        const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l);
-        acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc);
-
-        const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h);
-        acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc);
-
-    }
-
-    *s = hsum_float_8(acc) - summs;
-
-#elif defined __AVX__
-
-    const __m128i m4 = _mm_set1_epi8(0xF);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    float summs = 0;
-
-    uint16_t aux16[2];
-    const uint8_t * scales = (const uint8_t *)aux16;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = ggml_fp16_to_fp32(x[i].d[0]) * y[i].d;
-        const float m = ggml_fp16_to_fp32(x[i].d[1]) * y[i].d;
-        const __m256 vd = _mm256_set1_ps(d);
-
-        const uint16_t * a = (const uint16_t *)x[i].scales;
-        aux16[0] = a[0] & 0x0f0f;
-        aux16[1] = (a[0] >> 4) & 0x0f0f;
-
-        summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
-
-        const uint8_t * restrict q4 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4);
-        const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0);
-        const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1);
-        const __m128i q4_0 = _mm_and_si128(q4bits_0, m4);
-        const __m128i q4_1 = _mm_and_si128(q4bits_1, m4);
-        const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4);
-        const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4);
-
-        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
-        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
-
-        const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
-        const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
-        const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
-        const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
-
-        const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0);
-        const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1);
-        acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc);
-
-        const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2);
-        const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3);
-        acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc);
-
-    }
-
-    *s = hsum_float_8(acc) - summs;
-
-#else
-
-    uint8_t aux8[QK_K];
-    int16_t aux16[16];
-    float   sums [8];
-    memset(sums, 0, 8*sizeof(float));
-
-    uint16_t s16[2];
-    const uint8_t * restrict scales = (const uint8_t *)s16;
-
-    float sumf = 0;
-    for (int i = 0; i < nb; ++i) {
-        const uint8_t * restrict q4 = x[i].qs;
-        const  int8_t * restrict q8 = y[i].qs;
-        uint8_t * restrict a = aux8;
-        for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF;
-        for (int l = 0; l < 32; ++l) a[l+32] = q4[l]  >> 4;
-
-        const uint16_t * restrict b = (const uint16_t *)x[i].scales;
-        s16[0] = b[0] & 0x0f0f;
-        s16[1] = (b[0] >> 4) & 0x0f0f;
-
-        sumf -= y[i].d * ggml_fp16_to_fp32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]));
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d[0]);
-
-        for (int j = 0; j < QK_K/32; ++j) {
-            for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
-            q8 += 16; a += 16;
-            for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l];
-            q8 += 16; a += 16;
-            const float dl = d * scales[j];
-            for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]);
-        }
-    }
-    for (int l = 0; l < 8; ++l) sumf += sums[l];
-    *s = sumf;
-#endif
-}
-#endif
-
-#if QK_K == 256
-void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-    assert(n % QK_K == 0);
-
-    const block_q5_K * restrict x = vx;
-    const block_q8_K * restrict y = vy;
-
-    const int nb = n / QK_K;
-
-    static const uint32_t kmask1 = 0x3f3f3f3f;
-    static const uint32_t kmask2 = 0x0f0f0f0f;
-    static const uint32_t kmask3 = 0x03030303;
-
-    uint32_t utmp[4];
-
-
-#ifdef __ARM_NEON
-
-    const uint8x16_t m4b = vdupq_n_u8(0xf);
-    const int32x4_t mzero = vdupq_n_s32(0);
-    const uint8x16_t mone = vdupq_n_u8(1);
-    const uint8x16_t mtwo = vdupq_n_u8(2);
-
-    int8x16x4_t q5bytes;
-
-    float sumf = 0;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-        const float dmin = y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
-        const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8));
-
-        memcpy(utmp, x[i].scales, 12);
-        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
-        const uint32_t uaux = utmp[1] & kmask1;
-        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
-        utmp[2] = uaux;
-        utmp[0] &= kmask1;
-
-        const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8);
-        const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8));
-        const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)),
-                                         vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins)));
-        int32_t sumi_mins = vaddvq_s32(prod);
-
-        const uint8_t * scales = (const uint8_t *)utmp;
-
-        const uint8_t * restrict q5 = x[i].qs;
-        const uint8_t * restrict qh = x[i].qh;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        uint8x16x2_t qhbits = vld1q_u8_x2(qh);
-
-        uint8x16x4_t q5h;
-
-        int32_t sumi = 0;
-
-        for (int j = 0; j < QK_K/64; ++j) {
-
-            const uint8x16x2_t q5bits = vld1q_u8_x2(q5); q5 += 32;
-            const int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
-
-            q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
-            q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
-            q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3);
-            q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3);
-            qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2);
-            qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2);
-
-            q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0]));
-            q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1]));
-            q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
-            q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
-
-#if defined(__ARM_FEATURE_DOTPROD)
-
-            sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
-            sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
-#else
-
-            const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
-                                           vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
-            const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
-                                           vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
-            sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
-
-            const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
-                                           vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
-            const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
-                                           vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
-            sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
-#endif
-        }
-
-        sumf += d * sumi - dmin * sumi_mins;
-
-    }
-
-    *s = sumf;
-
-#elif defined __AVX2__
-
-    const __m256i m4 = _mm256_set1_epi8(0xF);
-    const __m128i mzero = _mm_setzero_si128();
-    const __m256i mone  = _mm256_set1_epi8(1);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    float summs = 0.f;
-
-   for (int i = 0; i < nb; ++i) {
-
-        const uint8_t * restrict q5 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-#if QK_K == 256
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-        const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
-        memcpy(utmp, x[i].scales, 12);
-        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
-        const uint32_t uaux = utmp[1] & kmask1;
-        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
-        utmp[2] = uaux;
-        utmp[0] &= kmask1;
-#else
-        // TODO
-        const float d = 0, dmin = 0;
-#endif
-
-        const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]));
-
-        const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums);
-        const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1));
-        const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s);
-        const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
-        summs += dmin * _mm_extract_epi32(hsum, 0);
-
-        const __m128i sc128  = _mm256_extracti128_si256(mins_and_scales, 0);
-        const __m256i scales = MM256_SET_M128I(sc128, sc128);
-
-        const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh);
-        __m256i hmask = mone;
-
-        __m256i sumi = _mm256_setzero_si256();
-
-        int bit = 0;
-
-        for (int j = 0; j < QK_K/64; ++j) {
-
-            const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0));
-            const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1));
-
-            const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32;
-
-            const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
-            const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
-            const __m256i q5_0  = _mm256_add_epi8(q5l_0, q5h_0);
-            hmask = _mm256_slli_epi16(hmask, 1);
-
-            const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
-            const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4);
-            const __m256i q5_1  = _mm256_add_epi8(q5l_1, q5h_1);
-            hmask = _mm256_slli_epi16(hmask, 1);
-
-            const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-            const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-
-            __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0);
-            __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1);
-
-            p16_0 = _mm256_madd_epi16(scale_0, p16_0);
-            p16_1 = _mm256_madd_epi16(scale_1, p16_1);
-
-            sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
-
-        }
-
-        __m256 vd = _mm256_set1_ps(d);
-        acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc);
-
-    }
-
-    *s = hsum_float_8(acc) + summs;
-
-#elif defined __AVX__
-
-    const __m128i m4 = _mm_set1_epi8(0xF);
-    const __m128i mzero = _mm_setzero_si128();
-    const __m128i mone  = _mm_set1_epi8(1);
-    const __m128i m2 = _mm_set1_epi8(2);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    float summs = 0.f;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-        const float dmin = -y[i].d * ggml_fp16_to_fp32(x[i].dmin);
-
-        const uint8_t * restrict q5 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        memcpy(utmp, x[i].scales, 12);
-        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
-        const uint32_t uaux = utmp[1] & kmask1;
-        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
-        utmp[2] = uaux;
-        utmp[0] &= kmask1;
-
-        const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]);
-        const __m128i scales = _mm_cvtepu8_epi16(utmps);
-        const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps));
-
-        const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]);
-        const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]);
-        const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1);
-        const __m128i prod = _mm_madd_epi16(mins, q8s);
-        const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero);
-        summs += dmin * _mm_extract_epi32(hsum, 0);
-
-        const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]);
-        const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]);
-        __m128i hmask = mone;
-
-        __m128i sumi_0 = _mm_setzero_si128();
-        __m128i sumi_1 = _mm_setzero_si128();
-
-        int bit = 0;
-
-        __m128i shuffle = _mm_set1_epi16(0x0100);
-        for (int j = 0; j < QK_K/64; ++j) {
-
-            const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
-            shuffle = _mm_add_epi16(shuffle, m2);
-            const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
-            shuffle = _mm_add_epi16(shuffle, m2);
-
-            const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
-            const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16;
-
-            __m128i q5l_0 = _mm_and_si128(q5bits_0, m4);
-            __m128i q5l_1 = _mm_and_si128(q5bits_1, m4);
-            __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
-            __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
-            __m128i q5_0  = _mm_add_epi8(q5l_0, q5h_0);
-            __m128i q5_1  = _mm_add_epi8(q5l_1, q5h_1);
-            hmask = _mm_slli_epi16(hmask, 1);
-
-            __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0);
-            __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1);
-            p16_0 = _mm_madd_epi16(scale_0, p16_0);
-            p16_1 = _mm_madd_epi16(scale_0, p16_1);
-
-            q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4);
-            q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4);
-            q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4);
-            q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4);
-            q5_0  = _mm_add_epi8(q5l_0, q5h_0);
-            q5_1  = _mm_add_epi8(q5l_1, q5h_1);
-            hmask = _mm_slli_epi16(hmask, 1);
-
-            q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0);
-            __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1);
-            p16_2 = _mm_madd_epi16(scale_1, p16_2);
-            p16_3 = _mm_madd_epi16(scale_1, p16_3);
-
-            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
-            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
-
-        }
-
-        __m256 vd = _mm256_set1_ps(d);
-        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
-        acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc);
-
-    }
-
-    *s = hsum_float_8(acc) + summs;
-
-#else
-
-    const uint8_t * scales = (const uint8_t*)&utmp[0];
-    const uint8_t * mins   = (const uint8_t*)&utmp[2];
-
-    int8_t  aux8[QK_K];
-    int16_t aux16[8];
-    float   sums [8];
-    int32_t aux32[8];
-    memset(sums, 0, 8*sizeof(float));
-
-    float sumf = 0;
-    for (int i = 0; i < nb; ++i) {
-        const uint8_t * restrict q4 = x[i].qs;
-        const uint8_t * restrict hm = x[i].qh;
-        const  int8_t * restrict q8 = y[i].qs;
-        memset(aux32, 0, 8*sizeof(int32_t));
-        int8_t * restrict a = aux8;
-        uint8_t m = 1;
-        for (int j = 0; j < QK_K/64; ++j) {
-            for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF);
-            for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
-            a += 32; m <<= 1;
-            for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l]  >> 4);
-            for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0);
-            a += 32; m <<= 1;
-            q4 += 32;
-        }
-        memcpy(utmp, x[i].scales, 12);
-        utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
-        const uint32_t uaux = utmp[1] & kmask1;
-        utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
-        utmp[2] = uaux;
-        utmp[0] &= kmask1;
-
-        int sumi = 0;
-        for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2];
-        a = aux8;
-        int is = 0;
-        for (int j = 0; j < QK_K/32; ++j) {
-            int32_t scale = scales[is++];
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
-            q8 += 8; a += 8;
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
-            q8 += 8; a += 8;
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
-            q8 += 8; a += 8;
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
-            q8 += 8; a += 8;
-        }
-        const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
-        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
-        const float dmin = ggml_fp16_to_fp32(x[i].dmin) * y[i].d;
-        sumf -= dmin * sumi;
-    }
-    for (int l = 0; l < 8; ++l) sumf += sums[l];
-    *s = sumf;
-#endif
-}
-
-#else
-
-void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-    assert(n % QK_K == 0);
-
-    const block_q5_K * restrict x = vx;
-    const block_q8_K * restrict y = vy;
-
-    const int nb = n / QK_K;
-
-#ifdef __ARM_NEON
-
-    const uint8x16_t m4b = vdupq_n_u8(0xf);
-    const int32x4_t mzero = vdupq_n_s32(0);
-    const uint8x16_t mh = vdupq_n_u8(16);
-
-    int8x16x4_t q5bytes;
-    uint8x16x4_t q5h;
-
-    float sumf = 0;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * (float)x[i].d;
-        const int8_t * sc = x[i].scales;
-
-        const uint8_t * restrict q5 = x[i].qs;
-        const uint8_t * restrict qh = x[i].qh;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const uint8x8_t qhbits = vld1_u8(qh);
-
-        const uint8x16x2_t q5bits = vld1q_u8_x2(q5);
-        const int8x16x4_t q8bytes = vld1q_s8_x4(q8);
-
-        const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1));
-        q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4));
-        q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2));
-        q5h.val[2] = vbicq_u8(mh, htmp);
-        q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2));
-
-        q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0]));
-        q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1]));
-        q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
-        q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
-
-#if defined(__ARM_FEATURE_DOTPROD)
-
-        int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
-        int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
-        int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
-        int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
-
-        sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
-
-#else
-
-        const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
-                                       vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
-        const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
-                                       vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
-        int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1);
-
-        const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
-                                       vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
-        const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
-                                       vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
-        sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3);
-
-        sumf += d*sumi;
-#endif
-
-    }
-
-    *s = sumf;
-
-#elif defined __AVX2__
-
-    const __m256i m4 = _mm256_set1_epi8(0xF);
-    const __m256i mone  = _mm256_set1_epi8(1);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    for (int i = 0; i < nb; ++i) {
-
-        const uint8_t * restrict q5 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-
-        const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
-
-        const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0]));
-        const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2]));
-
-        int64_t aux64;
-        memcpy(&aux64, x[i].qh, 8);
-        const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64);
-        const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128);
-
-        const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4);
-        const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4);
-
-        const __m256i q5l_0 = _mm256_and_si256(q5bits, m4);
-        const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4);
-
-        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
-        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
-
-        const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0));
-        const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1));
-        const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0));
-        const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1));
-
-        const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1));
-
-        acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc);
-
-    }
-
-    *s = hsum_float_8(acc);
-
-#elif defined __AVX__
-
-    const __m128i m4 = _mm_set1_epi8(0xF);
-    const __m128i mone  = _mm_set1_epi8(1);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    for (int i = 0; i < nb; ++i) {
-
-        const uint8_t * restrict q5 = x[i].qs;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-
-        const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5);
-
-        const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]);
-        const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]);
-        const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]);
-        const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]);
-
-        int64_t aux64;
-        memcpy(&aux64, x[i].qh, 8);
-        const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64);
-        const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2);
-
-        const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4);
-        const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4);
-        const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4);
-        const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4);
-
-        const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4);
-        const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4);
-        const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4);
-        const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4);
-
-        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
-        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
-
-        const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0)));
-        const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1)));
-        const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0)));
-        const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1)));
-        const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0)));
-        const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1)));
-        const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0)));
-        const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1)));
-
-        const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2));
-        const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3));
-
-        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc);
-
-    }
-
-    *s = hsum_float_8(acc);
-
-#else
-
-    int8_t aux8[QK_K];
-    int16_t aux16[16];
-    float   sums [8];
-    memset(sums, 0, 8*sizeof(float));
-
-    float sumf = 0;
-    for (int i = 0; i < nb; ++i) {
-        const uint8_t * restrict q4 = x[i].qs;
-        const uint8_t * restrict hm = x[i].qh;
-        const  int8_t * restrict q8 = y[i].qs;
-        int8_t * restrict a = aux8;
-        for (int l = 0; l < 32; ++l) {
-            a[l+ 0] = q4[l] & 0xF;
-            a[l+32] = q4[l]  >> 4;
-        }
-        for (int is = 0; is < 8; ++is) {
-            uint8_t m = 1 << is;
-            for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16);
-        }
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-        const int8_t * restrict sc = x[i].scales;
-
-        for (int j = 0; j < QK_K/16; ++j) {
-            const float dl = d * sc[j];
-            for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l <  8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]);
-            q8 += 16; a += 16;
-        }
-    }
-    for (int l = 0; l < 8; ++l) sumf += sums[l];
-    *s = sumf;
-#endif
-}
-#endif
-
-
-#if QK_K == 256
-void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-    assert(n % QK_K == 0);
-
-    const block_q6_K * restrict x = vx;
-    const block_q8_K * restrict y = vy;
-
-    const int nb = n / QK_K;
-
-#ifdef __ARM_NEON
-
-    float sum = 0;
-
-    const uint8x16_t m4b = vdupq_n_u8(0xF);
-    const int32x4_t  vzero = vdupq_n_s32(0);
-    //const int8x16_t  m32s = vdupq_n_s8(32);
-
-    const uint8x16_t mone = vdupq_n_u8(3);
-
-    int8x16x4_t q6bytes;
-    uint8x16x4_t q6h;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d_all = ggml_fp16_to_fp32(x[i].d);
-
-        const uint8_t * restrict q6 = x[i].ql;
-        const uint8_t * restrict qh = x[i].qh;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const int8_t * restrict scale = x[i].scales;
-
-        const int16x8x2_t q8sums = vld1q_s16_x2(y[i].bsums);
-        const int8x16_t scales = vld1q_s8(scale);
-        const int16x8x2_t q6scales = {vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))};
-
-        const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])),
-                                                   vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))),
-                                         vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])),
-                                                   vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1]))));
-        int32_t isum_mins = vaddvq_s32(prod);
-
-        int32_t isum = 0;
-
-        for (int j = 0; j < QK_K/128; ++j) {
-
-            uint8x16x2_t qhbits = vld1q_u8_x2(qh); qh += 32;
-            uint8x16x4_t q6bits = vld1q_u8_x4(q6); q6 += 64;
-            int8x16x4_t q8bytes = vld1q_s8_x4(q8); q8 += 64;
-
-            q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4);
-            q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4);
-            uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2);
-            q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
-            shifted = vshrq_n_u8(qhbits.val[1], 2);
-            q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
-
-            //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
-            //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
-            //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s);
-            //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s);
-            q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0]));
-            q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1]));
-            q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
-            q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
-
-#if defined(__ARM_FEATURE_DOTPROD)
-
-            isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
-                    vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
-                    vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
-                    vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
-            scale += 4;
-
-#else
-
-            int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
-                                     vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
-            int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
-                                     vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
-            isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
-            scale += 2;
-
-            int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
-                                     vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
-            int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
-                                     vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
-            isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
-            scale += 2;
-#endif
-
-            q8bytes = vld1q_s8_x4(q8); q8 += 64;
-
-            shifted = vshrq_n_u8(qhbits.val[0], 4);
-            q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
-            shifted = vshrq_n_u8(qhbits.val[1], 4);
-            q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
-            shifted = vshrq_n_u8(qhbits.val[0], 6);
-            q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
-            shifted = vshrq_n_u8(qhbits.val[1], 6);
-            q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
-
-            //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s);
-            //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s);
-            //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s);
-            //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s);
-            q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0]));
-            q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1]));
-            q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
-            q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
-
-#if defined(__ARM_FEATURE_DOTPROD)
-
-            isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
-                    vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
-                    vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
-                    vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
-            scale += 4;
-
-            //for (int l = 0; l < 4; ++l) {
-            //    const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
-            //    isum += vaddvq_s32(p) * *scale++;
-            //}
-#else
-            p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
-                                    vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
-            p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
-                                    vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
-            isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
-            scale += 2;
-
-            p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
-                                    vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
-            p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
-                                    vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
-            isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
-            scale += 2;
-#endif
-
-        }
-        //sum += isum * d_all * y[i].d;
-        sum += d_all * y[i].d * (isum - 32 * isum_mins);
-
-    }
-    *s = sum;
-
-#elif defined __AVX2__
-
-    const __m256i m4 = _mm256_set1_epi8(0xF);
-    const __m256i m2 = _mm256_set1_epi8(3);
-    const __m256i m32s = _mm256_set1_epi8(32);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-
-        const uint8_t * restrict q4 = x[i].ql;
-        const uint8_t * restrict qh = x[i].qh;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
-
-        __m256i sumi = _mm256_setzero_si256();
-
-        int is = 0;
-
-        for (int j = 0; j < QK_K/128; ++j) {
-
-            const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0));
-            const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1));
-            const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2));
-            const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3));
-            is += 4;
-
-            const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
-            const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32;
-            const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32;
-
-            const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4);
-            const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4);
-            const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4);
-            const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4);
-
-            const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
-            const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1);
-            const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2);
-            const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3);
-
-            const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-            const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-            const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-            const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32;
-
-            __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
-            __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
-            __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2);
-            __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3);
-
-            __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
-            __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
-            __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2);
-            __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3);
-
-            p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
-            p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
-            p16_2 = _mm256_sub_epi16(p16_2, q8s_2);
-            p16_3 = _mm256_sub_epi16(p16_3, q8s_3);
-
-            p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
-            p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
-            p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2);
-            p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3);
-
-            sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
-            sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3));
-
-        }
-
-        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
-    }
-
-    *s = hsum_float_8(acc);
-
-#elif defined __AVX__
-
-    const __m128i m4 = _mm_set1_epi8(0xF);
-    const __m128i m3 = _mm_set1_epi8(3);
-    const __m128i m32s = _mm_set1_epi8(32);
-    const __m128i m2 = _mm_set1_epi8(2);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-
-        const uint8_t * restrict q4 = x[i].ql;
-        const uint8_t * restrict qh = x[i].qh;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales);
-
-        __m128i sumi_0 = _mm_setzero_si128();
-        __m128i sumi_1 = _mm_setzero_si128();
-
-        __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
-        for (int j = 0; j < QK_K/128; ++j) {
-
-            const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
-            const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16;
-
-            const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4);
-            const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4);
-            const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4);
-            const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4);
-            const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4);
-            const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4);
-            const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4);
-            const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4);
-
-            const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
-            const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
-            const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
-            const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16;
-
-            const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0);
-            const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1);
-            const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2);
-            const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3);
-            const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4);
-            const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5);
-            const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6);
-            const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7);
-
-            const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-            const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16;
-
-            __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0);
-            __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1);
-            __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2);
-            __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3);
-            __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4);
-            __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5);
-            __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6);
-            __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7);
-
-            __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0);
-            __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1);
-            __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2);
-            __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3);
-            __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4);
-            __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5);
-            __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6);
-            __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7);
-
-            p16_0 = _mm_sub_epi16(p16_0, q8s_0);
-            p16_1 = _mm_sub_epi16(p16_1, q8s_1);
-            p16_2 = _mm_sub_epi16(p16_2, q8s_2);
-            p16_3 = _mm_sub_epi16(p16_3, q8s_3);
-            p16_4 = _mm_sub_epi16(p16_4, q8s_4);
-            p16_5 = _mm_sub_epi16(p16_5, q8s_5);
-            p16_6 = _mm_sub_epi16(p16_6, q8s_6);
-            p16_7 = _mm_sub_epi16(p16_7, q8s_7);
-
-            const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle);
-            shuffle = _mm_add_epi8(shuffle, m2);
-            const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle);
-            shuffle = _mm_add_epi8(shuffle, m2);
-            const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle);
-            shuffle = _mm_add_epi8(shuffle, m2);
-            const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle);
-            shuffle = _mm_add_epi8(shuffle, m2);
-
-            p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
-            p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
-            p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
-            p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
-            p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4);
-            p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5);
-            p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6);
-            p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7);
-
-            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
-            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
-            sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6));
-            sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7));
-
-        }
-
-        __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0);
-        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc);
-    }
-
-    *s = hsum_float_8(acc);
-
-#else
-
-    int8_t  aux8[QK_K];
-    int16_t aux16[8];
-    float   sums [8];
-    int32_t aux32[8];
-    memset(sums, 0, 8*sizeof(float));
-
-    float sumf = 0;
-    for (int i = 0; i < nb; ++i) {
-        const uint8_t * restrict q4 = x[i].ql;
-        const uint8_t * restrict qh = x[i].qh;
-        const  int8_t * restrict q8 = y[i].qs;
-        memset(aux32, 0, 8*sizeof(int32_t));
-        int8_t * restrict a = aux8;
-        for (int j = 0; j < QK_K; j += 128) {
-            for (int l = 0; l < 32; ++l) {
-                a[l +  0] = (int8_t)((q4[l +  0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
-                a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
-                a[l + 64] = (int8_t)((q4[l +  0] >>  4) | (((qh[l] >> 4) & 3) << 4)) - 32;
-                a[l + 96] = (int8_t)((q4[l + 32] >>  4) | (((qh[l] >> 6) & 3) << 4)) - 32;
-            }
-            a  += 128;
-            q4 += 64;
-            qh += 32;
-        }
-        a = aux8;
-        int is = 0;
-        for (int j = 0; j < QK_K/16; ++j) {
-            int scale = x[i].scales[is++];
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
-            q8 += 8; a += 8;
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
-            q8 += 8; a += 8;
-        }
-        const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
-        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
-    }
-    for (int l = 0; l < 8; ++l) sumf += sums[l];
-    *s = sumf;
-#endif
-}
-
-#else
-
-void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
-    assert(n % QK_K == 0);
-
-    const block_q6_K * restrict x = vx;
-    const block_q8_K * restrict y = vy;
-
-    const int nb = n / QK_K;
-
-#ifdef __ARM_NEON
-
-    float sum = 0;
-
-    const uint8x16_t m4b = vdupq_n_u8(0xF);
-    const int32x4_t  vzero = vdupq_n_s32(0);
-    const int8x16_t  m32s = vdupq_n_s8(32);
-
-    const uint8x16_t mone = vdupq_n_u8(3);
-
-    int8x16x4_t q6bytes;
-    uint8x16x4_t q6h;
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d_all = (float)x[i].d;
-
-        const uint8_t * restrict q6 = x[i].ql;
-        const uint8_t * restrict qh = x[i].qh;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const int8_t * restrict scale = x[i].scales;
-
-        int32_t isum = 0;
-
-        uint8x16_t   qhbits = vld1q_u8(qh);
-        uint8x16x2_t q6bits = vld1q_u8_x2(q6);
-        int8x16x4_t q8bytes = vld1q_s8_x4(q8);
-
-        q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4);
-        uint8x16_t shifted = vshrq_n_u8(qhbits, 2);
-        q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
-        shifted = vshrq_n_u8(qhbits, 4);
-        q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
-        shifted = vshrq_n_u8(qhbits, 6);
-        q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4);
-
-        q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s);
-        q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s);
-        q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
-        q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
-
-#if defined(__ARM_FEATURE_DOTPROD)
-
-        isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
-                vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
-                vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
-                vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
-#else
-
-        int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
-                                 vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
-        int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
-                                 vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
-        isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
-
-        int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
-                                 vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
-        int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
-                                 vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
-        isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
-#endif
-
-        sum += isum * d_all * y[i].d;
-
-    }
-    *s = sum;
-
-#elif defined __AVX2__
-
-    const __m256i m4 = _mm256_set1_epi8(0xF);
-    const __m256i m2 = _mm256_set1_epi8(3);
-    const __m256i m32s = _mm256_set1_epi8(32);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-
-        const uint8_t * restrict q4 = x[i].ql;
-        const uint8_t * restrict qh = x[i].qh;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
-        const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
-        const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
-        const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
-
-        __m256i sumi = _mm256_setzero_si256();
-
-        const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
-        const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
-
-        const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
-        const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
-
-        const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4);
-        const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4);
-
-        const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0);
-        const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1);
-
-        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
-        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
-
-        __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0);
-        __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1);
-
-        __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0);
-        __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1);
-
-        p16_0 = _mm256_sub_epi16(p16_0, q8s_0);
-        p16_1 = _mm256_sub_epi16(p16_1, q8s_1);
-
-        p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0);
-        p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1);
-
-        sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1));
-
-        acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc);
-    }
-
-    *s = hsum_float_8(acc);
-
-#elif defined __AVX__
-
-    const __m128i m4 = _mm_set1_epi8(0xF);
-    const __m128i m2 = _mm_set1_epi8(3);
-    const __m128i m32s = _mm_set1_epi8(32);
-
-    __m256 acc = _mm256_setzero_ps();
-
-    for (int i = 0; i < nb; ++i) {
-
-        const float d = y[i].d * ggml_fp16_to_fp32(x[i].d);
-
-        const uint8_t * restrict q4 = x[i].ql;
-        const uint8_t * restrict qh = x[i].qh;
-        const int8_t  * restrict q8 = y[i].qs;
-
-        const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]);
-        const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]);
-        const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]);
-        const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]);
-
-        __m128i sumi_0 = _mm_setzero_si128();
-        __m128i sumi_1 = _mm_setzero_si128();
-
-        const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1);
-        const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3);
-
-        const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4);
-        const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh);
-
-        const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4);
-        const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4);
-        const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4);
-        const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4);
-
-        const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0);
-        const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1);
-        const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2);
-        const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3);
-
-        const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0));
-        const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32));
-
-        __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0));
-        __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1));
-        __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0));
-        __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1));
-
-        __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0));
-        __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1));
-        __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0));
-        __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1));
-
-        p16_0 = _mm_sub_epi16(p16_0, q8s_0);
-        p16_1 = _mm_sub_epi16(p16_1, q8s_1);
-        p16_2 = _mm_sub_epi16(p16_2, q8s_2);
-        p16_3 = _mm_sub_epi16(p16_3, q8s_3);
-
-        p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0);
-        p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1);
-        p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2);
-        p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3);
-
-        sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2));
-        sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3));
-
-        acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc);
-    }
-
-    *s = hsum_float_8(acc);
-
-#else
-
-    int8_t  aux8[QK_K];
-    int16_t aux16[8];
-    float   sums [8];
-    int32_t aux32[8];
-    memset(sums, 0, 8*sizeof(float));
-
-    float sumf = 0;
-    for (int i = 0; i < nb; ++i) {
-        const uint8_t * restrict q4 = x[i].ql;
-        const uint8_t * restrict qh = x[i].qh;
-        const  int8_t * restrict q8 = y[i].qs;
-        memset(aux32, 0, 8*sizeof(int32_t));
-        int8_t * restrict a = aux8;
-        for (int l = 0; l < 16; ++l) {
-            a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
-            a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
-            a[l+32] = (int8_t)((q4[l+ 0] >>  4) | (((qh[l] >> 4) & 3) << 4)) - 32;
-            a[l+48] = (int8_t)((q4[l+16] >>  4) | (((qh[l] >> 6) & 3) << 4)) - 32;
-        }
-        int is = 0;
-        for (int j = 0; j < QK_K/16; ++j) {
-            int scale = x[i].scales[is++];
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
-            q8 += 8; a += 8;
-            for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l];
-            for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l];
-            q8 += 8; a += 8;
-        }
-        const float d = ggml_fp16_to_fp32(x[i].d) * y[i].d;
-        for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l];
-    }
-    for (int l = 0; l < 8; ++l) sumf += sums[l];
-    *s = sumf;
-#endif
-}
-
-#endif

+ 0 - 191
llm/k_quants.h

@@ -1,191 +0,0 @@
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#pragma once
-
-#include "ggml.h"
-
-#include <stdint.h>
-#include <assert.h>
-#include <stddef.h>
-
-// Super-block size
-#ifdef GGML_QKK_64
-#define QK_K 64
-#define K_SCALE_SIZE 4
-#else
-#define QK_K 256
-#define K_SCALE_SIZE 12
-#endif
-
-#ifndef static_assert
-#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
-#define static_assert(cond, msg) _Static_assert(cond, msg)
-#else
-#define static_assert(cond, msg) struct global_scope_noop_trick
-#endif
-#endif
-
-//
-// Super-block quantization structures
-//
-
-// 2-bit quantization
-// weight is represented as x = a * q + b
-// 16 blocks of 16 elemenets each
-// Effectively 2.5625 bits per weight
-typedef struct {
-    uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
-    uint8_t qs[QK_K/4];      // quants
-    ggml_fp16_t d;           // super-block scale for quantized scales
-    ggml_fp16_t dmin;        // super-block scale for quantized mins
-} block_q2_K;
-static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_fp16_t) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding");
-
-// 3-bit quantization
-// weight is represented as x = a * q
-// 16 blocks of 16 elemenets each
-// Effectively 3.4375 bits per weight
-#ifdef GGML_QKK_64
-typedef struct {
-    uint8_t hmask[QK_K/8];     // quants - high bit
-    uint8_t qs[QK_K/4];        // quants - low 2 bits
-    uint8_t scales[2];
-    ggml_fp16_t d;             // super-block scale
-} block_q3_K;
-static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
-#else
-typedef struct {
-    uint8_t hmask[QK_K/8];     // quants - high bit
-    uint8_t qs[QK_K/4];        // quants - low 2 bits
-    uint8_t scales[12];        // scales, quantized with 6 bits
-    ggml_fp16_t d;             // super-block scale
-} block_q3_K;
-static_assert(sizeof(block_q3_K) == sizeof(ggml_fp16_t) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
-#endif
-
-// 4-bit quantization
-// 16 blocks of 32 elements each
-// weight is represented as x = a * q + b
-// Effectively 4.5 bits per weight
-#ifdef GGML_QKK_64
-typedef struct {
-    ggml_fp16_t d[2];          // super-block scales/mins
-    uint8_t scales[2];         // 4-bit block scales/mins
-    uint8_t qs[QK_K/2];        // 4--bit quants
-} block_q4_K;
-static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + QK_K/2 + 2, "wrong q4_K block size/padding");
-#else
-typedef struct {
-    ggml_fp16_t d;             // super-block scale for quantized scales
-    ggml_fp16_t dmin;          // super-block scale for quantized mins
-    uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
-    uint8_t qs[QK_K/2];        // 4--bit quants
-} block_q4_K;
-static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
-#endif
-
-// 5-bit quantization
-// 16 blocks of 32 elements each
-// weight is represented as x = a * q + b
-// Effectively 5.5 bits per weight
-#ifdef GGML_QKK_64
-typedef struct {
-    ggml_fp16_t d;               // super-block scale
-    int8_t  scales[QK_K/16];     // 8-bit block scales
-    uint8_t qh[QK_K/8];          // quants, high bit
-    uint8_t qs[QK_K/2];          // quants, low 4 bits
-} block_q5_K;
-static_assert(sizeof(block_q5_K) == sizeof(ggml_fp16_t) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
-#else
-typedef struct {
-    ggml_fp16_t d;               // super-block scale for quantized scales
-    ggml_fp16_t dmin;            // super-block scale for quantized mins
-    uint8_t scales[K_SCALE_SIZE];   // scales and mins, quantized with 6 bits
-    uint8_t qh[QK_K/8];          // quants, high bit
-    uint8_t qs[QK_K/2];          // quants, low 4 bits
-} block_q5_K;
-static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_fp16_t) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
-#endif
-
-// 6-bit quantization
-// weight is represented as x = a * q
-// 16 blocks of 16 elemenets each
-// Effectively 6.5625 bits per weight
-typedef struct {
-    uint8_t ql[QK_K/2];      // quants, lower 4 bits
-    uint8_t qh[QK_K/4];      // quants, upper 2 bits
-    int8_t  scales[QK_K/16]; // scales, quantized with 8 bits
-    ggml_fp16_t d;           // super-block scale
-} block_q6_K;
-static_assert(sizeof(block_q6_K) == sizeof(ggml_fp16_t) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding");
-
-// This is only used for intermediate quantization and dot products
-typedef struct {
-    float   d;              // delta
-    int8_t  qs[QK_K];       // quants
-    int16_t bsums[QK_K/16]; // sum of quants in groups of 16
-} block_q8_K;
-static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
-
-
-// Quantization
-void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k);
-void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k);
-void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k);
-void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
-void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
-void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
-
-void quantize_row_q2_K(const float * restrict x, void * restrict y, int k);
-void quantize_row_q3_K(const float * restrict x, void * restrict y, int k);
-void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
-void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
-void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
-void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
-
-// Dequantization
-void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k);
-void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k);
-void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k);
-void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k);
-void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k);
-void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
-
-// Dot product
-void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
-
-// Quantization with histogram collection
-size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
-size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
-size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
-size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
-size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
-

+ 0 - 579
llm/llama-util.h

@@ -1,579 +0,0 @@
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-// Internal header to be included only by llama.cpp.
-// Contains wrappers around OS interfaces.
-
-#ifndef LLAMA_UTIL_H
-#define LLAMA_UTIL_H
-
-#include <cstdio>
-#include <cstdint>
-#include <cerrno>
-#include <cstring>
-#include <cstdarg>
-#include <cstdlib>
-#include <climits>
-
-#include <string>
-#include <vector>
-#include <stdexcept>
-
-#ifdef __has_include
-    #if __has_include(<unistd.h>)
-        #include <unistd.h>
-        #if defined(_POSIX_MAPPED_FILES)
-            #include <sys/mman.h>
-        #endif
-        #if defined(_POSIX_MEMLOCK_RANGE)
-            #include <sys/resource.h>
-        #endif
-    #endif
-#endif
-
-#if defined(_WIN32)
-    #define WIN32_LEAN_AND_MEAN
-    #ifndef NOMINMAX
-        #define NOMINMAX
-    #endif
-    #include <windows.h>
-    #include <io.h>
-    #include <stdio.h> // for _fseeki64
-#endif
-
-#define LLAMA_ASSERT(x) \
-    do { \
-        if (!(x)) { \
-            fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
-            abort(); \
-        } \
-    } while (0)
-
-#ifdef __GNUC__
-#ifdef __MINGW32__
-__attribute__((format(gnu_printf, 1, 2)))
-#else
-__attribute__((format(printf, 1, 2)))
-#endif
-#endif
-static std::string format(const char * fmt, ...) {
-    va_list ap, ap2;
-    va_start(ap, fmt);
-    va_copy(ap2, ap);
-    int size = vsnprintf(NULL, 0, fmt, ap);
-    LLAMA_ASSERT(size >= 0 && size < INT_MAX);
-    std::vector<char> buf(size + 1);
-    int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
-    LLAMA_ASSERT(size2 == size);
-    va_end(ap2);
-    va_end(ap);
-    return std::string(buf.data(), size);
-}
-
-struct llama_file {
-    // use FILE * so we don't have to re-open the file to mmap
-    FILE * fp;
-    size_t size;
-
-    llama_file(const char * fname, const char * mode) {
-        fp = std::fopen(fname, mode);
-        if (fp == NULL) {
-            throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
-        }
-        seek(0, SEEK_END);
-        size = tell();
-        seek(0, SEEK_SET);
-    }
-
-    size_t tell() const {
-#ifdef _WIN32
-        __int64 ret = _ftelli64(fp);
-#else
-        long ret = std::ftell(fp);
-#endif
-        LLAMA_ASSERT(ret != -1); // this really shouldn't fail
-        return (size_t) ret;
-    }
-
-    void seek(size_t offset, int whence) {
-#ifdef _WIN32
-        int ret = _fseeki64(fp, (__int64) offset, whence);
-#else
-        int ret = std::fseek(fp, (long) offset, whence);
-#endif
-        LLAMA_ASSERT(ret == 0); // same
-    }
-
-    void read_raw(void * ptr, size_t len) const {
-        if (len == 0) {
-            return;
-        }
-        errno = 0;
-        std::size_t ret = std::fread(ptr, len, 1, fp);
-        if (ferror(fp)) {
-            throw std::runtime_error(format("read error: %s", strerror(errno)));
-        }
-        if (ret != 1) {
-            throw std::runtime_error(std::string("unexpectedly reached end of file"));
-        }
-    }
-
-    std::uint32_t read_u32() {
-        std::uint32_t ret;
-        read_raw(&ret, sizeof(ret));
-        return ret;
-    }
-
-    std::string read_string(std::uint32_t len) {
-        std::vector<char> chars(len);
-        read_raw(chars.data(), len);
-        return std::string(chars.data(), len);
-    }
-
-    void write_raw(const void * ptr, size_t len) const {
-        if (len == 0) {
-            return;
-        }
-        errno = 0;
-        size_t ret = std::fwrite(ptr, len, 1, fp);
-        if (ret != 1) {
-            throw std::runtime_error(format("write error: %s", strerror(errno)));
-        }
-    }
-
-    void write_u32(std::uint32_t val) {
-        write_raw(&val, sizeof(val));
-    }
-
-    ~llama_file() {
-        if (fp) {
-            std::fclose(fp);
-        }
-    }
-};
-
-// llama_context_data
-struct llama_data_context {
-    virtual void write(const void * src, size_t size) = 0;
-    virtual size_t get_size_written() = 0;
-    virtual ~llama_data_context() = default;
-};
-
-struct llama_data_buffer_context : llama_data_context {
-    uint8_t* ptr;
-    size_t size_written = 0;
-
-    llama_data_buffer_context(uint8_t * p) : ptr(p) {}
-
-    void write(const void * src, size_t size) override {
-        memcpy(ptr, src, size);
-        ptr += size;
-        size_written += size;
-    }
-
-    size_t get_size_written() override {
-        return size_written;
-    }
-};
-
-struct llama_data_file_context : llama_data_context {
-    llama_file* file;
-    size_t size_written = 0;
-
-    llama_data_file_context(llama_file * f) : file(f) {}
-
-    void write(const void * src, size_t size) override {
-        file->write_raw(src, size);
-        size_written += size;
-    }
-
-    size_t get_size_written() override {
-        return size_written;
-    }
-};
-
-#if defined(_WIN32)
-static std::string llama_format_win_err(DWORD err) {
-    LPSTR buf;
-    size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
-                                 NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
-    if (!size) {
-        return "FormatMessageA failed";
-    }
-    std::string ret(buf, size);
-    LocalFree(buf);
-    return ret;
-}
-#endif
-
-struct llama_mmap {
-    void * addr;
-    size_t size;
-
-    llama_mmap(const llama_mmap &) = delete;
-
-#ifdef _POSIX_MAPPED_FILES
-    static constexpr bool SUPPORTED = true;
-
-    llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
-        size = file->size;
-        int fd = fileno(file->fp);
-        int flags = MAP_SHARED;
-        // prefetch/readahead impairs performance on NUMA systems
-        if (numa) { prefetch = 0; }
-#ifdef __linux__
-        if (prefetch >= file->size) { flags |= MAP_POPULATE; }
-#endif
-        addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
-        if (addr == MAP_FAILED) {
-            throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
-        }
-
-        if (prefetch > 0) {
-            // Advise the kernel to preload the mapped memory
-            if (madvise(addr, std::min(file->size, prefetch), MADV_WILLNEED)) {
-                fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
-                        strerror(errno));
-            }
-        }
-        if (numa) {
-            // advise the kernel not to use readahead
-            // (because the next page might not belong on the same node)
-            if (madvise(addr, file->size, MADV_RANDOM)) {
-                fprintf(stderr, "warning: madvise(.., MADV_RANDOM) failed: %s\n",
-                        strerror(errno));
-            }
-        }
-    }
-
-    ~llama_mmap() {
-        munmap(addr, size);
-    }
-#elif defined(_WIN32)
-    static constexpr bool SUPPORTED = true;
-
-    llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
-        (void) numa;
-
-        size = file->size;
-
-        HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
-
-        HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
-        DWORD error = GetLastError();
-
-        if (hMapping == NULL) {
-            throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
-        }
-
-        addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
-        error = GetLastError();
-        CloseHandle(hMapping);
-
-        if (addr == NULL) {
-            throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
-        }
-
-        if (prefetch) {
-            // The PrefetchVirtualMemory API is only present on Windows 8 and above, so we
-            // will dynamically load it using GetProcAddress.
-            BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
-            HMODULE hKernel32;
-
-            // This call is guaranteed to succeed.
-            hKernel32 = GetModuleHandleW(L"kernel32.dll");
-
-            // This call may fail if on a pre-Win8 system.
-            pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
-
-            if (pPrefetchVirtualMemory) {
-                // Advise the kernel to preload the mapped memory.
-                WIN32_MEMORY_RANGE_ENTRY range;
-                range.VirtualAddress = addr;
-                range.NumberOfBytes = (SIZE_T)size;
-                if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
-                    fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
-                            llama_format_win_err(GetLastError()).c_str());
-                }
-            }
-        }
-    }
-
-    ~llama_mmap() {
-        if (!UnmapViewOfFile(addr)) {
-            fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
-                    llama_format_win_err(GetLastError()).c_str());
-        }
-    }
-#else
-    static constexpr bool SUPPORTED = false;
-
-    llama_mmap(struct llama_file *, bool prefetch = true, bool numa = false) {
-        (void) prefetch;
-        (void) numa;
-
-        throw std::runtime_error(std::string("mmap not supported"));
-    }
-#endif
-};
-
-// Represents some region of memory being locked using mlock or VirtualLock;
-// will automatically unlock on destruction.
-struct llama_mlock {
-    void * addr = NULL;
-    size_t size = 0;
-    bool failed_already = false;
-
-    llama_mlock() {}
-    llama_mlock(const llama_mlock &) = delete;
-
-    ~llama_mlock() {
-        if (size) {
-            raw_unlock(addr, size);
-        }
-    }
-
-    void init(void * ptr) {
-        LLAMA_ASSERT(addr == NULL && size == 0);
-        addr = ptr;
-    }
-
-    void grow_to(size_t target_size) {
-        LLAMA_ASSERT(addr);
-        if (failed_already) {
-            return;
-        }
-        size_t granularity = lock_granularity();
-        target_size = (target_size + granularity - 1) & ~(granularity - 1);
-        if (target_size > size) {
-            if (raw_lock((uint8_t *) addr + size, target_size - size)) {
-                size = target_size;
-            } else {
-                failed_already = true;
-            }
-        }
-    }
-
-#ifdef _POSIX_MEMLOCK_RANGE
-    static constexpr bool SUPPORTED = true;
-
-    size_t lock_granularity() {
-        return (size_t) sysconf(_SC_PAGESIZE);
-    }
-
-    #ifdef __APPLE__
-        #define MLOCK_SUGGESTION \
-            "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
-            "decreasing 'vm.global_no_user_wire_amount'.  Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
-    #else
-        #define MLOCK_SUGGESTION \
-            "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
-    #endif
-
-    bool raw_lock(const void * addr, size_t size) {
-        if (!mlock(addr, size)) {
-            return true;
-        } else {
-            char* errmsg = std::strerror(errno);
-            bool suggest = (errno == ENOMEM);
-
-            // Check if the resource limit is fine after all
-            struct rlimit lock_limit;
-            if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit))
-                suggest = false;
-            if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size))
-                suggest = false;
-
-            fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
-                    size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
-            return false;
-        }
-    }
-
-    #undef MLOCK_SUGGESTION
-
-    void raw_unlock(void * addr, size_t size) {
-        if (munlock(addr, size)) {
-            fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
-        }
-    }
-#elif defined(_WIN32)
-    static constexpr bool SUPPORTED = true;
-
-    size_t lock_granularity() {
-        SYSTEM_INFO si;
-        GetSystemInfo(&si);
-        return (size_t) si.dwPageSize;
-    }
-
-    bool raw_lock(void * ptr, size_t len) {
-        for (int tries = 1; ; tries++) {
-            if (VirtualLock(ptr, len)) {
-                return true;
-            }
-            if (tries == 2) {
-                fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
-                    len, size, llama_format_win_err(GetLastError()).c_str());
-                return false;
-            }
-
-            // It failed but this was only the first try; increase the working
-            // set size and try again.
-            SIZE_T min_ws_size, max_ws_size;
-            if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
-                fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
-                        llama_format_win_err(GetLastError()).c_str());
-                return false;
-            }
-            // Per MSDN: "The maximum number of pages that a process can lock
-            // is equal to the number of pages in its minimum working set minus
-            // a small overhead."
-            // Hopefully a megabyte is enough overhead:
-            size_t increment = len + 1048576;
-            // The minimum must be <= the maximum, so we need to increase both:
-            min_ws_size += increment;
-            max_ws_size += increment;
-            if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
-                fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
-                        llama_format_win_err(GetLastError()).c_str());
-                return false;
-            }
-        }
-    }
-
-    void raw_unlock(void * ptr, size_t len) {
-        if (!VirtualUnlock(ptr, len)) {
-            fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
-                    llama_format_win_err(GetLastError()).c_str());
-        }
-    }
-#else
-    static constexpr bool SUPPORTED = false;
-
-    size_t lock_granularity() {
-        return (size_t) 65536;
-    }
-
-    bool raw_lock(const void * addr, size_t len) {
-        fprintf(stderr, "warning: mlock not supported on this system\n");
-        return false;
-    }
-
-    void raw_unlock(const void * addr, size_t len) {}
-#endif
-};
-
-// Replacement for std::vector<uint8_t> that doesn't require zero-initialization.
-struct llama_buffer {
-    uint8_t * addr = NULL;
-    size_t size = 0;
-
-    llama_buffer() = default;
-
-    void resize(size_t len) {
-#ifdef GGML_USE_METAL
-        free(addr);
-        int result = posix_memalign((void **) &addr, getpagesize(), len);
-        if (result == 0) {
-            memset(addr, 0, len);
-        }
-        else {
-            addr = NULL;
-        }
-#else
-        delete[] addr;
-        addr = new uint8_t[len];
-#endif
-        size = len;
-    }
-
-    ~llama_buffer() {
-#ifdef GGML_USE_METAL
-        free(addr);
-#else
-        delete[] addr;
-#endif
-        addr = NULL;
-    }
-
-    // disable copy and move
-    llama_buffer(const llama_buffer&) = delete;
-    llama_buffer(llama_buffer&&) = delete;
-    llama_buffer& operator=(const llama_buffer&) = delete;
-    llama_buffer& operator=(llama_buffer&&) = delete;
-};
-
-#ifdef GGML_USE_CUBLAS
-#include "ggml-cuda.h"
-struct llama_ctx_buffer {
-    uint8_t * addr = NULL;
-    bool is_cuda;
-    size_t size = 0;
-
-    llama_ctx_buffer() = default;
-
-    void resize(size_t size) {
-        free();
-
-        addr = (uint8_t *) ggml_cuda_host_malloc(size);
-        if (addr) {
-            is_cuda = true;
-        }
-        else {
-            // fall back to pageable memory
-            addr = new uint8_t[size];
-            is_cuda = false;
-        }
-        this->size = size;
-    }
-
-    void free() {
-        if (addr) {
-            if (is_cuda) {
-                ggml_cuda_host_free(addr);
-            }
-            else {
-                delete[] addr;
-            }
-        }
-        addr = NULL;
-    }
-
-    ~llama_ctx_buffer() {
-        free();
-    }
-
-    // disable copy and move
-    llama_ctx_buffer(const llama_ctx_buffer&) = delete;
-    llama_ctx_buffer(llama_ctx_buffer&&) = delete;
-    llama_ctx_buffer& operator=(const llama_ctx_buffer&) = delete;
-    llama_ctx_buffer& operator=(llama_ctx_buffer&&) = delete;
-};
-#else
-typedef llama_buffer llama_ctx_buffer;
-#endif
-
-#endif

+ 0 - 4375
llm/llama.cpp

@@ -1,4375 +0,0 @@
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-// Defines fileno on msys:
-#ifndef _GNU_SOURCE
-#define _GNU_SOURCE
-#include <cstddef>
-#include <cstdint>
-#include <cstdio>
-#endif
-
-#include "llama-util.h"
-#include "llama.h"
-
-#include "ggml.h"
-#ifdef GGML_USE_CUBLAS
-#include "ggml-cuda.h"
-#elif defined(GGML_USE_CLBLAST)
-#include "ggml-opencl.h"
-#endif
-
-#ifdef GGML_USE_METAL
-#include "ggml-metal.h"
-#endif
-#ifdef GGML_USE_MPI
-#include "ggml-mpi.h"
-#endif
-#ifdef GGML_USE_K_QUANTS
-#ifndef QK_K
-#ifdef GGML_QKK_64
-#define QK_K 64
-#else
-#define QK_K 256
-#endif
-#endif
-#endif
-
-#include <array>
-#include <ctime>
-#include <cinttypes>
-#include <fstream>
-#include <random>
-#include <map>
-#include <unordered_map>
-#include <queue>
-#include <cassert>
-#include <cstring>
-#include <climits>
-#include <memory>
-#include <algorithm>
-#include <initializer_list>
-#include <thread>
-#include <atomic>
-#include <mutex>
-#include <sstream>
-#include <numeric>
-
-#if defined(_MSC_VER)
-#pragma warning(disable: 4244 4267) // possible loss of data
-#endif
-
-static void llama_log_internal(llama_log_level level, const char* format, ...);
-static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data);
-#define LLAMA_LOG_INFO(...)  llama_log_internal(LLAMA_LOG_LEVEL_INFO , __VA_ARGS__)
-#define LLAMA_LOG_WARN(...)  llama_log_internal(LLAMA_LOG_LEVEL_WARN , __VA_ARGS__)
-#define LLAMA_LOG_ERROR(...) llama_log_internal(LLAMA_LOG_LEVEL_ERROR, __VA_ARGS__)
-
-
-#if !defined(GGML_USE_CUBLAS) && !defined(GGML_USE_METAL)
-#include "ggml-alloc.h"
-#define LLAMA_USE_ALLOCATOR
-#else
-#define LLAMA_USE_SCRATCH
-#define LLAMA_MAX_SCRATCH_BUFFERS 16
-#endif
-
-
-// available llama models
-enum e_model {
-    MODEL_UNKNOWN,
-    MODEL_3B,
-    MODEL_7B,
-    MODEL_13B,
-    MODEL_30B,
-    MODEL_34B,
-    MODEL_65B,
-    MODEL_70B,
-};
-
-static const size_t kB = 1024;
-static const size_t MB = 1024*1024;
-
-// computed for n_ctx == 2048
-// TODO: dynamically determine these sizes
-//       needs modifications in ggml
-
-typedef void (*offload_func_t)(struct ggml_tensor * tensor);
-
-void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
-    (void) tensor;
-}
-
-//
-// ggml helpers
-//
-
-static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
-    struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
-
-    if (plan.work_size > 0) {
-        buf.resize(plan.work_size);
-        plan.work_data = buf.data();
-    }
-
-    ggml_graph_compute(graph, &plan);
-}
-
-//
-// memory sizes (calculated for n_batch == 512)
-//
-
-static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0(int n_ctx)
-{
-    static std::map<e_model, size_t> k_sizes = {
-        { MODEL_3B,   ((size_t) n_ctx / 16ull +  92ull) * MB },
-        { MODEL_7B,   ((size_t) n_ctx / 16ull + 100ull) * MB },
-        { MODEL_13B,  ((size_t) n_ctx / 12ull + 120ull) * MB },
-        { MODEL_30B,  ((size_t) n_ctx /  9ull + 160ull) * MB },
-        { MODEL_34B,  ((size_t) n_ctx /  9ull + 160ull) * MB },
-        { MODEL_65B,  ((size_t) n_ctx /  6ull + 256ull) * MB }, // guess
-        { MODEL_70B,  ((size_t) n_ctx /  7ull + 164ull) * MB },
-    };
-    return k_sizes;
-}
-
-static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
-{
-    static std::map<e_model, size_t> k_sizes = {
-        { MODEL_3B,  128ull * MB },
-        { MODEL_7B,  160ull * MB },
-        { MODEL_13B, 192ull * MB },
-        { MODEL_30B, 256ull * MB },
-        { MODEL_34B, 256ull * MB },
-        { MODEL_65B, 384ull * MB }, // guess
-        { MODEL_70B, 304ull * MB },
-    };
-    return k_sizes;
-}
-
-// used to store the compute graph tensors + non-scratch data
-static const std::map<e_model, size_t> & MEM_REQ_EVAL()
-{
-    static std::map<e_model, size_t> k_sizes = {
-        { MODEL_3B,   8ull * MB },
-        { MODEL_7B,  10ull * MB },
-        { MODEL_13B, 12ull * MB },
-        { MODEL_30B, 16ull * MB },
-        { MODEL_34B, 16ull * MB },
-        { MODEL_65B, 24ull * MB }, // guess
-        { MODEL_70B, 24ull * MB },
-    };
-    return k_sizes;
-}
-
-// amount of VRAM needed per batch size to hold temporary results
-// the values for 3b are not derived from testing but instead chosen conservatively
-static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
-{
-    static std::map<e_model, size_t> k_sizes = {
-        { MODEL_3B,   512ull * kB },
-        { MODEL_7B,   512ull * kB },
-        { MODEL_13B,  640ull * kB },
-        { MODEL_30B,  768ull * kB },
-        { MODEL_34B,  768ull * kB },
-        { MODEL_65B, 1280ull * kB },
-        { MODEL_70B, 1280ull * kB },
-    };
-    return k_sizes;
-}
-
-// amount of VRAM needed per batch size and context to hold temporary results
-// the values for 3b are not derived from testing but instead chosen conservatively
-static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
-{
-    static std::map<e_model, size_t> k_sizes = {
-        { MODEL_3B,  128ull },
-        { MODEL_7B,  128ull },
-        { MODEL_13B, 160ull },
-        { MODEL_30B, 208ull },
-        { MODEL_34B, 208ull },
-        { MODEL_65B, 256ull },
-        { MODEL_70B, 256ull },
-    };
-    return k_sizes;
-}
-
-// default hparams (LLaMA 7B)
-struct llama_hparams {
-    uint32_t n_vocab   = 32000;
-    uint32_t n_ctx     = 512;   // this is provided as user input?
-    uint32_t n_embd    = 4096;
-    uint32_t n_mult    = 256;
-    uint32_t n_head    = 32;
-    uint32_t n_head_kv = 32;
-    uint32_t n_layer   = 32;
-    uint32_t n_rot     = 64;
-
-    // LLaMAv2
-    // TODO: load from model data hparams
-    float f_ffn_mult = 1.0f;
-    float f_rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
-
-    float rope_freq_base  = 10000.0f;
-    float rope_freq_scale = 1.0f;
-
-    enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
-
-    bool operator!=(const llama_hparams & other) const {
-        return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams))); // NOLINT
-    }
-
-    uint32_t n_gqa() const {
-        return n_head/n_head_kv;
-    }
-
-    uint32_t n_embd_head() const {
-        return n_embd/n_head;
-    }
-
-    uint32_t n_embd_gqa() const {
-        return n_embd/n_gqa();
-    }
-
-    size_t kv_size() const {
-        size_t result = 2ull;
-        result *= (size_t) n_embd_gqa();
-        result *= (size_t) n_ctx;
-        result *= (size_t) n_layer;
-        result *= sizeof(ggml_fp16_t);
-        return result;
-    }
-};
-
-struct llama_layer {
-    // normalization
-    struct ggml_tensor * attention_norm;
-
-    // attention
-    struct ggml_tensor * wq;
-    struct ggml_tensor * wk;
-    struct ggml_tensor * wv;
-    struct ggml_tensor * wo;
-
-    // normalization
-    struct ggml_tensor * ffn_norm;
-
-    // ff
-    struct ggml_tensor * w1;
-    struct ggml_tensor * w2;
-    struct ggml_tensor * w3;
-};
-
-struct llama_kv_cache {
-    struct ggml_tensor * k = NULL;
-    struct ggml_tensor * v = NULL;
-
-    struct ggml_context * ctx = NULL;
-
-    llama_ctx_buffer buf;
-
-    int n; // number of tokens currently in the cache
-
-    ~llama_kv_cache() {
-        if (ctx) {
-            ggml_free(ctx);
-        }
-
-#ifdef GGML_USE_CUBLAS
-        ggml_cuda_free_data(k);
-        ggml_cuda_free_data(v);
-#endif // GGML_USE_CUBLAS
-    }
-};
-
-struct llama_vocab {
-    using id    = int32_t;
-    using token = std::string;
-
-    struct token_score {
-        token tok;
-        float score;
-    };
-
-    std::unordered_map<token, id> token_to_id;
-    std::vector<token_score> id_to_token;
-};
-
-struct llama_model {
-    e_model type = MODEL_UNKNOWN;
-
-    llama_hparams hparams;
-
-    struct ggml_tensor * tok_embeddings;
-
-    struct ggml_tensor * norm;
-    struct ggml_tensor * output;
-
-    std::vector<llama_layer> layers;
-    int n_gpu_layers;
-
-    // context
-    struct ggml_context * ctx = NULL;
-
-    // the model memory buffer
-    llama_ctx_buffer buf;
-
-    // model memory mapped file
-    std::unique_ptr<llama_mmap> mapping;
-
-    // objects representing data potentially being locked in memory
-    llama_mlock mlock_buf;
-    llama_mlock mlock_mmap;
-
-    // for quantize-stats only
-    std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
-
-    int64_t t_load_us = 0;
-    int64_t t_start_us = 0;
-
-    llama_vocab vocab;
-
-    ~llama_model() {
-        if (ctx) {
-            ggml_free(ctx);
-        }
-
-#ifdef GGML_USE_CUBLAS
-        for (size_t i = 0; i < tensors_by_name.size(); ++i) {
-            ggml_cuda_free_data(tensors_by_name[i].second);
-        }
-        ggml_cuda_free_scratch();
-#elif defined(GGML_USE_CLBLAST)
-        for (size_t i = 0; i < tensors_by_name.size(); ++i) {
-            ggml_cl_free_data(tensors_by_name[i].second);
-        }
-#endif
-    }
-};
-
-struct llama_context {
-    llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
-    ~llama_context() {
-        if (model_owner) {
-            delete &model;
-        }
-#ifdef GGML_USE_METAL
-        if (ctx_metal) {
-            ggml_metal_free(ctx_metal);
-        }
-#endif
-#ifdef LLAMA_USE_ALLOCATOR
-        if (alloc) {
-            ggml_allocr_free(alloc);
-        }
-#endif
-    }
-
-    std::mt19937 rng;
-
-    bool has_evaluated_once = false;
-
-    int64_t t_sample_us = 0;
-    int64_t t_eval_us   = 0;
-    int64_t t_p_eval_us = 0;
-
-    int32_t n_sample = 0; // number of tokens sampled
-    int32_t n_eval   = 0; // number of eval calls
-    int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
-
-    const llama_model & model;
-
-    bool model_owner = false;
-
-    int64_t t_load_us;
-    int64_t t_start_us;
-
-    // key + value cache for the self attention
-    struct llama_kv_cache kv_self;
-
-    size_t mem_per_token = 0;
-
-    // decode output (2-dimensional array: [n_tokens][n_vocab])
-    std::vector<float> logits;
-    bool logits_all = false;
-
-    // input embedding (1-dimensional array: [n_embd])
-    std::vector<float> embedding;
-
-    // reusable buffer for `struct ggml_graph_plan.work_data`
-    std::vector<uint8_t> work_buffer;
-
-    // memory buffers used to evaluate the model
-    // TODO: move in llama_state
-    llama_ctx_buffer buf_compute;
-
-#ifdef LLAMA_USE_ALLOCATOR
-    llama_ctx_buffer buf_alloc;
-    ggml_allocr * alloc = NULL;
-#endif
-
-#ifdef LLAMA_USE_SCRATCH
-    llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
-    int    buf_last = 0;
-    size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
-#endif
-
-#ifdef GGML_USE_METAL
-    ggml_metal_context * ctx_metal = NULL;
-#endif
-
-#ifdef GGML_USE_MPI
-    ggml_mpi_context * ctx_mpi = NULL;
-#endif
-
-    void use_buf(struct ggml_context * ctx, int i) {
-#if defined(LLAMA_USE_SCRATCH)
-        size_t last_size = 0;
-
-        if (i == -1) {
-            last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
-        } else {
-            auto & buf = buf_scratch[i];
-            last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
-        }
-
-        if (buf_last >= 0) {
-            buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
-        }
-
-        buf_last = i;
-#else
-        (void) i;
-        (void) ctx;
-#endif
-    }
-
-    size_t get_buf_max_mem(int i) const {
-#if defined(LLAMA_USE_SCRATCH)
-        return buf_max_size[i];
-#else
-        (void) i;
-        return 0;
-#endif
-    }
-};
-
-struct llama_state {
-    // We save the log callback globally
-    llama_log_callback log_callback = llama_log_callback_default;
-    void * log_callback_user_data = nullptr;
-};
-// global state
-static llama_state g_state;
-
-template <typename T>
-static T checked_mul(T a, T b) {
-    T ret = a * b;
-    if (a != 0 && ret / a != b) {
-        throw std::runtime_error(format("overflow multiplying %llu * %llu",
-                     (unsigned long long) a, (unsigned long long) b));
-    }
-    return ret;
-}
-
-static size_t checked_div(size_t a, size_t b) {
-    if (b == 0 || a % b != 0) {
-        throw std::runtime_error(format("error dividing %zu / %zu", a, b));
-    }
-    return a / b;
-}
-
-static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
-    char buf[256];
-    snprintf(buf, sizeof(buf), "%5u", ne.at(0));
-    for (size_t i = 1; i < ne.size(); i++) {
-        snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
-    }
-    return buf;
-}
-
-static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
-    size_t size = ggml_type_size(type);
-    for (uint32_t dim : ne) {
-        size = checked_mul<size_t>(size, dim);
-    }
-    return size / ggml_blck_size(type);
-}
-
-struct llama_load_tensor {
-    std::string name;
-    enum ggml_type type = GGML_TYPE_F32;
-    std::vector<uint32_t> ne;
-    size_t file_off;
-    size_t size;
-    struct ggml_tensor * ggml_tensor = NULL;
-    uint8_t * data;
-};
-
-struct llama_load_tensors_map {
-    // tensors is kept in a separate vector to preserve file order
-    std::vector<llama_load_tensor> tensors;
-    std::unordered_map<std::string, size_t> name_to_idx;
-};
-
-enum llama_file_version {
-    LLAMA_FILE_VERSION_GGML,
-    LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
-    LLAMA_FILE_VERSION_GGJT_V1, // added padding
-    LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
-    LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
-};
-
-struct llama_file_loader {
-    llama_file file;
-    llama_file_version file_version;
-    llama_hparams hparams;
-    llama_vocab vocab;
-
-    llama_file_loader(const char * fname, llama_load_tensors_map & tensors_map)
-        : file(fname, "rb") {
-        LLAMA_LOG_INFO("llama.cpp: loading model from %s\n", fname);
-        read_magic();
-        read_hparams();
-        read_vocab();
-        read_tensor_metadata(tensors_map);
-    }
-    void read_magic() {
-        uint32_t magic = file.read_u32();
-
-        if (magic == LLAMA_FILE_MAGIC_GGML) {
-            file_version = LLAMA_FILE_VERSION_GGML;
-            return;
-        }
-
-        uint32_t version = file.read_u32();
-
-        switch (magic) {
-            case LLAMA_FILE_MAGIC_GGMF:
-                switch (version) {
-                    case 1: file_version = LLAMA_FILE_VERSION_GGMF_V1; return;
-                }
-                break;
-            case LLAMA_FILE_MAGIC_GGJT:
-                switch (version) {
-                    case 1: file_version = LLAMA_FILE_VERSION_GGJT_V1; return;
-                    case 2: file_version = LLAMA_FILE_VERSION_GGJT_V2; return;
-                    case 3: file_version = LLAMA_FILE_VERSION_GGJT_V3; return;
-                }
-        }
-
-        throw std::runtime_error(format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
-                     magic, version));
-    }
-    void read_hparams() {
-        hparams.n_vocab = file.read_u32();
-        hparams.n_embd  = file.read_u32();
-        hparams.n_mult  = file.read_u32();
-        hparams.n_head  = file.read_u32();
-        hparams.n_layer = file.read_u32();
-        hparams.n_rot   = file.read_u32();
-        hparams.ftype   = (enum llama_ftype) file.read_u32();
-
-        // LLaMAv2
-        // TODO: read from header
-        hparams.n_head_kv = hparams.n_head;
-    }
-    void read_vocab() {
-        vocab.id_to_token.resize(hparams.n_vocab);
-
-        for (uint32_t i = 0; i < hparams.n_vocab; i++) {
-            uint32_t len = file.read_u32();
-            std::string word = file.read_string(len);
-
-            float score = 0.0f;
-            file.read_raw(&score, sizeof(score));
-
-            vocab.token_to_id[word] = i;
-
-            auto & tok_score = vocab.id_to_token[i];
-            tok_score.tok = std::move(word);
-            tok_score.score = score;
-        }
-    }
-    void read_tensor_metadata(llama_load_tensors_map & tensors_map) {
-        while (file.tell() < file.size) {
-            llama_load_tensor tensor;
-            uint32_t n_dims = file.read_u32();
-            uint32_t name_len = file.read_u32();
-            tensor.type = (enum ggml_type) file.read_u32();
-            tensor.ne.resize(n_dims);
-            file.read_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * n_dims);
-            std::string name = file.read_string(name_len);
-            if (n_dims < 1 || n_dims > 2) {
-                throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims));
-            }
-            switch (tensor.type) {
-                case GGML_TYPE_F32:
-                case GGML_TYPE_F16:
-                case GGML_TYPE_Q4_0:
-                case GGML_TYPE_Q4_1:
-                case GGML_TYPE_Q5_0:
-                case GGML_TYPE_Q5_1:
-                case GGML_TYPE_Q8_0:
-                case GGML_TYPE_Q2_K:
-                case GGML_TYPE_Q3_K:
-                case GGML_TYPE_Q4_K:
-                case GGML_TYPE_Q5_K:
-                case GGML_TYPE_Q6_K:
-                    break;
-                default: {
-                    throw std::runtime_error(format("unrecognized tensor type %u\n", tensor.type));
-                }
-            }
-
-            // skip to the next multiple of 32 bytes
-            if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
-                file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
-            }
-
-            tensor.file_off = file.tell();
-            tensor.name = name;
-            tensor.size = llama_calc_tensor_size(tensor.ne, tensor.type);
-            file.seek(tensor.size, SEEK_CUR);
-
-            tensors_map.tensors.push_back(tensor);
-            tensors_map.name_to_idx[name] = tensors_map.tensors.size() - 1;
-        }
-    }
-};
-
-struct llama_file_saver {
-    llama_file file;
-    llama_file_loader * any_file_loader;
-    llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
-        : file(fname, "wb"), any_file_loader(any_file_loader) {
-        LLAMA_LOG_INFO("llama.cpp: saving model to %s\n", fname);
-        write_magic();
-        write_hparams(new_ftype);
-        write_vocab();
-    }
-    void write_magic() {
-        file.write_u32(LLAMA_FILE_MAGIC);   // magic
-        file.write_u32(LLAMA_FILE_VERSION); // version
-    }
-    void write_hparams(enum llama_ftype new_ftype) {
-        const llama_hparams & hparams = any_file_loader->hparams;
-        file.write_u32(hparams.n_vocab);
-        file.write_u32(hparams.n_embd);
-        file.write_u32(hparams.n_mult);
-        file.write_u32(hparams.n_head);
-        file.write_u32(hparams.n_layer);
-        file.write_u32(hparams.n_rot);
-        file.write_u32(new_ftype);
-    }
-    void write_vocab() {
-        if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
-            LLAMA_LOG_WARN("llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
-        }
-        uint32_t n_vocab = any_file_loader->hparams.n_vocab;
-        for (uint32_t i = 0; i < n_vocab; i++) {
-            const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
-            file.write_u32((uint32_t) token_score.tok.size());
-            file.write_raw(token_score.tok.data(), token_score.tok.size());
-            file.write_raw(&token_score.score, sizeof(token_score.score));
-        }
-    }
-    void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
-        switch (new_type) {
-            case GGML_TYPE_F32:
-            case GGML_TYPE_F16:
-            case GGML_TYPE_Q4_0:
-            case GGML_TYPE_Q4_1:
-            case GGML_TYPE_Q5_0:
-            case GGML_TYPE_Q5_1:
-            case GGML_TYPE_Q8_0:
-            case GGML_TYPE_Q2_K:
-            case GGML_TYPE_Q3_K:
-            case GGML_TYPE_Q4_K:
-            case GGML_TYPE_Q5_K:
-            case GGML_TYPE_Q6_K:
-                break;
-            default: LLAMA_ASSERT(false);
-        }
-        file.write_u32((uint32_t) tensor.ne.size());
-        file.write_u32((uint32_t) tensor.name.size());
-        file.write_u32(new_type);
-        file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
-        file.write_raw(tensor.name.data(), tensor.name.size());
-        file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
-        LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
-        file.write_raw(new_data, new_size);
-    }
-};
-
-struct llama_model_loader {
-    std::unique_ptr<llama_file_loader> file_loader;
-    llama_load_tensors_map tensors_map;
-    bool use_mmap;
-    size_t num_ggml_tensors_created = 0;
-    struct ggml_context * ggml_ctx = NULL;
-    std::unique_ptr<llama_mmap> mapping;
-
-    llama_model_loader(const std::string & fname_base, bool use_mmap) {
-        file_loader = std::unique_ptr<llama_file_loader>(new llama_file_loader(fname_base.c_str(), tensors_map));
-        if (!llama_mmap::SUPPORTED) {
-            use_mmap = false;
-        }
-        this->use_mmap = use_mmap;
-    }
-
-    void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
-        *ctx_size_p = *mmapped_size_p = 0;
-        for (const llama_load_tensor & lt : tensors_map.tensors) {
-            *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
-            *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size + 16;
-        }
-    }
-
-    struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
-        auto it = tensors_map.name_to_idx.find(name);
-        if (it == tensors_map.name_to_idx.end()) {
-            throw std::runtime_error(std::runtime_error(format("llama.cpp: tensor '%s' is missing from model", name.c_str())));
-        }
-        llama_load_tensor & lt = tensors_map.tensors.at(it->second);
-        if (lt.ne != ne) {
-            throw std::runtime_error(format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
-                         name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str()));
-        }
-
-        return get_tensor_for(lt, backend);
-    }
-
-    struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
-        struct ggml_tensor * tensor;
-        if (backend != GGML_BACKEND_CPU) {
-            ggml_set_no_alloc(ggml_ctx, true);
-        }
-        if (lt.ne.size() == 2) {
-            tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
-        } else {
-            LLAMA_ASSERT(lt.ne.size() == 1);
-            tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
-        }
-        ggml_set_name(tensor, lt.name.c_str());
-        LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
-
-        if (backend != GGML_BACKEND_CPU) {
-            ggml_set_no_alloc(ggml_ctx, use_mmap);
-        }
-        tensor->backend = backend;
-        lt.ggml_tensor = tensor;
-        num_ggml_tensors_created++;
-        return tensor;
-    }
-
-    void done_getting_tensors() const {
-        if (num_ggml_tensors_created != tensors_map.tensors.size()) {
-            throw std::runtime_error(std::string("llama.cpp: file contained more tensors than expected"));
-        }
-    }
-
-    void load_all_data(llama_progress_callback progress_callback, void *  progress_callback_user_data, llama_mlock * lmlock) {
-        size_t data_size = 0;
-        size_t prefetch_size = file_loader->file.size;
-        size_t lock_size = 0;
-        for (const llama_load_tensor & lt : tensors_map.tensors) {
-            data_size += lt.size;
-            if (lt.ggml_tensor->backend != GGML_BACKEND_CPU) {
-                prefetch_size -= lt.size;
-            }
-        }
-
-        if (use_mmap) {
-            mapping.reset(new llama_mmap(&file_loader->file, prefetch_size, ggml_is_numa()));
-            if (lmlock) {
-                lmlock->init(mapping->addr);
-            }
-        }
-
-        size_t done_size = 0;
-        for (llama_load_tensor & lt : tensors_map.tensors) {
-            if (progress_callback) {
-                progress_callback((float) done_size / data_size, progress_callback_user_data);
-            }
-            LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
-            lt.data = (uint8_t *) lt.ggml_tensor->data;
-
-            // allocate temp buffer if not using mmap
-            if (!use_mmap && lt.data == NULL) {
-                GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU);
-                lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor));
-            }
-
-            load_data_for(lt);
-
-            switch(lt.ggml_tensor->backend) {
-                case GGML_BACKEND_CPU:
-                    lt.ggml_tensor->data = lt.data;
-                    if (use_mmap && lmlock) {
-                        lock_size += lt.size;
-                        lmlock->grow_to(lock_size);
-                    }
-                    break;
-#if defined(GGML_USE_CUBLAS)
-                case GGML_BACKEND_GPU:
-                case GGML_BACKEND_GPU_SPLIT:
-                    ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
-                    if (!use_mmap) {
-                        free(lt.data);
-                    }
-                    break;
-#elif defined(GGML_USE_CLBLAST)
-                case GGML_BACKEND_GPU:
-                    ggml_cl_transform_tensor(lt.data, lt.ggml_tensor);
-                    if (!use_mmap) {
-                        free(lt.data);
-                    }
-                    break;
-#endif
-                default:
-                    continue;
-            }
-
-            done_size += lt.size;
-        }
-    }
-
-    void load_data_for(llama_load_tensor & lt) {
-        if (use_mmap) {
-            lt.data = (uint8_t *) mapping->addr + lt.file_off;
-        } else {
-            llama_file & file = file_loader->file;
-            file.seek(lt.file_off, SEEK_SET);
-            file.read_raw(lt.data, lt.size);
-        }
-
-        if (0) {
-            print_checksum(lt);
-        }
-    }
-
-    static void print_checksum(llama_load_tensor & lt) {
-        uint32_t sum = 0;
-        for (size_t i = 0; i < lt.size; i++) {
-            uint8_t byte = lt.data[i];
-            sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
-        }
-        LLAMA_LOG_INFO("%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
-                llama_format_tensor_shape(lt.ne).c_str(), lt.size);
-    }
-
-};
-
-//
-// kv cache
-//
-
-static bool kv_cache_init(
-        const struct llama_hparams & hparams,
-             struct llama_kv_cache & cache,
-                         ggml_type   wtype,
-                               int   n_ctx,
-                               int   n_gpu_layers) {
-    const int n_embd  = hparams.n_embd_gqa();
-    const int n_layer = hparams.n_layer;
-
-    const int64_t n_mem      = n_layer*n_ctx;
-    const int64_t n_elements = n_embd*n_mem;
-
-    cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
-    cache.n = 0;
-
-    struct ggml_init_params params;
-    params.mem_size   = cache.buf.size;
-    params.mem_buffer = cache.buf.addr;
-    params.no_alloc   = false;
-
-    cache.ctx = ggml_init(params);
-
-    if (!cache.ctx) {
-        LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
-        return false;
-    }
-
-    cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
-    cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
-    ggml_set_name(cache.k, "cache_k");
-    ggml_set_name(cache.v, "cache_v");
-
-    (void) n_gpu_layers;
-#ifdef GGML_USE_CUBLAS
-    if (n_gpu_layers > n_layer + 1) {
-        ggml_cuda_assign_buffers_no_scratch(cache.v);
-    }
-    if (n_gpu_layers > n_layer + 2) {
-        ggml_cuda_assign_buffers_no_scratch(cache.k);
-    }
-#endif // GGML_USE_CUBLAS
-
-    return true;
-}
-
-struct llama_context_params llama_context_default_params() {
-    struct llama_context_params result = {
-        /*.seed                        =*/ LLAMA_DEFAULT_SEED,
-        /*.n_ctx                       =*/ 512,
-        /*.n_batch                     =*/ 512,
-        /*.n_gqa                       =*/ 1,
-        /*.rms_norm_eps                =*/ LLAMA_DEFAULT_RMS_EPS,
-        /*.gpu_layers                  =*/ 0,
-        /*.main_gpu                    =*/ 0,
-        /*.tensor_split                =*/ nullptr,
-        /*.rope_freq_base              =*/ 10000.0f,
-        /*.rope_freq_scale             =*/ 1.0f,
-        /*.progress_callback           =*/ nullptr,
-        /*.progress_callback_user_data =*/ nullptr,
-        /*.low_vram                    =*/ false,
-        /*.mul_mat_q                   =*/ false,
-        /*.f16_kv                      =*/ true,
-        /*.logits_all                  =*/ false,
-        /*.vocab_only                  =*/ false,
-        /*.use_mmap                    =*/ true,
-        /*.use_mlock                   =*/ false,
-        /*.embedding                   =*/ false,
-    };
-
-    return result;
-}
-
-struct llama_model_quantize_params llama_model_quantize_default_params() {
-    struct llama_model_quantize_params result = {
-        /*.nthread                     =*/ 0,
-        /*.ftype                       =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
-        /*.allow_requantize            =*/ false,
-        /*.quantize_output_tensor      =*/ true,
-    };
-
-    return result;
-}
-
-int llama_max_devices() {
-    return LLAMA_MAX_DEVICES;
-}
-
-bool llama_mmap_supported() {
-    return llama_mmap::SUPPORTED;
-}
-
-bool llama_mlock_supported() {
-    return llama_mlock::SUPPORTED;
-}
-
-void llama_backend_init(bool numa) {
-    ggml_time_init();
-
-    // needed to initialize f16 tables
-    {
-        struct ggml_init_params params = { 0, NULL, false };
-        struct ggml_context * ctx = ggml_init(params);
-        ggml_free(ctx);
-    }
-
-    if (numa) {
-        ggml_numa_init();
-    }
-
-#ifdef GGML_USE_MPI
-    ggml_mpi_backend_init();
-#endif
-}
-
-void llama_backend_free() {
-#ifdef GGML_USE_MPI
-    ggml_mpi_backend_free();
-#endif
-}
-
-int64_t llama_time_us() {
-    return ggml_time_us();
-}
-
-//
-// model loading
-//
-
-static const char *llama_file_version_name(llama_file_version version) {
-    switch (version) {
-        case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
-        case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
-        case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
-        case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
-        case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
-    }
-
-    return "unknown";
-}
-
-static const char *llama_ftype_name(enum llama_ftype ftype) {
-    switch (ftype) {
-        case LLAMA_FTYPE_ALL_F32:     return "all F32";
-        case LLAMA_FTYPE_MOSTLY_F16:  return "mostly F16";
-        case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
-        case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
-        case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
-                                      return "mostly Q4_1, some F16";
-        case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
-        case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
-        case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
-        // K-quants
-        case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
-        case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
-        case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
-        case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
-        case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
-        case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
-        case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
-        case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
-        case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
-        default:                      return "unknown, may not work";
-    }
-}
-
-static const char *llama_model_type_name(e_model type) {
-    switch (type) {
-        case MODEL_3B: return "3B";
-        case MODEL_7B: return "7B";
-        case MODEL_13B: return "13B";
-        case MODEL_30B: return "30B";
-        case MODEL_34B: return "34B";
-        case MODEL_65B: return "65B";
-        case MODEL_70B: return "70B";
-        default: LLAMA_ASSERT(false);
-    }
-}
-
-static void llama_model_load_internal(
-        const std::string & fname,
-        llama_model & model,
-        llama_vocab & vocab,
-        int n_ctx,
-        int n_batch,
-        int n_gqa,
-        float rms_norm_eps,
-        int n_gpu_layers,
-        int main_gpu,
-        const float * tensor_split,
-        const bool mul_mat_q,
-        float rope_freq_base,
-        float rope_freq_scale,
-        bool low_vram,
-        ggml_type memory_type,
-        bool use_mmap,
-        bool use_mlock,
-        bool vocab_only,
-        llama_progress_callback progress_callback,
-        void * progress_callback_user_data) {
-
-    model.t_start_us = ggml_time_us();
-
-    std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap));
-
-    vocab = std::move(ml->file_loader->vocab);
-    model.hparams = ml->file_loader->hparams;
-    model.n_gpu_layers = n_gpu_layers;
-    llama_file_version file_version = ml->file_loader->file_version;
-
-    auto & hparams = model.hparams;
-
-    // TODO: read from file
-    hparams.f_rms_norm_eps = rms_norm_eps;
-
-    {
-        switch (hparams.n_layer) {
-            case 26: model.type = e_model::MODEL_3B; break;
-            case 32: model.type = e_model::MODEL_7B; break;
-            case 40: model.type = e_model::MODEL_13B; break;
-            case 48: model.type = e_model::MODEL_34B; break;
-            case 60: model.type = e_model::MODEL_30B; break;
-            case 80: model.type = e_model::MODEL_65B; break;
-            default:
-                {
-                    if (hparams.n_layer < 32) {
-                        model.type = e_model::MODEL_7B;
-                    }
-                } break;
-        }
-
-        hparams.n_ctx = n_ctx;
-
-        // LLaMAv2
-        // TODO: temporary until GGUF
-        LLAMA_ASSERT(hparams.n_head % n_gqa == 0);
-        hparams.n_head_kv = hparams.n_head / n_gqa;
-        if (model.type == e_model::MODEL_65B && n_gqa == 8) {
-            LLAMA_LOG_WARN("%s: warning: assuming 70B model based on GQA == %d\n", __func__, n_gqa);
-            model.type = e_model::MODEL_70B;
-            hparams.f_ffn_mult = 1.3f; // from the params.json of the 70B model
-        } else if (model.type == e_model::MODEL_34B && n_gqa == 8) {
-            hparams.f_ffn_mult = 1.0f; // from the params.json of the 34B model
-        }
-
-        hparams.rope_freq_base  = rope_freq_base;
-        hparams.rope_freq_scale = rope_freq_scale;
-    }
-
-    // ref: https://github.com/facebookresearch/llama/blob/6c7fe276574e78057f917549435a2554000a876d/llama/model.py#L194-L199
-    const uint32_t n_ff_raw  = 2*(4*hparams.n_embd)/3;
-    const uint32_t n_ff_mult = hparams.f_ffn_mult*n_ff_raw;
-    const uint32_t n_ff      = ((n_ff_mult + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
-    //const uint32_t n_ff = 28672;
-
-    {
-        LLAMA_LOG_INFO("%s: format     = %s\n",   __func__, llama_file_version_name(file_version));
-        LLAMA_LOG_INFO("%s: n_vocab    = %u\n",   __func__, hparams.n_vocab);
-        LLAMA_LOG_INFO("%s: n_ctx      = %u\n",   __func__, hparams.n_ctx);
-        LLAMA_LOG_INFO("%s: n_embd     = %u\n",   __func__, hparams.n_embd);
-        LLAMA_LOG_INFO("%s: n_mult     = %u\n",   __func__, hparams.n_mult);
-        LLAMA_LOG_INFO("%s: n_head     = %u\n",   __func__, hparams.n_head);
-        LLAMA_LOG_INFO("%s: n_head_kv  = %u\n",   __func__, hparams.n_head_kv);
-        LLAMA_LOG_INFO("%s: n_layer    = %u\n",   __func__, hparams.n_layer);
-        LLAMA_LOG_INFO("%s: n_rot      = %u\n",   __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
-        LLAMA_LOG_INFO("%s: n_gqa      = %u\n",   __func__, hparams.n_gqa());
-        LLAMA_LOG_INFO("%s: rnorm_eps  = %.1e\n", __func__, hparams.f_rms_norm_eps);
-        LLAMA_LOG_INFO("%s: n_ff       = %u\n",   __func__, n_ff);
-        LLAMA_LOG_INFO("%s: freq_base  = %.1f\n", __func__, hparams.rope_freq_base);
-        LLAMA_LOG_INFO("%s: freq_scale = %g\n",   __func__, hparams.rope_freq_scale);
-        LLAMA_LOG_INFO("%s: ftype      = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
-        LLAMA_LOG_INFO("%s: model size = %s\n",   __func__, llama_model_type_name(model.type));
-    }
-
-    if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
-        if (hparams.ftype != LLAMA_FTYPE_ALL_F32     &&
-            hparams.ftype != LLAMA_FTYPE_MOSTLY_F16  &&
-            hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
-            throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)"));
-        }
-    }
-
-    if (file_version < LLAMA_FILE_VERSION_GGJT_V3) {
-        if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
-            hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ||
-            hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) {
-            throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)"));
-        }
-    }
-
-    if (vocab_only) {
-        return;
-    }
-
-    auto & ctx = model.ctx;
-
-    size_t ctx_size;
-    size_t mmapped_size;
-    ml->calc_sizes(&ctx_size, &mmapped_size);
-    LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
-
-    // create the ggml context
-    {
-        model.buf.resize(ctx_size);
-        if (use_mlock) {
-            model.mlock_buf.init   (model.buf.addr);
-            model.mlock_buf.grow_to(model.buf.size);
-        }
-
-        struct ggml_init_params params = {
-            /*.mem_size   =*/ model.buf.size,
-            /*.mem_buffer =*/ model.buf.addr,
-            /*.no_alloc   =*/ ml->use_mmap,
-        };
-
-        model.ctx = ggml_init(params);
-        if (!model.ctx) {
-            throw std::runtime_error(format("ggml_init() failed"));
-        }
-    }
-
-    (void) main_gpu;
-    (void) mul_mat_q;
-#if defined(GGML_USE_CUBLAS)
-    LLAMA_LOG_INFO("%s: using CUDA for GPU acceleration\n", __func__);
-    ggml_cuda_set_main_device(main_gpu);
-    ggml_cuda_set_mul_mat_q(mul_mat_q);
-#define LLAMA_BACKEND_OFFLOAD       GGML_BACKEND_GPU
-#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
-#elif defined(GGML_USE_CLBLAST)
-    LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
-#define LLAMA_BACKEND_OFFLOAD       GGML_BACKEND_GPU
-#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
-#else
-#define LLAMA_BACKEND_OFFLOAD       GGML_BACKEND_CPU
-#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
-#endif
-
-    // prepare memory for the weights
-    size_t vram_weights = 0;
-    size_t vram_scratch = 0;
-    {
-        const uint32_t n_embd     = hparams.n_embd;
-        const uint32_t n_embd_gqa = hparams.n_embd_gqa();
-        const uint32_t n_layer    = hparams.n_layer;
-        const uint32_t n_vocab    = hparams.n_vocab;
-
-        ml->ggml_ctx = ctx;
-
-        model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
-
-        // "output" tensor
-        {
-            ggml_backend backend_norm;
-            ggml_backend backend_output;
-            if (n_gpu_layers > int(n_layer)) { // NOLINT
-                // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
-                // on Windows however this is detrimental unless everything is on the GPU
-#ifndef _WIN32
-                backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
-#else
-                backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
-#endif // _WIN32
-
-                backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
-            } else {
-                backend_norm = GGML_BACKEND_CPU;
-                backend_output = GGML_BACKEND_CPU;
-            }
-
-            model.norm   = ml->get_tensor("norm.weight",   {n_embd},          backend_norm);
-            model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
-            if (backend_norm == GGML_BACKEND_GPU) {
-                vram_weights += ggml_nbytes(model.norm);
-            }
-            if (backend_output == GGML_BACKEND_GPU_SPLIT) {
-                vram_weights += ggml_nbytes(model.output);
-            }
-        }
-
-        const int i_gpu_start = n_layer - n_gpu_layers;
-
-        model.layers.resize(n_layer);
-        for (uint32_t i = 0; i < n_layer; ++i) {
-            const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
-            const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
-
-            auto & layer = model.layers[i];
-
-            std::string layers_i = "layers." + std::to_string(i);
-
-            layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
-
-            layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd},     backend_split);
-            layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd_gqa}, backend_split);
-            layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd_gqa}, backend_split);
-            layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd},     backend_split);
-
-            layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
-
-            layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd,   n_ff}, backend_split);
-            layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", {  n_ff, n_embd}, backend_split);
-            layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd,   n_ff}, backend_split);
-
-            if (backend == GGML_BACKEND_GPU) {
-                vram_weights +=
-                    ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk)             +
-                    ggml_nbytes(layer.wv)             + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
-                    ggml_nbytes(layer.w1)             + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
-            }
-        }
-    }
-
-    ml->done_getting_tensors();
-
-    // print memory requirements
-    {
-        const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
-
-        // this is the total memory required to run the inference
-        size_t mem_required =
-            ctx_size +
-            mmapped_size - vram_weights; // weights in VRAM not in memory
-
-#ifndef LLAMA_USE_ALLOCATOR
-        mem_required +=
-            MEM_REQ_SCRATCH0(hparams.n_ctx).at(model.type) +
-            MEM_REQ_SCRATCH1().at(model.type) +
-            MEM_REQ_EVAL().at(model.type);
-#endif
-
-        // this is the memory required by one llama_state
-        const size_t mem_required_state =
-            scale*hparams.kv_size();
-
-        LLAMA_LOG_INFO("%s: mem required  = %7.2f MB (+ %7.2f MB per state)\n", __func__,
-                mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
-
-        (void) vram_scratch;
-        (void) n_batch;
-#ifdef GGML_USE_CUBLAS
-        if (low_vram) {
-            LLAMA_LOG_INFO("%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
-            ggml_cuda_set_scratch_size(0); // disable scratch
-        } else {
-            const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE().at(model.type);
-            const size_t vram_scratch_per_context = VRAM_REQ_SCRATCH_PER_CONTEXT().at(model.type);
-            vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context);
-            ggml_cuda_set_scratch_size(vram_scratch);
-            if (n_gpu_layers > 0) {
-                LLAMA_LOG_INFO("%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n",
-                        __func__, vram_scratch_base / kB, vram_scratch_per_context,
-                        (vram_scratch + MB - 1) / MB); // round up
-            }
-        }
-#endif // GGML_USE_CUBLAS
-
-#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
-        const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
-
-        LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
-        if (n_gpu_layers > (int) hparams.n_layer) {
-            LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
-        }
-        size_t vram_kv_cache = 0;
-
-#ifdef GGML_USE_CUBLAS
-        const int max_backend_supported_layers = hparams.n_layer + 3;
-        const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
-        if (n_gpu_layers > (int) hparams.n_layer + 1) {
-            if (low_vram) {
-                LLAMA_LOG_INFO("%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
-            } else {
-                LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
-                vram_kv_cache += hparams.kv_size() / 2;
-            }
-        }
-        if (n_gpu_layers > (int) hparams.n_layer + 2) {
-            if (low_vram) {
-                LLAMA_LOG_WARN("%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
-            } else {
-                LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
-                vram_kv_cache += hparams.kv_size() / 2;
-            }
-        }
-#elif defined(GGML_USE_CLBLAST)
-        const int max_backend_supported_layers = hparams.n_layer + 1;
-        const int max_offloadable_layers = hparams.n_layer + 1;
-#endif // GGML_USE_CUBLAS
-
-        LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n",
-                __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
-        LLAMA_LOG_INFO("%s: total VRAM used: %zu MB\n",
-                __func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up
-#else
-        (void) n_gpu_layers;
-#endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
-    }
-
-    // populate `tensors_by_name`
-    for (llama_load_tensor & lt : ml->tensors_map.tensors) {
-        model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
-    }
-
-    (void) tensor_split;
-#if defined(GGML_USE_CUBLAS)
-    {
-        ggml_cuda_set_tensor_split(tensor_split);
-    }
-#endif
-
-    ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
-
-    if (progress_callback) {
-        progress_callback(1.0f, progress_callback_user_data);
-    }
-
-    model.mapping = std::move(ml->mapping);
-
-    // loading time will be recalculate after the first eval, so
-    // we take page faults deferred by mmap() into consideration
-    model.t_load_us = ggml_time_us() - model.t_start_us;
-}
-
-static bool llama_model_load(
-        const std::string & fname,
-        llama_model & model,
-        llama_vocab & vocab,
-        int n_ctx,
-        int n_batch,
-        int n_gqa,
-        float rms_norm_eps,
-        int n_gpu_layers,
-        int main_gpu,
-        const float * tensor_split,
-        const bool mul_mat_q,
-        float rope_freq_base,
-        float rope_freq_scale,
-        bool low_vram,
-        ggml_type memory_type,
-        bool use_mmap,
-        bool use_mlock,
-        bool vocab_only,
-        llama_progress_callback progress_callback,
-        void *progress_callback_user_data) {
-    try {
-        llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gqa, rms_norm_eps, n_gpu_layers,
-                                  main_gpu, tensor_split, mul_mat_q, rope_freq_base, rope_freq_scale, low_vram, memory_type,
-                                  use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
-        return true;
-    } catch (const std::exception & err) {
-        LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
-        return false;
-    }
-}
-
-static struct ggml_cgraph * llama_build_graph(
-         llama_context & lctx,
-     const llama_token * tokens,
-           const float * embd,
-                   int   n_tokens,
-                   int   n_past) {
-
-    LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
-
-    const int N = n_tokens;
-
-    const auto & model   = lctx.model;
-    const auto & hparams = model.hparams;
-
-    const auto & kv_self = lctx.kv_self;
-
-    LLAMA_ASSERT(!!kv_self.ctx);
-
-    const int64_t n_embd      = hparams.n_embd;
-    const int64_t n_layer     = hparams.n_layer;
-    const int64_t n_ctx       = hparams.n_ctx;
-    const int64_t n_head      = hparams.n_head;
-    const int64_t n_head_kv   = hparams.n_head_kv;
-    const int64_t n_embd_head = hparams.n_embd_head();
-    const int64_t n_embd_gqa  = hparams.n_embd_gqa();
-
-    LLAMA_ASSERT(n_embd_head == hparams.n_rot);
-
-    const float freq_base  = hparams.rope_freq_base;
-    const float freq_scale = hparams.rope_freq_scale;
-    const float rms_norm_eps = hparams.f_rms_norm_eps;
-
-    const int n_gpu_layers = model.n_gpu_layers;
-
-    auto & mem_per_token = lctx.mem_per_token;
-    auto & buf_compute   = lctx.buf_compute;
-
-
-    struct ggml_init_params params = {
-        /*.mem_size   =*/ buf_compute.size,
-        /*.mem_buffer =*/ buf_compute.addr,
-        /*.no_alloc   =*/ false,
-    };
-
-#ifdef LLAMA_USE_ALLOCATOR
-    params.no_alloc = true;
-#endif
-
-    struct ggml_context * ctx0 = ggml_init(params);
-
-    ggml_cgraph * gf = ggml_new_graph(ctx0);
-
-    struct ggml_tensor * cur;
-    struct ggml_tensor * inpL;
-
-    if (tokens) {
-        struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
-
-#ifdef LLAMA_USE_ALLOCATOR
-        ggml_allocr_alloc(lctx.alloc, inp_tokens);
-        if (!ggml_allocr_is_measure(lctx.alloc)) {
-            memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
-        }
-#else
-        memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
-#endif
-        ggml_set_name(inp_tokens, "inp_tokens");
-
-        inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
-    } else {
-#ifdef GGML_USE_MPI
-        GGML_ASSERT(false && "not implemented");
-#endif
-
-        inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
-
-#ifdef LLAMA_USE_ALLOCATOR
-        ggml_allocr_alloc(lctx.alloc, inpL);
-        if (!ggml_allocr_is_measure(lctx.alloc)) {
-            memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
-        }
-#else
-        memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
-#endif
-    }
-
-    const int i_gpu_start = n_layer - n_gpu_layers;
-    (void) i_gpu_start;
-
-    // offload functions set the tensor output backend to GPU
-    // tensors are GPU-accelerated if any input or the output has been offloaded
-    //
-    // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
-    // in that case ggml_cuda_assign_buffers has no effect
-    offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
-    offload_func_t offload_func_kq = llama_nop;
-    offload_func_t offload_func_v  = llama_nop;
-
-#ifdef GGML_USE_CUBLAS
-    if (n_gpu_layers > n_layer) {
-        offload_func_nr = ggml_cuda_assign_buffers;
-    }
-    if (n_gpu_layers > n_layer + 1) {
-        offload_func_v  = ggml_cuda_assign_buffers;
-    }
-    if (n_gpu_layers > n_layer + 2) {
-        offload_func_kq = ggml_cuda_assign_buffers;
-    }
-#endif // GGML_USE_CUBLAS
-
-    struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
-#ifdef LLAMA_USE_ALLOCATOR
-    ggml_allocr_alloc(lctx.alloc, KQ_scale);
-    if (!ggml_allocr_is_measure(lctx.alloc)) {
-        ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
-    }
-#else
-    ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
-#endif
-    ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
-
-    for (int il = 0; il < n_layer; ++il) {
-        ggml_format_name(inpL, "layer_inp_%d", il);
-
-        offload_func_t offload_func = llama_nop;
-
-#ifdef GGML_USE_CUBLAS
-        if (il >= i_gpu_start) {
-            offload_func = ggml_cuda_assign_buffers;
-        }
-#endif // GGML_USE_CUBLAS
-
-        struct ggml_tensor * inpSA = inpL;
-
-        lctx.use_buf(ctx0, 0);
-
-        // norm
-        {
-            cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
-            offload_func(cur);
-            ggml_set_name(cur, "rms_norm_0");
-
-            // cur = cur*attention_norm(broadcasted)
-            cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm);
-            offload_func(cur);
-            ggml_set_name(cur, "attention_norm_0");
-        }
-
-        // self-attention
-        {
-            // compute Q and K and RoPE them
-            struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
-            offload_func_kq(tmpk);
-            ggml_set_name(tmpk, "tmpk");
-
-            struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
-            offload_func_kq(tmpq);
-            ggml_set_name(tmpq, "tmpq");
-
-            struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
-            offload_func_kq(Kcur);
-            ggml_set_name(Kcur, "Kcur");
-
-            struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N),    n_past, n_embd_head, 0, 0, freq_base, freq_scale);
-            offload_func_kq(Qcur);
-            ggml_set_name(Qcur, "Qcur");
-
-            // store key and value to memory
-            {
-                // compute the transposed [N, n_embd] V matrix
-
-                struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
-                offload_func_v(tmpv);
-                ggml_set_name(tmpv, "tmpv");
-
-                struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N));
-                offload_func_v(Vcur);
-                ggml_set_name(Vcur, "Vcur");
-
-                struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
-                offload_func_kq(k);
-                ggml_set_name(k, "k");
-
-                struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
-                        (   n_ctx)*ggml_element_size(kv_self.v),
-                        (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
-                offload_func_v(v);
-                ggml_set_name(v, "v");
-
-                // important: storing RoPE-ed version of K in the KV cache!
-                ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
-                ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
-            }
-
-            struct ggml_tensor * Q =
-                ggml_permute(ctx0,
-                        Qcur,
-                        0, 2, 1, 3);
-            offload_func_kq(Q);
-            ggml_set_name(Q, "Q");
-
-            struct ggml_tensor * K =
-                ggml_permute(ctx0,
-                        ggml_reshape_3d(ctx0,
-                            ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd_gqa, il*n_ctx*ggml_element_size(kv_self.k)*n_embd_gqa),
-                            n_embd_head, n_head_kv, n_past + N),
-                        0, 2, 1, 3);
-            offload_func_kq(K);
-            ggml_set_name(K, "K");
-
-            // K * Q
-            struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
-            offload_func_kq(KQ);
-            ggml_set_name(KQ, "KQ");
-
-            // KQ_scaled = KQ / sqrt(n_embd_head)
-            // KQ_scaled shape [n_past + N, N, n_head, 1]
-            struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
-            offload_func_kq(KQ_scaled);
-            ggml_set_name(KQ_scaled, "KQ_scaled");
-
-            // KQ_masked = mask_past(KQ_scaled)
-            struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
-            offload_func_kq(KQ_masked);
-            ggml_set_name(KQ_masked, "KQ_masked");
-
-            // KQ = soft_max(KQ_masked)
-            struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
-            offload_func_v(KQ_soft_max);
-            ggml_set_name(KQ_soft_max, "KQ_soft_max");
-
-            // split cached V into n_head heads
-            struct ggml_tensor * V =
-                ggml_view_3d(ctx0, kv_self.v,
-                        n_past + N, n_embd_head, n_head_kv,
-                        n_ctx*ggml_element_size(kv_self.v),
-                        n_ctx*ggml_element_size(kv_self.v)*n_embd_head,
-                        n_ctx*ggml_element_size(kv_self.v)*n_embd_gqa*il);
-            offload_func_v(V);
-            ggml_set_name(V, "V");
-
-#if 1
-            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
-            offload_func_v(KQV);
-            ggml_set_name(KQV, "KQV");
-#else
-            // make V contiguous in memory to speed up the matmul, however we waste time on the copy
-            // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
-            // is there a better way?
-            struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head));
-            struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
-#endif
-
-            // KQV_merged = KQV.permute(0, 2, 1, 3)
-            struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
-            offload_func_v(KQV_merged);
-            ggml_set_name(KQV_merged, "KQV_merged");
-
-            // cur = KQV_merged.contiguous().view(n_embd, N)
-            cur = ggml_cpy(ctx0,
-                    KQV_merged,
-                    ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
-            offload_func_v(cur);
-            ggml_set_name(cur, "KQV_merged_contiguous");
-
-            // projection (no bias)
-            cur = ggml_mul_mat(ctx0,
-                    model.layers[il].wo,
-                    cur);
-            offload_func(cur);
-            ggml_set_name(cur, "result_wo");
-        }
-
-        lctx.use_buf(ctx0, 1);
-
-        struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
-        offload_func(inpFF);
-        ggml_set_name(inpFF, "inpFF");
-
-        // feed-forward network
-        {
-            // norm
-            {
-                cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
-                offload_func(cur);
-                ggml_set_name(cur, "rms_norm_1");
-
-                // cur = cur*ffn_norm(broadcasted)
-                cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
-                offload_func(cur);
-                ggml_set_name(cur, "ffn_norm");
-            }
-
-            struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
-                    model.layers[il].w3,
-                    cur);
-            offload_func(tmp);
-            ggml_set_name(tmp, "result_w3");
-
-            cur = ggml_mul_mat(ctx0,
-                    model.layers[il].w1,
-                    cur);
-            offload_func(cur);
-            ggml_set_name(cur, "result_w1");
-
-            // SILU activation
-            cur = ggml_silu(ctx0, cur);
-            offload_func(cur);
-            ggml_set_name(cur, "silu");
-
-            cur = ggml_mul(ctx0, cur, tmp);
-            offload_func(cur);
-            ggml_set_name(cur, "silu_x_result_w3");
-
-            cur = ggml_mul_mat(ctx0,
-                    model.layers[il].w2,
-                    cur);
-            offload_func(cur);
-            ggml_set_name(cur, "result_w2");
-        }
-
-        cur = ggml_add(ctx0, cur, inpFF);
-        offload_func(cur);
-        ggml_set_name(cur, "inpFF_+_result_w2");
-
-        // input for next layer
-        inpL = cur;
-    }
-
-    lctx.use_buf(ctx0, 0);
-
-    // norm
-    {
-        cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
-        offload_func_nr(cur);
-        ggml_set_name(cur, "rms_norm_2");
-
-        // cur = cur*norm(broadcasted)
-        cur = ggml_mul(ctx0, cur, model.norm);
-        // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
-        ggml_set_name(cur, "result_norm");
-    }
-
-    // lm_head
-    cur = ggml_mul_mat(ctx0, model.output, cur);
-    ggml_set_name(cur, "result_output");
-
-    lctx.use_buf(ctx0, -1);
-
-    // logits -> probs
-    //cur = ggml_soft_max_inplace(ctx0, cur);
-
-    ggml_build_forward_expand(gf, cur);
-
-    if (mem_per_token == 0) {
-        mem_per_token = ggml_used_mem(ctx0)/N;
-    }
-
-#if 0
-    LLAMA_LOG_INFO("\n%s: used_mem: eval ctx %.3f MB, scratch %.3f MB %.3f MB, work buf %.3f MB, n_past = %d, N = %d\n", __func__,
-            ggml_used_mem(ctx0)/1024.0/1024.0,
-            lctx.get_buf_max_mem(0)/1024.0/1024.0,
-            lctx.get_buf_max_mem(1)/1024.0/1024.0,
-            lctx.work_buffer.size()/1024.0/1024.0,
-            n_past, N);
-#endif
-
-    ggml_free(ctx0);
-
-    return gf;
-}
-
-// evaluate the transformer
-//
-//   - lctx:      llama context
-//   - tokens:    new batch of tokens to process
-//   - embd       embeddings input
-//   - n_tokens   number of tokens
-//   - n_past:    the context size so far
-//   - n_threads: number of threads to use
-//
-static bool llama_eval_internal(
-         llama_context & lctx,
-     const llama_token * tokens,
-           const float * embd,
-                   int   n_tokens,
-                   int   n_past,
-                   int   n_threads,
-            const char * cgraph_fname) {
-
-    LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
-
-    const int64_t t_start_us = ggml_time_us();
-
-#ifdef GGML_USE_MPI
-    ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
-#endif
-
-    const int N = n_tokens;
-
-    const auto & model   = lctx.model;
-    const auto & hparams = model.hparams;
-
-    const auto & kv_self = lctx.kv_self;
-
-    LLAMA_ASSERT(!!kv_self.ctx);
-
-    const int64_t n_embd      = hparams.n_embd;
-    const int64_t n_vocab     = hparams.n_vocab;
-
-#ifdef LLAMA_USE_ALLOCATOR
-    ggml_allocr_reset(lctx.alloc);
-#endif
-
-    ggml_cgraph * gf = llama_build_graph(lctx, tokens, embd, n_tokens, n_past);
-
-#ifdef LLAMA_USE_ALLOCATOR
-    ggml_allocr_alloc_graph(lctx.alloc, gf);
-#endif
-
-    // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
-
-    // for big prompts, if BLAS is enabled, it is better to use only one thread
-    // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
-    n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
-
-    struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
-    struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
-
-    LLAMA_ASSERT(strcmp(res->name, "result_output") == 0);
-    LLAMA_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
-
-#if GGML_USE_MPI
-    const int64_t n_layer = hparams.n_layer;
-    ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
-#endif
-
-#ifdef GGML_USE_METAL
-    if (lctx.ctx_metal && N == 1) {
-        // TODO: disabled until #2413 is resolved
-        //if (!ggml_metal_if_optimized(lctx.ctx_metal)) {
-        //    ggml_metal_graph_find_concurrency(lctx.ctx_metal, gf);
-        //}
-        ggml_metal_set_n_cb     (lctx.ctx_metal, n_threads);
-        ggml_metal_graph_compute(lctx.ctx_metal, gf);
-        ggml_metal_get_tensor   (lctx.ctx_metal, res);
-        if (!lctx.embedding.empty()) {
-            ggml_metal_get_tensor(lctx.ctx_metal, embeddings);
-        }
-    } else {
-        // IMPORTANT:
-        // Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
-        // ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX
-        // coprocessor.
-        //
-        // When we implement Matrix x Matrix Metal multiplication, we can avoid this branch.
-        // But for now, we have focused only on Matrix x Vector Metal multiplication.
-        //
-        // TODO: avoid these syncs via shared memory (ref #1696)
-        //
-        if (lctx.ctx_metal) {
-            // We need to sync the GPU KV cache with the CPU KV cache
-            ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
-            ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
-        }
-
-        ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
-    }
-#else
-    ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
-#endif
-
-#if GGML_USE_MPI
-    ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
-#endif
-
-    // update kv token count
-    lctx.kv_self.n = n_past + N;
-
-    if (cgraph_fname) {
-        ggml_graph_export(gf, cgraph_fname);
-    }
-
-#ifdef GGML_PERF
-    // print timing information per ggml operation (for debugging purposes)
-    // requires GGML_PERF to be defined
-    ggml_graph_print(gf);
-#endif
-
-    // plot the computation graph in dot format (for debugging purposes)
-    //if (n_past%100 == 0) {
-    //    ggml_graph_dump_dot(gf, NULL, "llama.dot");
-    //}
-
-    // extract logits
-    {
-        auto & logits_out = lctx.logits;
-
-        if (lctx.logits_all) {
-            logits_out.resize(n_vocab * N);
-            memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*N);
-        } else {
-            // return result for just the last token
-            logits_out.resize(n_vocab);
-            memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
-        }
-    }
-
-    // extract embeddings
-    if (!lctx.embedding.empty()) {
-        auto & embedding_out = lctx.embedding;
-
-        embedding_out.resize(n_embd);
-        memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
-    }
-
-    // measure the performance only for the single-token evals
-    if (N == 1) {
-        lctx.t_eval_us += ggml_time_us() - t_start_us;
-        lctx.n_eval++;
-    }
-    else if (N > 1) {
-        lctx.t_p_eval_us += ggml_time_us() - t_start_us;
-        lctx.n_p_eval += N;
-    }
-
-    return true;
-}
-
-//
-// tokenizer
-//
-
-static size_t utf8_len(char src) {
-    const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
-    uint8_t highbits = static_cast<uint8_t>(src) >> 4;
-    return lookup[highbits];
-}
-
-struct llama_sp_symbol {
-    using index = int;
-    index prev;
-    index next;
-    const char * text;
-    size_t n;
-};
-
-static_assert(std::is_trivially_copyable<llama_sp_symbol>::value, "llama_sp_symbol is not trivially copyable");
-
-struct llama_sp_bigram {
-    struct comparator {
-        bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
-            return (l.score < r.score) || (l.score == r.score && l.left > r.left);
-        }
-    };
-    using queue_storage = std::vector<llama_sp_bigram>;
-    using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
-    llama_sp_symbol::index left;
-    llama_sp_symbol::index right;
-    float score;
-    size_t size;
-};
-
-// original implementation:
-// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
-struct llama_tokenizer {
-    llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
-
-    void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
-        // split string into utf8 chars
-        int index = 0;
-        size_t offs = 0;
-        while (offs < text.size()) {
-            llama_sp_symbol sym;
-            size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
-            sym.text = text.c_str() + offs;
-            sym.n = char_len;
-            offs += char_len;
-            sym.prev = index - 1;
-            sym.next = offs == text.size() ? -1 : index + 1;
-            index++;
-            symbols_.emplace_back(sym);
-        }
-
-        // seed the work queue with all possible 2-character tokens.
-        for (size_t i = 1; i < symbols_.size(); ++i) {
-            try_add_bigram(i - 1, i);
-        }
-
-        // keep substituting the highest frequency pairs for as long as we can.
-        while (!work_queue_.empty()) {
-            auto bigram = work_queue_.top();
-            work_queue_.pop();
-
-            auto & left_sym = symbols_[bigram.left];
-            auto & right_sym = symbols_[bigram.right];
-
-            // if one of the symbols already got merged, skip it.
-            if (left_sym.n == 0 || right_sym.n == 0 ||
-                left_sym.n + right_sym.n != bigram.size) {
-                continue;
-            }
-
-            // merge the right sym into the left one
-            left_sym.n += right_sym.n;
-            right_sym.n = 0;
-
-            //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
-
-            // remove the right sym from the chain
-            left_sym.next = right_sym.next;
-            if (right_sym.next >= 0) {
-                symbols_[right_sym.next].prev = bigram.left;
-            }
-
-            // find more substitutions
-            try_add_bigram(left_sym.prev, bigram.left);
-            try_add_bigram(bigram.left, left_sym.next);
-        }
-
-        for (int i = 0; i != -1; i = symbols_[i].next) {
-            auto & symbol = symbols_[i];
-            auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
-
-            if (token == vocab_.token_to_id.end()) {
-                // output any symbols that did not form tokens as bytes.
-                for (int j = 0; j < (int) symbol.n; ++j) {
-                    // NOTE: old version, before #2420 - not sure what are the implications of this
-                    //llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
-                    llama_vocab::id token_id = vocab_.token_to_id.at(std::string(1, symbol.text[j]));
-                    output.push_back(token_id);
-                }
-            } else {
-                output.push_back((*token).second);
-            }
-        }
-    }
-
-private:
-    void try_add_bigram(int left, int right) {
-        if (left == -1 || right == -1) {
-            return;
-        }
-
-        const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
-        auto token = vocab_.token_to_id.find(text);
-
-        if (token == vocab_.token_to_id.end()) {
-            return;
-        }
-
-        if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
-            return;
-        }
-
-        const auto &tok_score = vocab_.id_to_token[(*token).second];
-
-        llama_sp_bigram bigram;
-        bigram.left = left;
-        bigram.right = right;
-        bigram.score = tok_score.score;
-        bigram.size = text.size();
-        work_queue_.push(bigram);
-    }
-
-    const llama_vocab & vocab_;
-    std::vector<llama_sp_symbol> symbols_;
-    llama_sp_bigram::queue work_queue_;
-};
-
-static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
-    llama_tokenizer tokenizer(vocab);
-    std::vector<llama_vocab::id> output;
-
-    if (text.empty()) {
-        return output;
-    }
-
-    if (bos) {
-        output.push_back(llama_token_bos());
-    }
-
-    tokenizer.tokenize(text, output);
-    return output;
-}
-
-//
-// grammar - internal
-//
-
-struct llama_grammar {
-    const std::vector<std::vector<llama_grammar_element>>   rules;
-    std::vector<std::vector<const llama_grammar_element *>> stacks;
-};
-
-struct llama_grammar_candidate {
-    size_t           index;
-    const uint32_t * code_points;
-};
-
-// NOTE: assumes valid utf8 (but checks for overrun)
-// adds a terminating 0 for use as pointer
-std::vector<uint32_t> decode_utf8(const char * src) {
-    static const int      lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
-    const char          * pos      = src;
-    std::vector<uint32_t> code_points;
-    while (*pos != 0) {
-        uint8_t  first_byte = static_cast<uint8_t>(*pos);
-        uint8_t  highbits   = first_byte >> 4;
-        int      len        = lookup[highbits];
-        uint8_t  mask       = (1 << (8 - len)) - 1;
-        uint32_t value      = first_byte & mask;
-        const char * end    = pos + len; // may overrun!
-        ++pos;
-        for ( ; pos < end && *pos != 0; ++pos) {
-            value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
-        }
-        code_points.push_back(value);
-    }
-    code_points.push_back(0);
-    return code_points;
-}
-
-// returns true iff pos points to the end of one of the definitions of a rule
-static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
-    switch (pos->type) {
-        case LLAMA_GRETYPE_END: return true;
-        case LLAMA_GRETYPE_ALT: return true;
-        default:                return false;
-    }
-}
-
-// returns true iff chr satisfies the char range at pos (regular or inverse range)
-// asserts that pos is pointing to a char range element
-static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
-        const llama_grammar_element * pos,
-        const uint32_t                chr) {
-
-    bool found            = false;
-    bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
-    LLAMA_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
-
-    do {
-        if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
-            // inclusive range, e.g. [a-z]
-            found = found || (pos->value <= chr && chr <= pos[1].value);
-            pos += 2;
-        } else {
-            // exact char match, e.g. [a] or "a"
-            found = found || pos->value == chr;
-            pos += 1;
-        }
-    } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
-
-    return std::make_pair(found == is_positive_char, pos);
-}
-
-// transforms a grammar pushdown stack into N possible stacks, all ending
-// at a character range (terminal element)
-static void llama_grammar_advance_stack(
-        const std::vector<std::vector<llama_grammar_element>>   & rules,
-        const std::vector<const llama_grammar_element *>        & stack,
-        std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
-
-    if (stack.empty()) {
-        new_stacks.push_back(stack);
-        return;
-    }
-
-    const llama_grammar_element * pos = stack.back();
-
-    switch (pos->type) {
-        case LLAMA_GRETYPE_RULE_REF: {
-            const size_t                  rule_id = static_cast<size_t>(pos->value);
-            const llama_grammar_element * subpos  = rules[rule_id].data();
-            do {
-                // init new stack without the top (pos)
-                std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
-                if (!llama_grammar_is_end_of_sequence(pos + 1)) {
-                    // if this rule ref is followed by another element, add that to stack
-                    new_stack.push_back(pos + 1);
-                }
-                if (!llama_grammar_is_end_of_sequence(subpos)) {
-                    // if alternate is nonempty, add to stack
-                    new_stack.push_back(subpos);
-                }
-                llama_grammar_advance_stack(rules, new_stack, new_stacks);
-                while (!llama_grammar_is_end_of_sequence(subpos)) {
-                    // scan to end of alternate def
-                    subpos++;
-                }
-                if (subpos->type == LLAMA_GRETYPE_ALT) {
-                    // there's another alternate def of this rule to process
-                    subpos++;
-                } else {
-                    break;
-                }
-            } while (true);
-            break;
-        }
-        case LLAMA_GRETYPE_CHAR:
-        case LLAMA_GRETYPE_CHAR_NOT:
-            new_stacks.push_back(stack);
-            break;
-        default:
-            // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
-            // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
-            // those
-            LLAMA_ASSERT(false);
-    }
-}
-
-// takes a set of possible pushdown stacks on a grammar, which are required to
-// be positioned at a character range (see `llama_grammar_advance_stack`), and
-// produces the N possible stacks if the given char is accepted at those
-// positions
-static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
-        const std::vector<std::vector<llama_grammar_element>>         & rules,
-        const std::vector<std::vector<const llama_grammar_element *>> & stacks,
-        const uint32_t                                                  chr) {
-
-    std::vector<std::vector<const llama_grammar_element *>> new_stacks;
-
-    for (const auto & stack : stacks) {
-        if (stack.empty()) {
-            continue;
-        }
-
-        auto match = llama_grammar_match_char(stack.back(), chr);
-        if (match.first) {
-            const llama_grammar_element * pos = match.second;
-
-            // update top of stack to next element, if any
-            std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
-            if (!llama_grammar_is_end_of_sequence(pos)) {
-                new_stack.push_back(pos);
-            }
-            llama_grammar_advance_stack(rules, new_stack, new_stacks);
-        }
-    }
-
-    return new_stacks;
-}
-
-static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
-        const std::vector<std::vector<llama_grammar_element>>         & rules,
-        const std::vector<std::vector<const llama_grammar_element *>> & stacks,
-        const std::vector<llama_grammar_candidate>                    & candidates);
-
-static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
-        const std::vector<std::vector<llama_grammar_element>> & rules,
-        const std::vector<const llama_grammar_element *>      & stack,
-        const std::vector<llama_grammar_candidate>            & candidates) {
-
-    std::vector<llama_grammar_candidate> rejects;
-
-    if (stack.empty()) {
-        // accept nothing; EOS is handled elsewhere
-        rejects.insert(rejects.end(), candidates.begin(), candidates.end());
-        return rejects;
-    }
-
-    const llama_grammar_element * stack_pos = stack.back();
-
-    std::vector<llama_grammar_candidate> next_candidates;
-    for (auto tok : candidates) {
-        if (llama_grammar_match_char(stack_pos, tok.code_points[0]).first) {
-            if (tok.code_points[1] != 0) {
-                next_candidates.push_back({ tok.index, tok.code_points + 1 });
-            }
-        } else {
-            rejects.push_back(tok);
-        }
-    }
-
-    auto stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
-
-    // update top of stack to next element, if any
-    std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
-    if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
-        stack_after.push_back(stack_pos_after);
-    }
-    std::vector<std::vector<const llama_grammar_element *>> next_stacks;
-    llama_grammar_advance_stack(rules, stack_after, next_stacks);
-
-    auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
-    for (auto tok : next_rejects) {
-        rejects.push_back({ tok.index, tok.code_points - 1 });
-    }
-
-    return rejects;
-}
-
-static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
-        const std::vector<std::vector<llama_grammar_element>>         & rules,
-        const std::vector<std::vector<const llama_grammar_element *>> & stacks,
-        const std::vector<llama_grammar_candidate>                    & candidates) {
-    LLAMA_ASSERT(!stacks.empty()); // REVIEW
-
-    if (candidates.empty()) {
-        return std::vector<llama_grammar_candidate>();
-    }
-
-    auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
-
-    for (size_t i = 1, size = stacks.size(); i < size; ++i) {
-        rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
-    }
-    return rejects;
-}
-
-//
-// grammar - external
-//
-
-struct llama_grammar * llama_grammar_init(
-            const llama_grammar_element ** rules,
-                                 size_t    n_rules,
-                                 size_t    start_rule_index) {
-    const llama_grammar_element * pos;
-
-    // copy rule definitions into vectors
-    std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
-    for (size_t i = 0; i < n_rules; i++) {
-        for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
-            vec_rules[i].push_back(*pos);
-        }
-        vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
-    }
-
-    // loop over alternates of start rule to build initial stacks
-    std::vector<std::vector<const llama_grammar_element *>> stacks;
-    pos = rules[start_rule_index];
-    do {
-        std::vector<const llama_grammar_element *> stack;
-        if (!llama_grammar_is_end_of_sequence(pos)) {
-            // if alternate is nonempty, add to stack
-            stack.push_back(pos);
-        }
-        llama_grammar_advance_stack(vec_rules, stack, stacks);
-        while (!llama_grammar_is_end_of_sequence(pos)) {
-            // scan to end of alternate def
-            pos++;
-        }
-        if (pos->type == LLAMA_GRETYPE_ALT) {
-            // there's another alternate def of this rule to process
-            pos++;
-        } else {
-            break;
-        }
-    } while (true);
-
-    return new llama_grammar{ std::move(vec_rules), std::move(stacks) };
-}
-
-void llama_grammar_free(struct llama_grammar * grammar) {
-    delete grammar;
-}
-
-//
-// sampling
-//
-
-void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
-    assert(candidates->size > 0);
-
-    const int64_t t_start_sample_us = ggml_time_us();
-
-    // Sort the logits in descending order
-    if (!candidates->sorted) {
-        std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
-            return a.logit > b.logit;
-        });
-        candidates->sorted = true;
-    }
-
-    float max_l = candidates->data[0].logit;
-    float cum_sum = 0.0f;
-    for (size_t i = 0; i < candidates->size; ++i) {
-        float p = expf(candidates->data[i].logit - max_l);
-        candidates->data[i].p = p;
-        cum_sum += p;
-    }
-    for (size_t i = 0; i < candidates->size; ++i) {
-        candidates->data[i].p /= cum_sum;
-    }
-
-    if (ctx) {
-        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-    }
-}
-
-void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
-    const int64_t t_start_sample_us = ggml_time_us();
-
-    k = std::max(k, (int) min_keep);
-    k = std::min(k, (int) candidates->size);
-
-    // Sort scores in descending order
-    if (!candidates->sorted) {
-        auto comp = [](const llama_token_data & a, const llama_token_data & b) {
-            return a.logit > b.logit;
-        };
-        if (k == (int) candidates->size) {
-            std::sort(candidates->data, candidates->data + candidates->size, comp);
-        } else {
-            std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
-        }
-        candidates->sorted = true;
-    }
-    candidates->size = k;
-
-    if (ctx) {
-        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-    }
-}
-
-void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
-    if (p >= 1.0f) {
-        return;
-    }
-
-    llama_sample_softmax(ctx, candidates);
-
-    const int64_t t_start_sample_us = ggml_time_us();
-
-    // Compute the cumulative probabilities
-    float cum_sum = 0.0f;
-    size_t last_idx = candidates->size;
-
-    for (size_t i = 0; i < candidates->size; ++i) {
-        cum_sum += candidates->data[i].p;
-
-        // Check if the running sum is at least p or if we have kept at least min_keep tokens
-        // we set the last index to i+1 to indicate that the current iterate should be included in the set
-        if (cum_sum >= p && i + 1 >= min_keep) {
-            last_idx = i + 1;
-            break;
-        }
-    }
-
-    // Resize the output vector to keep only the top-p tokens
-    candidates->size = last_idx;
-
-    if (ctx) {
-        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-    }
-}
-
-void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
-    if (z >= 1.0f || candidates->size <= 2) {
-        return;
-    }
-
-    llama_sample_softmax(nullptr, candidates);
-    const int64_t t_start_sample_us = ggml_time_us();
-
-    // Compute the first and second derivatives
-    std::vector<float> first_derivatives(candidates->size - 1);
-    std::vector<float> second_derivatives(candidates->size - 2);
-
-    for (size_t i = 0; i < first_derivatives.size(); ++i) {
-        first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
-    }
-    for (size_t i = 0; i < second_derivatives.size(); ++i) {
-        second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
-    }
-
-    // Calculate absolute value of second derivatives
-    for (size_t i = 0; i < second_derivatives.size(); ++i) {
-        second_derivatives[i] = abs(second_derivatives[i]);
-    }
-
-    // Normalize the second derivatives
-    {
-        const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
-
-        if (second_derivatives_sum > 1e-6f) {
-            for (float & value : second_derivatives) {
-                value /= second_derivatives_sum;
-            }
-        } else {
-            for (float & value : second_derivatives) {
-                value = 1.0f / second_derivatives.size();
-            }
-        }
-    }
-
-    float cum_sum = 0.0f;
-    size_t last_idx = candidates->size;
-    for (size_t i = 0; i < second_derivatives.size(); ++i) {
-        cum_sum += second_derivatives[i];
-
-        // Check if the running sum is greater than z or if we have kept at least min_keep tokens
-        if (cum_sum > z && i >= min_keep) {
-            last_idx = i;
-            break;
-        }
-    }
-
-    // Resize the output vector to keep only the tokens above the tail location
-    candidates->size = last_idx;
-
-    if (ctx) {
-        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-    }
-}
-
-
-void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
-    // Reference implementation:
-    // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
-    if (p >= 1.0f) {
-        return;
-    }
-
-    // Compute the softmax of logits and calculate entropy
-    llama_sample_softmax(nullptr, candidates);
-
-    const int64_t t_start_sample_us = ggml_time_us();
-
-    float entropy = 0.0f;
-    for (size_t i = 0; i < candidates->size; ++i) {
-        entropy += -candidates->data[i].p * logf(candidates->data[i].p);
-    }
-
-    // Compute the absolute difference between negative log probability and entropy for each candidate
-    std::vector<float> shifted_scores;
-    for (size_t i = 0; i < candidates->size; ++i) {
-        float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
-        shifted_scores.push_back(shifted_score);
-    }
-
-    // Sort tokens based on the shifted_scores and their corresponding indices
-    std::vector<size_t> indices(candidates->size);
-    std::iota(indices.begin(), indices.end(), 0);
-
-    std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
-        return shifted_scores[a] < shifted_scores[b];
-    });
-
-    // Compute the cumulative probabilities
-    float cum_sum = 0.0f;
-    size_t last_idx = indices.size();
-
-    for (size_t i = 0; i < indices.size(); ++i) {
-        size_t idx = indices[i];
-        cum_sum += candidates->data[idx].p;
-
-        // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
-        if (cum_sum > p && i >= min_keep - 1) {
-            last_idx = i + 1;
-            break;
-        }
-    }
-
-    // Resize the output vector to keep only the locally typical tokens
-    std::vector<llama_token_data> new_candidates;
-    for (size_t i = 0; i < last_idx; ++i) {
-        size_t idx = indices[i];
-        new_candidates.push_back(candidates->data[idx]);
-    }
-
-    // Replace the data in candidates with the new_candidates data
-    std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
-    candidates->size = new_candidates.size();
-
-    if (ctx) {
-        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-    }
-}
-
-void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
-    const int64_t t_start_sample_us = ggml_time_us();
-
-    for (size_t i = 0; i < candidates_p->size; ++i) {
-        candidates_p->data[i].logit /= temp;
-    }
-
-    if (ctx) {
-        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-    }
-}
-
-void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
-    if (last_tokens_size == 0 || penalty == 1.0f) {
-        return;
-    }
-
-    const int64_t t_start_sample_us = ggml_time_us();
-
-    for (size_t i = 0; i < candidates->size; ++i) {
-        const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
-        if (token_iter == last_tokens + last_tokens_size) {
-            continue;
-        }
-
-        // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
-        // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
-        if (candidates->data[i].logit <= 0) {
-            candidates->data[i].logit *= penalty;
-        } else {
-            candidates->data[i].logit /= penalty;
-        }
-    }
-
-    candidates->sorted = false;
-
-    if (ctx) {
-        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-    }
-}
-
-void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
-    if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
-        return;
-    }
-
-    const int64_t t_start_sample_us = ggml_time_us();
-
-    // Create a frequency map to count occurrences of each token in last_tokens
-    std::unordered_map<llama_token, int> token_count;
-    for (size_t i = 0; i < last_tokens_size; ++i) {
-        token_count[last_tokens_p[i]]++;
-    }
-
-    // Apply frequency and presence penalties to the candidates
-    for (size_t i = 0; i < candidates->size; ++i) {
-        auto token_iter = token_count.find(candidates->data[i].id);
-        if (token_iter == token_count.end()) {
-            continue;
-        }
-
-        int count = token_iter->second;
-        candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
-    }
-
-    candidates->sorted = false;
-
-    if (ctx) {
-        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-    }
-}
-
-void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
-    assert(ctx);
-    const int64_t t_start_sample_us = ggml_time_us();
-
-    bool allow_eos = false;
-    for (const auto & stack : grammar->stacks) {
-        if (stack.empty()) {
-            allow_eos = true;
-            break;
-        }
-    }
-
-    const llama_token eos = llama_token_eos();
-
-    std::vector<std::vector<uint32_t>>   candidates_decoded;
-    std::vector<llama_grammar_candidate> candidates_grammar;
-
-    for (size_t i = 0; i < candidates->size; ++i) {
-        const llama_token id  = candidates->data[i].id;
-        const char *      str = llama_token_to_str(ctx, id);
-        if (id == eos) {
-            if (!allow_eos) {
-                candidates->data[i].logit = -INFINITY;
-            }
-        } else if (*str == 0) {
-            candidates->data[i].logit = -INFINITY;
-        } else {
-            candidates_decoded.push_back(decode_utf8(str));
-            candidates_grammar.push_back({ i, candidates_decoded.back().data() });
-        }
-    }
-
-    const auto rejects =
-        llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
-    for (auto & reject : rejects) {
-        candidates->data[reject.index].logit = -INFINITY;
-    }
-
-    ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-}
-
-static void llama_log_softmax(float * array, size_t size) {
-    float max_l = *std::max_element(array, array + size);
-    float sum = 0.f;
-    for (size_t i = 0; i < size; ++i) {
-        float p = expf(array[i] - max_l);
-        sum += p;
-        array[i] = p;
-    }
-
-    for (size_t i = 0; i < size; ++i) {
-        array[i] = logf(array[i] / sum);
-    }
-}
-
-void llama_sample_classifier_free_guidance(
-          struct llama_context * ctx,
-        llama_token_data_array * candidates,
-          struct llama_context * guidance_ctx,
-                         float   scale) {
-    int64_t t_start_sample_us = ggml_time_us();
-
-    assert(ctx);
-    auto n_vocab = llama_n_vocab(ctx);
-    assert(n_vocab == (int)candidates->size);
-    assert(!candidates->sorted);
-
-    std::vector<float> logits_base;
-    logits_base.reserve(candidates->size);
-    for (size_t i = 0; i < candidates->size; ++i) {
-        logits_base.push_back(candidates->data[i].logit);
-    }
-    llama_log_softmax(logits_base.data(), candidates->size);
-
-    float* logits_guidance = llama_get_logits(guidance_ctx);
-    llama_log_softmax(logits_guidance, n_vocab);
-
-    for (int i = 0; i < n_vocab; ++i) {
-        float logit_guidance = logits_guidance[i];
-        float logit_base = logits_base[i];
-        candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
-    }
-
-    if (ctx) {
-        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-    }
-}
-
-llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
-    assert(ctx);
-    auto N = float(llama_n_vocab(ctx));
-    int64_t t_start_sample_us;
-    t_start_sample_us = ggml_time_us();
-
-    llama_sample_softmax(nullptr, candidates);
-
-    // Estimate s_hat using the most probable m tokens
-    float s_hat = 0.0;
-    float sum_ti_bi = 0.0;
-    float sum_ti_sq = 0.0;
-    for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
-        float t_i = logf(float(i + 2) / float(i + 1));
-        float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
-        sum_ti_bi += t_i * b_i;
-        sum_ti_sq += t_i * t_i;
-    }
-    s_hat = sum_ti_bi / sum_ti_sq;
-
-    // Compute k from the estimated s_hat and target surprise value
-    float epsilon_hat = s_hat - 1;
-    float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
-
-    // Sample the next word X using top-k sampling
-    llama_sample_top_k(nullptr, candidates, int(k), 1);
-    if (ctx) {
-        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-    }
-    llama_token X = llama_sample_token(ctx, candidates);
-    t_start_sample_us = ggml_time_us();
-
-    // Compute error as the difference between observed surprise and target surprise value
-    size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
-        return candidate.id == X;
-    }));
-    float observed_surprise = -log2f(candidates->data[X_idx].p);
-    float e = observed_surprise - tau;
-
-    // Update mu using the learning rate and error
-    *mu = *mu - eta * e;
-
-    if (ctx) {
-        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-    }
-    return X;
-}
-
-llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
-    int64_t t_start_sample_us;
-    t_start_sample_us = ggml_time_us();
-
-    llama_sample_softmax(ctx, candidates);
-
-    // Truncate the words with surprise values greater than mu
-    candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
-        return -log2f(candidate.p) > *mu;
-    }));
-
-    if (candidates->size == 0) {
-        candidates->size = 1;
-    }
-
-    if (ctx) {
-        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-    }
-
-    // Normalize the probabilities of the remaining words
-    llama_sample_softmax(ctx, candidates);
-
-    // Sample the next word X from the remaining words
-    llama_token X = llama_sample_token(ctx, candidates);
-    t_start_sample_us = ggml_time_us();
-
-    // Compute error as the difference between observed surprise and target surprise value
-    size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
-        return candidate.id == X;
-    }));
-    float observed_surprise = -log2f(candidates->data[X_idx].p);
-    float e = observed_surprise - tau;
-
-    // Update mu using the learning rate and error
-    *mu = *mu - eta * e;
-
-    if (ctx) {
-        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-    }
-    return X;
-}
-
-llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
-    const int64_t t_start_sample_us = ggml_time_us();
-
-    // Find max element
-    auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
-        return a.logit < b.logit;
-    });
-
-    llama_token result = max_iter->id;
-    if (ctx) {
-        ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-        ctx->n_sample++;
-    }
-    return result;
-}
-
-llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
-    assert(ctx);
-    const int64_t t_start_sample_us = ggml_time_us();
-    llama_sample_softmax(nullptr, candidates);
-
-    std::vector<float> probs;
-    probs.reserve(candidates->size);
-    for (size_t i = 0; i < candidates->size; ++i) {
-        probs.push_back(candidates->data[i].p);
-    }
-
-    std::discrete_distribution<> dist(probs.begin(), probs.end());
-    auto & rng = ctx->rng;
-    int idx = dist(rng);
-
-    llama_token result = candidates->data[idx].id;
-
-    ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-    ctx->n_sample++;
-    return result;
-}
-
-void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
-    const int64_t t_start_sample_us = ggml_time_us();
-
-    if (token == llama_token_eos()) {
-        for (const auto & stack : grammar->stacks) {
-            if (stack.empty()) {
-                return;
-            }
-        }
-        LLAMA_ASSERT(false);
-    }
-
-    const char * str = llama_token_to_str(ctx, token);
-    // Note terminating 0 in decoded string
-    auto code_points = decode_utf8(str);
-    for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
-        grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
-    }
-    LLAMA_ASSERT(!grammar->stacks.empty());
-
-    ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
-}
-
-//
-// quantization
-//
-
-static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llama_buffer & output, const int nelements, const int nthread) {
-    if (output.size < nelements * sizeof(float)) {
-        output.resize(nelements * sizeof(float));
-    }
-    float * f32_output = (float *) output.addr;
-
-    ggml_type_traits_t qtype;
-    if (ggml_is_quantized(tensor.type)) {
-        qtype = ggml_internal_get_type_traits(tensor.type);
-        if (qtype.to_float == NULL) {
-            throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type)));
-        }
-    } else if (tensor.type != GGML_TYPE_F16) {
-        throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor.type)));
-    }
-
-    if (nthread < 2) {
-        if (tensor.type == GGML_TYPE_F16) {
-            ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements);
-        } else if (ggml_is_quantized(tensor.type)) {
-            qtype.to_float(tensor.data, f32_output, nelements);
-        } else {
-            LLAMA_ASSERT(false); // unreachable
-        }
-        return;
-    }
-
-    auto block_size = tensor.type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor.type);
-    auto block_size_bytes = ggml_type_size(tensor.type);
-
-    LLAMA_ASSERT(nelements % block_size == 0);
-    auto nblocks = nelements / block_size;
-    auto blocks_per_thread = nblocks / nthread;
-    auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
-
-    std::vector<std::thread> workers;
-    for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
-        auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
-        auto thr_elems = thr_blocks * block_size; // number of elements for this thread
-        auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
-
-        auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
-            if (typ == GGML_TYPE_F16) {
-                ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
-            } else {
-                qtype.to_float(inbuf, outbuf, nels);
-            }
-        };
-        workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
-        in_buff_offs += thr_block_bytes;
-        out_buff_offs += thr_elems;
-    }
-    for (auto & worker : workers) {
-        worker.join();
-    }
-
-}
-
-static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
-    ggml_type quantized_type;
-    llama_ftype ftype = params->ftype;
-    int nthread = params->nthread;
-
-    switch (params->ftype) {
-        case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
-        case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
-        case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
-        case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
-        case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
-        case LLAMA_FTYPE_MOSTLY_F16:  quantized_type = GGML_TYPE_F16;  break;
-        case LLAMA_FTYPE_ALL_F32:     quantized_type = GGML_TYPE_F32;  break;
-
-#ifdef GGML_USE_K_QUANTS
-        // K-quants
-        case LLAMA_FTYPE_MOSTLY_Q2_K:   quantized_type = GGML_TYPE_Q2_K; break;
-        case LLAMA_FTYPE_MOSTLY_Q3_K_S:
-        case LLAMA_FTYPE_MOSTLY_Q3_K_M:
-        case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
-        case LLAMA_FTYPE_MOSTLY_Q4_K_S:
-        case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
-        case LLAMA_FTYPE_MOSTLY_Q5_K_S:
-        case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
-        case LLAMA_FTYPE_MOSTLY_Q6_K:   quantized_type = GGML_TYPE_Q6_K; break;
-#endif
-        default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
-    }
-
-    if (nthread <= 0) {
-        nthread = std::thread::hardware_concurrency();
-    }
-
-    std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false));
-    llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loader.get(), params->ftype);
-
-#ifdef GGML_USE_K_QUANTS
-    int n_attention_wv    = 0;
-    int n_feed_forward_w2 = 0;
-    for (auto& tensor : model_loader->tensors_map.tensors) {
-        if (tensor.name.find("attention.wv.weight") != std::string::npos) {
-            ++n_attention_wv;
-        }
-        else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
-            ++n_feed_forward_w2;
-        }
-    }
-
-    int i_attention_wv = 0;
-    int i_feed_forward_w2 = 0;
-#endif
-
-    size_t total_size_org = 0;
-    size_t total_size_new = 0;
-    std::vector<int64_t> hist_all(1 << 4, 0);
-
-    std::vector<std::thread> workers;
-    std::mutex mutex;
-
-    auto use_more_bits = [] (int i_layer, int num_layers) -> bool {
-        return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
-    };
-
-    size_t idx = 0;
-    for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
-        llama_buffer read_data;
-        read_data.resize(tensor.size);
-        tensor.data = read_data.addr;
-        model_loader->load_data_for(tensor);
-
-        LLAMA_LOG_INFO("[%4zu/%4zu] %36s - %16s, type = %6s, ",
-               ++idx, model_loader->tensors_map.tensors.size(),
-               tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
-               ggml_type_name(tensor.type));
-
-        // This used to be a regex, but <regex> has an extreme cost to compile times.
-        bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
-
-        // quantize only 2D tensors
-        quantize &= (tensor.ne.size() == 2);
-        quantize &= params->quantize_output_tensor || tensor.name != "output.weight";
-        quantize &= quantized_type != tensor.type;
-
-        enum ggml_type new_type;
-        void * new_data;
-        size_t new_size;
-        llama_buffer work;
-
-        if (!quantize) {
-            new_type = tensor.type;
-            new_data = tensor.data;
-            new_size = tensor.size;
-            LLAMA_LOG_INFO("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
-        } else {
-            new_type = quantized_type;
-#ifdef GGML_USE_K_QUANTS
-            if (tensor.name == "output.weight") {
-                int nx = tensor.ne.at(0);
-                int ny = tensor.ne.at(1);
-                if (nx % QK_K == 0 && ny % QK_K == 0) {
-                    new_type = GGML_TYPE_Q6_K;
-                }
-            } else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
-                if      (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
-                else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
-                else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
-                        use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
-                else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
-                        (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
-                ++i_attention_wv;
-            } else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
-                if      (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
-                else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
-                else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
-                         use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
-                //else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < n_feed_forward_w2/8) new_type = GGML_TYPE_Q6_K;
-                ++i_feed_forward_w2;
-            } else if (tensor.name.find("attention.wo.weight") != std::string::npos) {
-                if      (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
-                else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
-            }
-            bool convert_incompatible_tensor = false;
-            if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
-                new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
-                int nx = tensor.ne.at(0);
-                int ny = tensor.ne.at(1);
-                if (nx % QK_K != 0 || ny % QK_K != 0) {
-                    LLAMA_LOG_INFO("\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
-                    convert_incompatible_tensor = true;
-                }
-            }
-            if (convert_incompatible_tensor) {
-                if (tensor.name == "output.weight") {
-                    new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
-                    LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
-                } else if (tensor.name == "tok_embeddings.weight") {
-                    new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
-                    LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
-                } else {
-                    throw std::runtime_error("Unsupported tensor size encountered\n");
-                }
-            }
-#endif
-
-            float * f32_data;
-            size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
-            llama_buffer f32_conv_buf;
-
-            if (tensor.type == GGML_TYPE_F32) {
-                f32_data = (float *) tensor.data;
-            } else if (ggml_is_quantized(tensor.type) && !params->allow_requantize) {
-                throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor.type)));
-            } else {
-                llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
-                f32_data = (float *) f32_conv_buf.addr;
-            }
-
-            LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
-            fflush(stdout);
-
-            work.resize(nelements * 4); // upper bound on size
-            new_data = work.addr;
-            std::vector<int64_t> hist_cur(1 << 4, 0);
-
-            int chunk_size = 32 * 512;
-            const int nchunk = (nelements + chunk_size - 1)/chunk_size;
-            const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
-            if (nthread_use < 2) {
-                new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
-            } else {
-                size_t counter = 0;
-                new_size = 0;
-                auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
-                    std::vector<int64_t> local_hist;
-                    size_t local_size = 0;
-                    while (true) {
-                        std::unique_lock<std::mutex> lock(mutex);
-                        size_t first = counter; counter += chunk_size;
-                        if (first >= nelements) {
-                            if (!local_hist.empty()) {
-                                for (int j=0; j<int(local_hist.size()); ++j) {
-                                    hist_cur[j] += local_hist[j];
-                                }
-                                new_size += local_size;
-                            }
-                            break;
-                        }
-                        lock.unlock();
-                        size_t last = std::min(nelements, first + chunk_size);
-                        if (local_hist.empty()) {
-                            local_hist.resize(hist_cur.size(), 0);
-                        }
-                        local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
-                    }
-                };
-                if ((int) workers.size() < nthread_use - 1) {
-                    workers.resize(nthread_use - 1);
-                }
-                for (int it = 0; it < nthread_use - 1; ++it) {
-                    workers[it] = std::thread(compute);
-                }
-                compute();
-                for (int it = 0; it < nthread_use - 1; ++it) {
-                    workers[it].join();
-                }
-            }
-
-            LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
-            int64_t tot_count = 0;
-            for (size_t i = 0; i < hist_cur.size(); i++) {
-                hist_all[i] += hist_cur[i];
-                tot_count += hist_cur[i];
-            }
-
-            if (tot_count > 0) {
-                for (size_t i = 0; i < hist_cur.size(); i++) {
-                    LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
-                }
-            }
-            LLAMA_LOG_INFO("\n");
-        }
-        total_size_org += tensor.size;
-        total_size_new += new_size;
-        file_saver.write_tensor(tensor, new_type, new_data, new_size);
-    }
-
-    LLAMA_LOG_INFO("%s: model size  = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
-    LLAMA_LOG_INFO("%s: quant size  = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
-
-    {
-        int64_t sum_all = 0;
-        for (size_t i = 0; i < hist_all.size(); i++) {
-            sum_all += hist_all[i];
-        }
-
-        if (sum_all > 0) {
-            LLAMA_LOG_INFO("%s: hist: ", __func__);
-            for (size_t i = 0; i < hist_all.size(); i++) {
-                LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
-            }
-            LLAMA_LOG_INFO("\n");
-        }
-    }
-}
-
-
-
-//
-// interface implementation
-//
-
-struct llama_model * llama_load_model_from_file(
-                             const char * path_model,
-            struct llama_context_params   params) {
-    ggml_time_init();
-
-    llama_model * model = new llama_model;
-
-    ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
-
-    if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gqa, params.rms_norm_eps, params.n_gpu_layers,
-                params.main_gpu, params.tensor_split, params.mul_mat_q, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
-                memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
-                params.progress_callback_user_data)) {
-        LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
-        delete model;
-        return nullptr;
-    }
-
-    return model;
-}
-
-void llama_free_model(struct llama_model * model) {
-    delete model;
-}
-
-struct llama_context * llama_new_context_with_model(
-                 struct llama_model * model,
-        struct llama_context_params   params) {
-
-    if (!model) {
-        return nullptr;
-    }
-
-    llama_context * ctx = new llama_context(*model);
-
-    if (params.seed == LLAMA_DEFAULT_SEED) {
-        params.seed = time(NULL);
-    }
-
-    unsigned cur_percentage = 0;
-    if (params.progress_callback == NULL) {
-        params.progress_callback_user_data = &cur_percentage;
-        params.progress_callback = [](float progress, void * ctx) {
-            unsigned * cur_percentage_p = (unsigned *) ctx;
-            unsigned percentage = (unsigned) (100 * progress);
-            while (percentage > *cur_percentage_p) {
-                *cur_percentage_p = percentage;
-                LLAMA_LOG_INFO(".");
-                if (percentage >= 100) {
-                    LLAMA_LOG_INFO("\n");
-                }
-            }
-        };
-    }
-
-    ctx->rng = std::mt19937(params.seed);
-    ctx->logits_all = params.logits_all;
-
-    ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
-
-    // reserve memory for context buffers
-    if (!params.vocab_only) {
-        if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
-            LLAMA_LOG_ERROR("%s: kv_cache_init() failed for self-attention cache\n", __func__);
-            llama_free(ctx);
-            return nullptr;
-        }
-
-        {
-            const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
-            LLAMA_LOG_INFO("%s: kv self size  = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
-        }
-
-        const auto & hparams = ctx->model.hparams;
-
-        // resized during inference
-        if (params.logits_all) {
-            ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
-        } else {
-            ctx->logits.reserve(hparams.n_vocab);
-        }
-
-        if (params.embedding){
-            ctx->embedding.resize(hparams.n_embd);
-        }
-
-#ifdef LLAMA_USE_ALLOCATOR
-        {
-            static const size_t tensor_alignment = 32;
-            // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
-            ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
-
-            // create measure allocator
-            ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
-
-            // build worst-case graph
-            int n_tokens = std::min((int)hparams.n_ctx, params.n_batch);
-            int n_past = hparams.n_ctx - n_tokens;
-            llama_token token = llama_token_bos(); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
-            ggml_cgraph * gf = llama_build_graph(*ctx, &token, NULL, n_tokens, n_past);
-
-            // measure memory requirements for the graph
-            size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
-
-            LLAMA_LOG_INFO("%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
-
-            // debug - for comparison with scratch buffer
-            //size_t prev_req =
-            //    MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type) +
-            //    MEM_REQ_SCRATCH1().at(ctx->model.type) +
-            //    MEM_REQ_EVAL().at(ctx->model.type);
-            //LLAMA_LOG_INFO("%s: (debug) equivalent with scratch buffer = %7.2f MB\n", __func__, prev_req / 1024.0 / 1024.0);
-
-            // recreate allocator with exact memory requirements
-            ggml_allocr_free(ctx->alloc);
-
-            ctx->buf_alloc.resize(alloc_size);
-            ctx->alloc = ggml_allocr_new(ctx->buf_alloc.addr, ctx->buf_alloc.size, tensor_alignment);
-        }
-#else
-        ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type) + ggml_graph_overhead());
-#endif
-
-#ifdef LLAMA_USE_SCRATCH
-        ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0(hparams.n_ctx).at(ctx->model.type));
-        ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
-#endif
-    }
-
-#ifdef GGML_USE_METAL
-    if (params.n_gpu_layers > 0) {
-        // this allocates all Metal resources and memory buffers
-        ctx->ctx_metal = ggml_metal_init(1);
-
-        if (!ctx->ctx_metal) {
-            LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
-            llama_free(ctx);
-            return NULL;
-        }
-
-        void * data_ptr  = NULL;
-        size_t data_size = 0;
-
-        if (params.use_mmap) {
-            data_ptr  = ctx->model.mapping->addr;
-            data_size = ctx->model.mapping->size;
-        } else {
-            data_ptr  = ggml_get_mem_buffer(ctx->model.ctx);
-            data_size = ggml_get_mem_size  (ctx->model.ctx);
-        }
-
-        const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
-
-        LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
-
-#define LLAMA_METAL_CHECK_BUF(result)                            \
-    if (!(result)) {                                             \
-        LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
-        llama_free(ctx);                                         \
-        return NULL;                                             \
-    }
-
-        LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
-
-        LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0));
-        LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv",   ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0));
-
-        LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0));
-        LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0));
-#undef LLAMA_METAL_CHECK_BUF
-    }
-#endif
-
-#ifdef GGML_USE_MPI
-    ctx->ctx_mpi = ggml_mpi_init();
-
-    if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
-        // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
-        const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos());
-        while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
-        llama_backend_free();
-        exit(1);
-    }
-#endif
-
-    return ctx;
-}
-
-struct llama_context * llama_init_from_file(
-                             const char * path_model,
-            struct llama_context_params   params) {
-
-    struct llama_model * model = llama_load_model_from_file(path_model, params);
-    if (!model) {
-        return nullptr;
-    }
-    struct llama_context * ctx = llama_new_context_with_model(model, params);
-    ctx->model_owner = true;
-    return ctx;
-}
-
-void llama_free(struct llama_context * ctx) {
-    delete ctx;
-}
-
-int llama_model_quantize(
-        const char * fname_inp,
-        const char * fname_out,
-        const llama_model_quantize_params *params) {
-    try {
-        llama_model_quantize_internal(fname_inp, fname_out, params);
-        return 0;
-    } catch (const std::exception & err) {
-        LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
-        return 1;
-    }
-}
-
-int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
-    LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
-
-    const int64_t t_start_lora_us = ggml_time_us();
-
-    auto fin = std::ifstream(path_lora, std::ios::binary);
-    if (!fin) {
-        LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora);
-        return 1;
-    }
-
-    // verify magic and version
-    {
-        uint32_t magic;
-        fin.read((char *) &magic, sizeof(magic));
-        if (magic != LLAMA_FILE_MAGIC_GGLA) {
-            LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
-            return 1;
-        }
-        uint32_t format_version;
-        fin.read((char *) &format_version, sizeof(format_version));
-
-        if (format_version != 1) {
-            LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
-            return 1;
-        }
-    }
-
-    int32_t lora_r;
-    int32_t lora_alpha;
-    fin.read((char *) &lora_r, sizeof(lora_r));
-    fin.read((char *) &lora_alpha, sizeof(lora_alpha));
-    float scaling = (float)lora_alpha / (float)lora_r;
-
-    LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
-
-
-    // create a temporary ggml context to store the lora tensors
-    // todo: calculate size from biggest possible tensor
-    std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
-    struct ggml_init_params params;
-    params.mem_size   = lora_buf.size();
-    params.mem_buffer = lora_buf.data();
-    params.no_alloc   = false;
-
-    ggml_context * lora_ctx = ggml_init(params);
-    std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
-
-    // create a name -> tensor map of the model to accelerate lookups
-    std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
-    for (const auto & kv: model.tensors_by_name) {
-        model_tensors.insert(kv);
-    }
-
-
-    // load base model
-    std::unique_ptr<llama_model_loader> model_loader;
-    ggml_context * base_ctx = NULL;
-    llama_buffer base_buf;
-    if (path_base_model) {
-        LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
-        model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
-
-        size_t ctx_size;
-        size_t mmapped_size;
-        model_loader->calc_sizes(&ctx_size, &mmapped_size);
-        base_buf.resize(ctx_size);
-
-        ggml_init_params base_params;
-        base_params.mem_size   = base_buf.size;
-        base_params.mem_buffer = base_buf.addr;
-        base_params.no_alloc   = model_loader->use_mmap;
-
-        base_ctx = ggml_init(base_params);
-
-        model_loader->ggml_ctx = base_ctx;
-
-        // maybe this should in llama_model_loader
-        if (model_loader->use_mmap) {
-            model_loader->mapping.reset(new llama_mmap(&model_loader->file_loader->file, /* prefetch */ 0, ggml_is_numa()));
-        }
-    }
-
-    // read tensors and apply
-    bool warned = false;
-    int n_tensors = 0;
-
-    std::vector<uint8_t> work_buffer;
-
-    while (true) {
-        int32_t n_dims;
-        int32_t length;
-        int32_t ftype;
-
-        fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
-        fin.read(reinterpret_cast<char *>(&length), sizeof(length));
-        fin.read(reinterpret_cast<char *>(&ftype),  sizeof(ftype));
-        if (fin.eof()) {
-            break;
-        }
-
-        int32_t ne[2] = { 1, 1 };
-        for (int i = 0; i < n_dims; ++i) {
-            fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
-        }
-
-        std::string name;
-        {
-            char buf[1024];
-            fin.read(buf, length);
-            name = std::string(buf, length);
-        }
-
-        // check for lora suffix and get the type of tensor
-        const std::string lora_suffix = ".lora";
-        size_t pos = name.rfind(lora_suffix);
-        if (pos == std::string::npos) {
-            LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
-            return 1;
-        }
-
-        std::string lora_type = name.substr(pos + lora_suffix.length());
-        std::string base_name = name;
-        base_name.erase(pos);
-        // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
-
-        if (model_tensors.find(base_name) == model_tensors.end()) {
-            LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
-            return 1;
-        }
-
-        // create ggml tensor
-        ggml_type wtype;
-        switch (ftype) {
-            case 0: wtype = GGML_TYPE_F32;  break;
-            case 1: wtype = GGML_TYPE_F16;  break;
-            default:
-                    {
-                        LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
-                                __func__, ftype);
-                        return false;
-                    }
-        }
-        ggml_tensor * lora_tensor;
-        if (n_dims == 2) {
-            lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
-        }
-        else {
-            LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
-            return 1;
-        }
-        ggml_set_name(lora_tensor, "lora_tensor");
-
-        // load tensor data
-        size_t offset = fin.tellg();
-        size_t tensor_data_size = ggml_nbytes(lora_tensor);
-        offset = (offset + 31) & -32;
-        fin.seekg(offset);
-        fin.read((char*)lora_tensor->data, tensor_data_size);
-
-        lora_tensors[name] = lora_tensor;
-
-        // check if we have both A and B tensors and apply
-        if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
-            lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
-
-            ggml_tensor * dest_t = model_tensors[base_name];
-
-            offload_func_t offload_func = llama_nop;
-            offload_func_t offload_func_force_inplace = llama_nop;
-
-#ifdef GGML_USE_CUBLAS
-            if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
-                if (dest_t->type != GGML_TYPE_F16) {
-                    throw std::runtime_error(format(
-                        "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
-                }
-                offload_func = ggml_cuda_assign_buffers;
-                offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
-            }
-#endif // GGML_USE_CUBLAS
-
-            ggml_tensor * base_t;
-            if (model_loader) {
-                // load from base model
-                if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
-                    LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
-                    return 1;
-                }
-                size_t idx = model_loader->tensors_map.name_to_idx[base_name];
-                llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
-                base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
-                lt.data = (uint8_t *) lt.ggml_tensor->data;
-                model_loader->load_data_for(lt);
-                lt.ggml_tensor->data = lt.data;
-            }
-            else {
-                base_t = dest_t;
-            }
-
-            if (ggml_is_quantized(base_t->type)) {
-                if (!warned) {
-                    LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
-                                   "use a f16 or f32 base model with --lora-base\n", __func__);
-                    warned = true;
-                }
-            }
-
-            ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
-            GGML_ASSERT(loraA->type == GGML_TYPE_F32);
-            ggml_set_name(loraA, "loraA");
-
-            ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
-            GGML_ASSERT(loraB->type == GGML_TYPE_F32);
-            ggml_set_name(loraB, "loraB");
-
-            if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
-                LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
-                                " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
-                return 1;
-            }
-
-            // w = w + BA*s
-            ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
-            offload_func(BA);
-            ggml_set_name(BA, "BA");
-
-            if (scaling != 1.0f) {
-                ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
-                ggml_set_name(scale_tensor, "scale_tensor");
-
-                BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
-                offload_func(BA);
-                ggml_set_name(BA, "BA_scaled");
-            }
-
-            ggml_tensor * r;
-            if (base_t == dest_t) {
-                r = ggml_add_inplace(lora_ctx, dest_t, BA);
-                offload_func_force_inplace(r);
-                ggml_set_name(r, "r_add_inplace");
-            }
-            else {
-                r = ggml_add(lora_ctx, base_t, BA);
-                offload_func(r);
-                ggml_set_name(r, "r_add");
-
-                r = ggml_cpy(lora_ctx, r, dest_t);
-                offload_func(r);
-                ggml_set_name(r, "r_cpy");
-            }
-
-            struct ggml_cgraph gf = ggml_build_forward(r);
-
-            ggml_graph_compute_helper(work_buffer, &gf, n_threads);
-
-            // we won't need these tensors again, reset the context to save memory
-            ggml_free(lora_ctx);
-            lora_ctx = ggml_init(params);
-            lora_tensors.clear();
-
-            n_tensors++;
-            if (n_tensors % 4 == 0) {
-                LLAMA_LOG_INFO(".");
-            }
-        }
-    }
-
-    // TODO: this should be in a destructor, it will leak on failure
-    ggml_free(lora_ctx);
-    if (base_ctx) {
-        ggml_free(base_ctx);
-    }
-
-    const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
-    LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
-
-    return 0;
-}
-
-int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
-    try {
-        return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
-    } catch (const std::exception & err) {
-        LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
-        return 1;
-    }
-}
-
-int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) {
-    try {
-        return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
-    } catch (const std::exception & err) {
-        LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
-        return 1;
-    }
-}
-
-int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
-    return ctx->kv_self.n;
-}
-
-#define LLAMA_MAX_RNG_STATE (64*1024)
-
-void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
-    if (seed == LLAMA_DEFAULT_SEED) {
-        seed = time(NULL);
-    }
-    ctx->rng.seed(seed);
-}
-
-// Returns the *maximum* size of the state
-size_t llama_get_state_size(const struct llama_context * ctx) {
-    // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
-    // for reference, std::mt19937(1337) serializes to 6701 bytes.
-    const size_t s_rng_size        = sizeof(size_t);
-    const size_t s_rng             = LLAMA_MAX_RNG_STATE;
-    const size_t s_logits_capacity = sizeof(size_t);
-    const size_t s_logits_size     = sizeof(size_t);
-    const size_t s_logits          = ctx->logits.capacity() * sizeof(float);
-    const size_t s_embedding_size  = sizeof(size_t);
-    const size_t s_embedding       = ctx->embedding.size() * sizeof(float);
-    const size_t s_kv_size         = sizeof(size_t);
-    const size_t s_kv_ntok         = sizeof(int);
-    const size_t s_kv              = ctx->kv_self.buf.size;
-
-    const size_t s_total = (
-        + s_rng_size
-        + s_rng
-        + s_logits_capacity
-        + s_logits_size
-        + s_logits
-        + s_embedding_size
-        + s_embedding
-        + s_kv_size
-        + s_kv_ntok
-        + s_kv
-    );
-
-    return s_total;
-}
-
-/** copy state data into either a buffer or file depending on the passed in context
- *
- * file context:
- * llama_file file("/path", "wb");
- * llama_data_file_context data_ctx(&file);
- * llama_copy_state_data(ctx, &data_ctx);
- *
- * buffer context:
- * std::vector<uint8_t> buf(max_size, 0);
- * llama_data_buffer_context data_ctx(&buf.data());
- * llama_copy_state_data(ctx, &data_ctx);
- *
-*/
-void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
-    // copy rng
-    {
-        std::stringstream rng_ss;
-        rng_ss << ctx->rng;
-
-        const size_t rng_size = rng_ss.str().size();
-        char rng_buf[LLAMA_MAX_RNG_STATE];
-
-        memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
-        memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
-
-        data_ctx->write(&rng_size,   sizeof(rng_size));
-        data_ctx->write(&rng_buf[0], LLAMA_MAX_RNG_STATE);
-    }
-
-    // copy logits
-    {
-        const size_t logits_cap  = ctx->logits.capacity();
-        const size_t logits_size = ctx->logits.size();
-
-        data_ctx->write(&logits_cap,  sizeof(logits_cap));
-        data_ctx->write(&logits_size, sizeof(logits_size));
-
-        if (logits_size) {
-            data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
-        }
-
-        // If there is a gap between the size and the capacity, write padding
-        size_t padding_size = (logits_cap - logits_size) * sizeof(float);
-        if (padding_size > 0) {
-            std::vector<uint8_t> padding(padding_size, 0); // Create a buffer filled with zeros
-            data_ctx->write(padding.data(), padding_size);
-        }
-    }
-
-    // copy embeddings
-    {
-        const size_t embedding_size = ctx->embedding.size();
-
-        data_ctx->write(&embedding_size, sizeof(embedding_size));
-
-        if (embedding_size) {
-            data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
-        }
-    }
-
-    // copy kv cache
-    {
-        const auto & kv_self = ctx->kv_self;
-        const auto & hparams = ctx->model.hparams;
-        const int    n_layer = hparams.n_layer;
-        const int    n_embd  = hparams.n_embd_gqa();
-        const int    n_ctx   = hparams.n_ctx;
-
-        const size_t kv_size = kv_self.buf.size;
-        const int    kv_ntok = llama_get_kv_cache_token_count(ctx);
-
-        data_ctx->write(&kv_size, sizeof(kv_size));
-        data_ctx->write(&kv_ntok, sizeof(kv_ntok));
-
-        if (kv_size) {
-            const size_t elt_size = ggml_element_size(kv_self.k);
-
-            ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
-            ggml_cgraph gf{};
-
-            ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
-            std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
-            kout3d->data = kout3d_data.data();
-
-            ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
-            std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
-            vout3d->data = vout3d_data.data();
-
-            ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
-                n_embd, kv_ntok, n_layer,
-                elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
-
-            ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
-                kv_ntok, n_embd, n_layer,
-                elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
-
-            ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
-            ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
-            ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
-
-            ggml_free(cpy_ctx);
-
-            // our data is now in the kout3d_data and vout3d_data buffers
-            // write them to file
-            data_ctx->write(kout3d_data.data(), kout3d_data.size());
-            data_ctx->write(vout3d_data.data(), vout3d_data.size());
-        }
-    }
-}
-
-size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
-    llama_data_buffer_context data_ctx(dst);
-    llama_copy_state_data_internal(ctx, &data_ctx);
-
-    return data_ctx.get_size_written();
-}
-
-// Sets the state reading from the specified source address
-size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
-    uint8_t * inp = src;
-
-    // set rng
-    {
-        size_t rng_size;
-        char   rng_buf[LLAMA_MAX_RNG_STATE];
-
-        memcpy(&rng_size,   inp, sizeof(rng_size));    inp += sizeof(rng_size);
-        memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
-
-        std::stringstream rng_ss;
-        rng_ss.str(std::string(&rng_buf[0], rng_size));
-        rng_ss >> ctx->rng;
-
-        LLAMA_ASSERT(rng_ss.fail() == false);
-    }
-
-    // set logits
-    {
-        size_t logits_cap;
-        size_t logits_size;
-
-        memcpy(&logits_cap,  inp, sizeof(logits_cap));  inp += sizeof(logits_cap);
-        memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
-
-        LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
-
-        if (logits_size) {
-            ctx->logits.resize(logits_size);
-            memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
-        }
-
-        inp += logits_cap * sizeof(float);
-    }
-
-    // set embeddings
-    {
-        size_t embedding_size;
-
-        memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
-
-        LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
-
-        if (embedding_size) {
-            memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
-            inp += embedding_size * sizeof(float);
-        }
-    }
-
-    // set kv cache
-    {
-        const auto & kv_self = ctx->kv_self;
-        const auto & hparams = ctx->model.hparams;
-        const int    n_layer = hparams.n_layer;
-        const int    n_embd  = hparams.n_embd_gqa();
-        const int    n_ctx   = hparams.n_ctx;
-
-        size_t kv_size;
-        int kv_ntok;
-
-        memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
-        memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
-
-        if (kv_size) {
-            LLAMA_ASSERT(kv_self.buf.size == kv_size);
-
-            const size_t elt_size = ggml_element_size(kv_self.k);
-
-            ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
-            ggml_cgraph gf{};
-
-            ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
-            kin3d->data = (void *) inp;
-            inp += ggml_nbytes(kin3d);
-
-            ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
-            vin3d->data = (void *) inp;
-            inp += ggml_nbytes(vin3d);
-
-            ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
-                n_embd, kv_ntok, n_layer,
-                elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
-
-            ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
-                kv_ntok, n_embd, n_layer,
-                elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
-
-            ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
-            ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
-            ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
-
-            ggml_free(cpy_ctx);
-        }
-
-        ctx->kv_self.n = kv_ntok;
-    }
-
-    const size_t nread    = inp - src;
-    const size_t max_size = llama_get_state_size(ctx);
-
-    LLAMA_ASSERT(nread <= max_size);
-
-    return nread;
-}
-
-static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
-    llama_file file(path_session, "rb");
-
-    // sanity checks
-    {
-        const uint32_t magic   = file.read_u32();
-        const uint32_t version = file.read_u32();
-
-        if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
-            LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
-            return false;
-        }
-
-        llama_hparams session_hparams;
-        file.read_raw(&session_hparams, sizeof(llama_hparams));
-
-        if (session_hparams != ctx->model.hparams) {
-            LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
-            return false;
-        }
-    }
-
-    // load the prompt
-    {
-        const uint32_t n_token_count = file.read_u32();
-
-        if (n_token_count > n_token_capacity) {
-            LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
-            return false;
-        }
-
-        file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
-        *n_token_count_out = n_token_count;
-    }
-
-    // restore the context state
-    {
-        const size_t n_state_size_cur = file.size - file.tell();
-        const size_t n_state_size_max = llama_get_state_size(ctx);
-
-        if (n_state_size_cur > n_state_size_max) {
-            LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
-            return false;
-        }
-
-        std::vector<uint8_t> state_data(n_state_size_max);
-        file.read_raw(state_data.data(), n_state_size_cur);
-
-        llama_set_state_data(ctx, state_data.data());
-    }
-
-    return true;
-}
-
-bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
-    try {
-        return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
-    } catch (const std::exception & err) {
-        LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
-        return false;
-    }
-}
-
-bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
-    llama_file file(path_session, "wb");
-
-    file.write_u32(LLAMA_SESSION_MAGIC);
-    file.write_u32(LLAMA_SESSION_VERSION);
-
-    file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
-
-    // save the prompt
-    file.write_u32((uint32_t) n_token_count);
-    file.write_raw(tokens, sizeof(llama_token) * n_token_count);
-
-    // save the context state using stream saving
-    llama_data_file_context data_ctx(&file);
-    llama_copy_state_data_internal(ctx, &data_ctx);
-
-    return true;
-}
-
-int llama_eval(
-        struct llama_context * ctx,
-           const llama_token * tokens,
-                         int   n_tokens,
-                         int   n_past,
-                         int   n_threads) {
-    if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) {
-        LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
-        return 1;
-    }
-
-    // get a more accurate load time, upon first eval
-    // TODO: fix this
-    if (!ctx->has_evaluated_once) {
-        ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
-        ctx->has_evaluated_once = true;
-    }
-
-    return 0;
-}
-
-
-int llama_eval_embd(
-            struct llama_context * ctx,
-                     const float * embd,
-                             int   n_tokens,
-                             int   n_past,
-                             int   n_threads) {
-    if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) {
-        LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
-        return 1;
-    }
-
-    // get a more accurate load time, upon first eval
-    // TODO: fix this
-    if (!ctx->has_evaluated_once) {
-        ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
-        ctx->has_evaluated_once = true;
-    }
-
-    return 0;
-}
-
-int llama_eval_export(struct llama_context * ctx, const char * fname) {
-    const int n_batch = 1;
-    const int n_ctx   = 512 - n_batch;
-
-    const std::vector<llama_token> tmp(n_batch, llama_token_bos());
-
-    if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) {
-        LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
-        return 1;
-    }
-
-    return 0;
-}
-
-int llama_tokenize_with_model(
-    const struct llama_model * model,
-                  const char * text,
-                 llama_token * tokens,
-                         int   n_max_tokens,
-                        bool   add_bos) {
-    auto res = llama_tokenize(model->vocab, text, add_bos);
-
-    if (n_max_tokens < (int) res.size()) {
-        LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
-        return -((int) res.size());
-    }
-
-    for (size_t i = 0; i < res.size(); i++) {
-        tokens[i] = res[i];
-    }
-
-    return res.size();
-}
-
-int llama_tokenize(
-        struct llama_context * ctx,
-                  const char * text,
-                 llama_token * tokens,
-                         int   n_max_tokens,
-                        bool   add_bos) {
-    return llama_tokenize_with_model(&ctx->model, text, tokens, n_max_tokens, add_bos);
-}
-
-int llama_n_vocab_from_model(const struct llama_model * model) {
-    return model->vocab.id_to_token.size();
-}
-
-int llama_n_ctx_from_model(const struct llama_model * model) {
-    return model->hparams.n_ctx;
-}
-
-int llama_n_embd_from_model(const struct llama_model * model) {
-    return model->hparams.n_embd;
-}
-
-int llama_n_vocab(const struct llama_context * ctx) {
-    return ctx->model.vocab.id_to_token.size();
-}
-
-int llama_n_ctx(const struct llama_context * ctx) {
-    return ctx->model.hparams.n_ctx;
-}
-
-int llama_n_embd(const struct llama_context * ctx) {
-    return ctx->model.hparams.n_embd;
-}
-
-int llama_get_vocab_from_model(
-        const struct llama_model * model,
-        const char * * strings,
-        float  * scores,
-        int capacity) {
-    int n = std::min(capacity, (int) model->vocab.id_to_token.size());
-    for (int i = 0; i<n; ++i) {
-        strings[i] = model->vocab.id_to_token[i].tok.c_str();
-        scores[i]  = model->vocab.id_to_token[i].score;
-    }
-    return n;
-}
-
-int llama_get_vocab(
-        const struct llama_context * ctx,
-        const char * * strings,
-        float  * scores,
-        int capacity) {
-    return llama_get_vocab_from_model(&ctx->model, strings, scores, capacity);
-}
-
-float * llama_get_logits(struct llama_context * ctx) {
-    return ctx->logits.data();
-}
-
-float * llama_get_embeddings(struct llama_context * ctx) {
-    return ctx->embedding.data();
-}
-
-const char * llama_token_to_str_with_model(const struct llama_model * model, llama_token token) {
-    if (token >= llama_n_vocab_from_model(model)) {
-        return nullptr;
-    }
-
-    return model->vocab.id_to_token[token].tok.c_str();
-}
-
-const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) {
-    return llama_token_to_str_with_model(&ctx->model, token);
-}
-
-llama_token llama_token_bos() {
-    return 1;
-}
-
-llama_token llama_token_eos() {
-    return 2;
-}
-
-llama_token llama_token_nl() {
-    return 13;
-}
-
-struct llama_timings llama_get_timings(struct llama_context * ctx) {
-    struct llama_timings result = {
-        /*.t_start_ms  =*/ 1e-3 * ctx->t_start_us,
-        /*.t_end_ms    =*/ 1.00 * ggml_time_ms(),
-        /*.t_load_ms   =*/ 1e-3 * ctx->t_load_us,
-        /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
-        /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
-        /*.t_eval_ms   =*/ 1e-3 * ctx->t_eval_us,
-
-        /*.n_sample =*/ std::max(1, ctx->n_sample),
-        /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
-        /*.n_eval   =*/ std::max(1, ctx->n_eval),
-    };
-
-    return result;
-}
-
-void llama_print_timings(struct llama_context * ctx) {
-    const llama_timings timings = llama_get_timings(ctx);
-
-    LLAMA_LOG_INFO("\n");
-    LLAMA_LOG_INFO("%s:        load time = %8.2f ms\n", __func__, timings.t_load_ms);
-    LLAMA_LOG_INFO("%s:      sample time = %8.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
-            __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
-    LLAMA_LOG_INFO("%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
-            __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
-    LLAMA_LOG_INFO("%s:        eval time = %8.2f ms / %5d runs   (%8.2f ms per token, %8.2f tokens per second)\n",
-            __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
-    LLAMA_LOG_INFO("%s:       total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
-}
-
-void llama_reset_timings(struct llama_context * ctx) {
-    ctx->t_start_us = ggml_time_us();
-    ctx->t_sample_us = ctx->n_sample = 0;
-    ctx->t_eval_us   = ctx->n_eval   = 0;
-    ctx->t_p_eval_us = ctx->n_p_eval = 0;
-}
-
-const char * llama_print_system_info(void) {
-    static std::string s;
-
-    s  = "";
-    s += "AVX = "         + std::to_string(ggml_cpu_has_avx())         + " | ";
-    s += "AVX2 = "        + std::to_string(ggml_cpu_has_avx2())        + " | ";
-    s += "AVX512 = "      + std::to_string(ggml_cpu_has_avx512())      + " | ";
-    s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
-    s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
-    s += "FMA = "         + std::to_string(ggml_cpu_has_fma())         + " | ";
-    s += "NEON = "        + std::to_string(ggml_cpu_has_neon())        + " | ";
-    s += "ARM_FMA = "     + std::to_string(ggml_cpu_has_arm_fma())     + " | ";
-    s += "F16C = "        + std::to_string(ggml_cpu_has_f16c())        + " | ";
-    s += "FP16_VA = "     + std::to_string(ggml_cpu_has_fp16_va())     + " | ";
-    s += "WASM_SIMD = "   + std::to_string(ggml_cpu_has_wasm_simd())   + " | ";
-    s += "BLAS = "        + std::to_string(ggml_cpu_has_blas())        + " | ";
-    s += "SSE3 = "        + std::to_string(ggml_cpu_has_sse3())        + " | ";
-    s += "VSX = "         + std::to_string(ggml_cpu_has_vsx())         + " | ";
-
-    return s.c_str();
-}
-
-// For internal test use
-const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
-    return ctx->model.tensors_by_name;
-}
-
-
-void llama_log_set(llama_log_callback log_callback, void * user_data) {
-    g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
-    g_state.log_callback_user_data = user_data;
-}
-
-#if defined(_MSC_VER) && !defined(vsnprintf)
-#define vsnprintf _vsnprintf
-#endif
-
-static void llama_log_internal_v(llama_log_level level, const char * format, va_list args) {
-    va_list args_copy;
-    va_copy(args_copy, args);
-    char buffer[128];
-    int len = vsnprintf(buffer, 128, format, args);
-    if (len < 128) {
-        g_state.log_callback(level, buffer, g_state.log_callback_user_data);
-    } else {
-        char* buffer2 = new char[len+1];
-        vsnprintf(buffer2, len+1, format, args_copy);
-        buffer2[len] = 0;
-        g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
-        delete[] buffer2;
-    }
-    va_end(args_copy);
-}
-
-static void llama_log_internal(llama_log_level level, const char * format, ...) {
-    va_list args;
-    va_start(args, format);
-    llama_log_internal_v(level, format, args);
-    va_end(args);
-}
-
-static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data) {
-    (void) level;
-    (void) user_data;
-    fputs(text, stderr);
-    fflush(stderr);
-}

+ 8 - 0
llm/llama.cpp/generate.go

@@ -0,0 +1,8 @@
+package llm
+
+//go:generate git submodule init
+//go:generate git submodule update --force ggml
+//go:generate git -C ggml apply ../ggml_patch/0001-add-detokenize-endpoint.patch
+//go:generate git -C ggml apply ../ggml_patch/0002-34B-model-support.patch
+//go:generate cmake -S ggml -B ggml/build/cpu -DLLAMA_K_QUANTS=on
+//go:generate cmake --build ggml/build/cpu --target server --config Release

+ 11 - 0
llm/llama.cpp/generate_darwin.go

@@ -0,0 +1,11 @@
+//go:build darwin
+// +build darwin
+
+package llm
+
+//go:generate git submodule init
+//go:generate git submodule update --force ggml
+//go:generate git -C ggml apply ../ggml_patch/0001-add-detokenize-endpoint.patch
+//go:generate git -C ggml apply ../ggml_patch/0002-34B-model-support.patch
+//go:generate cmake -S ggml -B ggml/build/gpu -DLLAMA_METAL=on -DLLAMA_ACCELERATE=on -DLLAMA_K_QUANTS=on
+//go:generate cmake --build ggml/build/gpu --target server --config Release

+ 1 - 0
llm/llama.cpp/ggml

@@ -0,0 +1 @@
+Subproject commit 9e232f0234073358e7031c1b8d7aa45020469a3b

+ 51 - 0
llm/llama.cpp/ggml_patch/0001-add-detokenize-endpoint.patch

@@ -0,0 +1,51 @@
+From 032ef7ff2423f5117bb59d42fb71be9cebf0a2de Mon Sep 17 00:00:00 2001
+From: Bruce MacDonald <brucewmacdonald@gmail.com>
+Date: Mon, 28 Aug 2023 18:08:12 -0400
+Subject: [PATCH] add detokenize endpoint
+
+---
+ examples/server/server.cpp | 21 +++++++++++++++++++++
+ 1 file changed, 21 insertions(+)
+
+diff --git a/examples/server/server.cpp b/examples/server/server.cpp
+index 9966045..5014691 100644
+--- a/examples/server/server.cpp
++++ b/examples/server/server.cpp
+@@ -1075,6 +1075,12 @@ static json format_tokenizer_response(const std::vector<llama_token> &tokens)
+         {"tokens", tokens}};
+ }
+ 
++static json format_detokenized_response(std::string content)
++{
++    return json{
++        {"content", content}};
++}
++
+ static void parse_options_completion(const json &body, llama_server_context &llama)
+ {
+     gpt_params default_params;
+@@ -1361,6 +1367,21 @@ int main(int argc, char **argv)
+         const json data = format_tokenizer_response(tokens);
+         return res.set_content(data.dump(), "application/json"); });
+ 
++    svr.Post("/detokenize", [&llama](const Request &req, Response &res)
++             {
++        auto lock = llama.lock();
++
++        const json body = json::parse(req.body);
++        std::string content;
++        if (body.count("tokens") != 0)
++        {
++            const std::vector<llama_token> tokens = body["tokens"];
++            content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
++        }
++
++        const json data = format_detokenized_response(content);
++        return res.set_content(data.dump(), "application/json"); });
++
+     svr.Post("/embedding", [&llama](const Request &req, Response &res)
+              {
+         auto lock = llama.lock();
+-- 
+2.39.2 (Apple Git-143)
+

+ 89 - 0
llm/llama.cpp/ggml_patch/0002-34B-model-support.patch

@@ -0,0 +1,89 @@
+From 6145068a6613c37bb43a7408b5496524bdcfc402 Mon Sep 17 00:00:00 2001
+From: Bruce MacDonald <brucewmacdonald@gmail.com>
+Date: Mon, 28 Aug 2023 18:08:53 -0400
+Subject: [PATCH] 34B model support
+
+---
+ llama.cpp | 10 ++++++++++
+ 1 file changed, 10 insertions(+)
+
+diff --git a/llama.cpp b/llama.cpp
+index f2cbe76..62c5cdf 100644
+--- a/llama.cpp
++++ b/llama.cpp
+@@ -79,6 +79,7 @@ enum e_model {
+     MODEL_7B,
+     MODEL_13B,
+     MODEL_30B,
++    MODEL_34B,
+     MODEL_65B,
+     MODEL_70B,
+ };
+@@ -122,6 +123,7 @@ static std::map<e_model, size_t> MEM_REQ_SCRATCH0(int n_ctx)
+         { MODEL_7B,   ((size_t) n_ctx / 16ull + 100ull) * MB },
+         { MODEL_13B,  ((size_t) n_ctx / 12ull + 120ull) * MB },
+         { MODEL_30B,  ((size_t) n_ctx /  9ull + 160ull) * MB },
++        { MODEL_34B,  ((size_t) n_ctx / 9ull + 160ull) * MB },
+         { MODEL_65B,  ((size_t) n_ctx /  6ull + 256ull) * MB }, // guess
+         { MODEL_70B,  ((size_t) n_ctx /  7ull + 164ull) * MB },
+     };
+@@ -135,6 +137,7 @@ static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
+         { MODEL_7B,  160ull * MB },
+         { MODEL_13B, 192ull * MB },
+         { MODEL_30B, 256ull * MB },
++        { MODEL_34B, 256ull * MB },
+         { MODEL_65B, 384ull * MB }, // guess
+         { MODEL_70B, 304ull * MB },
+     };
+@@ -149,6 +152,7 @@ static const std::map<e_model, size_t> & MEM_REQ_EVAL()
+         { MODEL_7B,  10ull * MB },
+         { MODEL_13B, 12ull * MB },
+         { MODEL_30B, 16ull * MB },
++        { MODEL_34B, 16ull * MB },
+         { MODEL_65B, 24ull * MB }, // guess
+         { MODEL_70B, 24ull * MB },
+     };
+@@ -164,6 +168,7 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
+         { MODEL_7B,   512ull * kB },
+         { MODEL_13B,  640ull * kB },
+         { MODEL_30B,  768ull * kB },
++        { MODEL_34B,  768ull * kB },
+         { MODEL_65B, 1280ull * kB },
+         { MODEL_70B, 1280ull * kB },
+     };
+@@ -179,6 +184,7 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
+         { MODEL_7B,  128ull },
+         { MODEL_13B, 160ull },
+         { MODEL_30B, 208ull },
++        { MODEL_34B, 208ull },
+         { MODEL_65B, 256ull },
+         { MODEL_70B, 256ull },
+     };
+@@ -1027,6 +1033,7 @@ static const char * llama_model_type_name(e_model type) {
+         case MODEL_7B: return "7B";
+         case MODEL_13B: return "13B";
+         case MODEL_30B: return "30B";
++        case MODEL_34B: return "34B";
+         case MODEL_65B: return "65B";
+         case MODEL_70B: return "70B";
+         default: LLAMA_ASSERT(false);
+@@ -1074,6 +1081,7 @@ static void llama_model_load_internal(
+             case 26: model.type = e_model::MODEL_3B; break;
+             case 32: model.type = e_model::MODEL_7B; break;
+             case 40: model.type = e_model::MODEL_13B; break;
++            case 48: model.type = e_model::MODEL_34B; break;
+             case 60: model.type = e_model::MODEL_30B; break;
+             case 80: model.type = e_model::MODEL_65B; break;
+             default:
+@@ -1094,6 +1102,8 @@ static void llama_model_load_internal(
+             LLAMA_LOG_WARN("%s: warning: assuming 70B model based on GQA == %d\n", __func__, n_gqa);
+             model.type = e_model::MODEL_70B;
+             hparams.f_ffn_mult = 1.3f; // from the params.json of the 70B model
++        } else if (model.type == e_model::MODEL_34B && n_gqa == 8) {
++            hparams.f_ffn_mult = 1.0f; // from the params.json of the 34B model
+         }
+ 
+         hparams.rope_freq_base  = rope_freq_base;
+-- 
+2.39.2 (Apple Git-143)
+

+ 0 - 596
llm/llama.go

@@ -1,596 +0,0 @@
-package llm
-
-/*
-#cgo CFLAGS: -Ofast -std=c11 -fPIC
-#cgo CPPFLAGS: -Ofast -Wall -Wextra -Wno-unused-function -Wno-unused-variable -DNDEBUG -DGGML_USE_K_QUANTS
-#cgo CXXFLAGS: -std=c++11 -fPIC
-#cgo darwin CPPFLAGS:  -DGGML_USE_ACCELERATE
-#cgo darwin,arm64 CPPFLAGS: -DGGML_USE_METAL -DGGML_METAL_NDEBUG
-#cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
-#include <stdlib.h>
-#include "llama.h"
-
-struct llama_sample_options
-{
-	float repeat_penalty;
-	float frequency_penalty;
-	float presence_penalty;
-	float temperature;
-	int32_t top_k;
-	float top_p;
-	float tfs_z;
-	float typical_p;
-	int mirostat;
-	float mirostat_tau;
-	float mirostat_eta;
-	bool penalize_newline;
-};
-
-llama_token llama_sample(
-		struct llama_context *ctx,
-		struct llama_token_data *candidates,
-		size_t n_candidates,
-		const llama_token *last_tokens,
-		size_t n_last_tokens,
-		struct llama_sample_options *opts)
-{
-	llama_token_data_array candidates_p = {
-		candidates,
-		n_candidates,
-		false,
-	};
-
-	struct llama_token_data newline = candidates_p.data[llama_token_nl()];
-
-	llama_sample_repetition_penalty(
-		ctx, &candidates_p,
-		last_tokens, n_last_tokens,
-		opts->repeat_penalty);
-
-	llama_sample_frequency_and_presence_penalties(
-		ctx, &candidates_p,
-		last_tokens, n_last_tokens,
-		opts->frequency_penalty, opts->presence_penalty);
-
-	if (!opts->penalize_newline) {
-		candidates_p.data[llama_token_nl()] = newline;
-	}
-
-	if (opts->temperature <= 0) {
-		return llama_sample_token_greedy(ctx, &candidates_p);
-	}
-
-	if (opts->mirostat == 1) {
-		int mirostat_m = 100;
-		float mirostat_mu = 2.0f * opts->mirostat_tau;
-		llama_sample_temperature(ctx, &candidates_p, opts->temperature);
-		return llama_sample_token_mirostat(
-			ctx, &candidates_p,
-			opts->mirostat_tau, opts->mirostat_eta,
-			mirostat_m, &mirostat_mu);
-	} else if (opts->mirostat == 2) {
-		float mirostat_mu = 2.0f * opts->mirostat_tau;
-		llama_sample_temperature(ctx, &candidates_p, opts->temperature);
-		return llama_sample_token_mirostat_v2(
-			ctx, &candidates_p,
-			opts->mirostat_tau, opts->mirostat_eta,
-			&mirostat_mu);
-	} else {
-		llama_sample_top_k(ctx, &candidates_p, opts->top_k, 1);
-		llama_sample_tail_free(ctx, &candidates_p, opts->tfs_z, 1);
-		llama_sample_typical(ctx, &candidates_p, opts->typical_p, 1);
-		llama_sample_top_p(ctx, &candidates_p, opts->top_p, 1);
-		llama_sample_temperature(ctx, &candidates_p, opts->temperature);
-		return llama_sample_token(ctx, &candidates_p);
-	}
-}
-*/
-import "C"
-
-import (
-	"bytes"
-	"embed"
-	"errors"
-	"fmt"
-	"io"
-	"log"
-	"os"
-	"strings"
-	"sync"
-	"unicode/utf8"
-	"unsafe"
-
-	"github.com/jmorganca/ollama/api"
-)
-
-//go:embed ggml-metal.metal
-var fs embed.FS
-
-const ModelFamilyLlama ModelFamily = "llama"
-
-type llamaModel struct {
-	hyperparameters llamaHyperparameters
-}
-
-func (llm *llamaModel) ModelFamily() ModelFamily {
-	return ModelFamilyLlama
-}
-
-func (llm *llamaModel) ModelType() ModelType {
-	switch llm.hyperparameters.NumLayer {
-	case 26:
-		return ModelType3B
-	case 32:
-		return ModelType7B
-	case 40:
-		return ModelType13B
-	case 60:
-		return ModelType30B
-	case 80:
-		return ModelType65B
-	}
-
-	// TODO: find a better default
-	return ModelType7B
-}
-
-func (llm *llamaModel) FileType() FileType {
-	return llm.hyperparameters.FileType
-}
-
-type llamaHyperparameters struct {
-	// NumVocab is the size of the model's vocabulary.
-	NumVocab uint32
-
-	// NumEmbd is the size of the model's embedding layer.
-	NumEmbd uint32
-	NumMult uint32
-	NumHead uint32
-
-	// NumLayer is the number of layers in the model.
-	NumLayer uint32
-	NumRot   uint32
-
-	// FileType describes the quantization level of the model, e.g. Q4_0, Q5_K, etc.
-	FileType llamaFileType
-}
-
-type llamaFileType uint32
-
-const (
-	llamaFileTypeF32 llamaFileType = iota
-	llamaFileTypeF16
-	llamaFileTypeQ4_0
-	llamaFileTypeQ4_1
-	llamaFileTypeQ4_1_F16
-	llamaFileTypeQ8_0 llamaFileType = iota + 2
-	llamaFileTypeQ5_0
-	llamaFileTypeQ5_1
-	llamaFileTypeQ2_K
-	llamaFileTypeQ3_K_S
-	llamaFileTypeQ3_K_M
-	llamaFileTypeQ3_K_L
-	llamaFileTypeQ4_K_S
-	llamaFileTypeQ4_K_M
-	llamaFileTypeQ5_K_S
-	llamaFileTypeQ5_K_M
-	llamaFileTypeQ6_K
-)
-
-func (ft llamaFileType) String() string {
-	switch ft {
-	case llamaFileTypeF32:
-		return "F32"
-	case llamaFileTypeF16:
-		return "F16"
-	case llamaFileTypeQ4_0:
-		return "Q4_0"
-	case llamaFileTypeQ4_1:
-		return "Q4_1"
-	case llamaFileTypeQ4_1_F16:
-		return "Q4_1_F16"
-	case llamaFileTypeQ8_0:
-		return "Q8_0"
-	case llamaFileTypeQ5_0:
-		return "Q5_0"
-	case llamaFileTypeQ5_1:
-		return "Q5_1"
-	case llamaFileTypeQ2_K:
-		return "Q2_K"
-	case llamaFileTypeQ3_K_S:
-		return "Q3_K_S"
-	case llamaFileTypeQ3_K_M:
-		return "Q3_K_M"
-	case llamaFileTypeQ3_K_L:
-		return "Q3_K_L"
-	case llamaFileTypeQ4_K_S:
-		return "Q4_K_S"
-	case llamaFileTypeQ4_K_M:
-		return "Q4_K_M"
-	case llamaFileTypeQ5_K_S:
-		return "Q5_K_S"
-	case llamaFileTypeQ5_K_M:
-		return "Q5_K_M"
-	case llamaFileTypeQ6_K:
-		return "Q6_K"
-	default:
-		return "Unknown"
-	}
-}
-
-type llama struct {
-	params *C.struct_llama_context_params
-	model  *C.struct_llama_model
-	ctx    *C.struct_llama_context
-
-	last   []C.llama_token
-	embd   []C.llama_token
-	cursor int
-
-	mu sync.Mutex
-	gc bool
-
-	api.Options
-}
-
-func newLlama(model string, adapters []string, opts api.Options) (*llama, error) {
-	if _, err := os.Stat(model); err != nil {
-		return nil, err
-	}
-
-	llm := llama{Options: opts}
-
-	C.llama_backend_init(C.bool(llm.UseNUMA))
-
-	params := C.llama_context_default_params()
-	params.seed = C.uint(llm.Seed)
-	params.n_ctx = C.int(llm.NumCtx)
-	params.n_batch = C.int(llm.NumBatch)
-	params.n_gqa = C.int(llm.NumGQA)
-	params.n_gpu_layers = C.int(llm.NumGPU)
-	params.main_gpu = C.int(llm.MainGPU)
-	params.low_vram = C.bool(llm.LowVRAM)
-	params.f16_kv = C.bool(llm.F16KV)
-	params.logits_all = C.bool(llm.LogitsAll)
-	params.vocab_only = C.bool(llm.VocabOnly)
-	params.use_mmap = C.bool(llm.UseMMap)
-	params.use_mlock = C.bool(llm.UseMLock)
-	params.embedding = C.bool(llm.EmbeddingOnly)
-	params.rope_freq_base = C.float(llm.RopeFrequencyBase)
-	params.rope_freq_scale = C.float(llm.RopeFrequencyScale)
-
-	if len(adapters) > 0 && llm.UseMMap {
-		log.Printf("must disable mmap to use lora adapters")
-		params.use_mmap = C.bool(false)
-	}
-
-	llm.params = &params
-
-	cModel := C.CString(model)
-	defer C.free(unsafe.Pointer(cModel))
-
-	llm.model = C.llama_load_model_from_file(cModel, params)
-	if llm.model == nil {
-		return nil, errors.New("failed to load model")
-	}
-
-	llm.ctx = C.llama_new_context_with_model(llm.model, params)
-	if llm.ctx == nil {
-		return nil, errors.New("failed to create context")
-	}
-
-	for _, adapter := range adapters {
-		cAdapter := C.CString(adapter)
-		defer C.free(unsafe.Pointer(cAdapter))
-
-		if retval := C.llama_model_apply_lora_from_file(llm.model, cAdapter, nil, C.int(llm.NumThread)); retval != 0 {
-			return nil, fmt.Errorf("failed to load adapter %s", adapter)
-		}
-	}
-
-	// warm up the model
-	bos := []C.llama_token{C.llama_token_bos()}
-	C.llama_eval(llm.ctx, unsafe.SliceData(bos), C.int(len(bos)), 0, C.int(opts.NumThread))
-	C.llama_reset_timings(llm.ctx)
-
-	return &llm, nil
-}
-
-func (llm *llama) Close() {
-	llm.gc = true
-
-	llm.mu.Lock()
-	defer llm.mu.Unlock()
-
-	defer C.llama_free_model(llm.model)
-	defer C.llama_free(llm.ctx)
-
-	C.llama_print_timings(llm.ctx)
-}
-
-func (llm *llama) SetOptions(opts api.Options) {
-	llm.Options = opts
-}
-
-var errNeedMoreData = errors.New("need more data")
-
-func (llm *llama) Predict(ctx []int, prompt string, fn func(api.GenerateResponse)) error {
-	C.llama_reset_timings(llm.ctx)
-
-	llm.marshalPrompt(ctx, prompt)
-
-	C.llama_set_rng_seed(llm.ctx, C.uint(llm.Seed))
-
-	var b bytes.Buffer
-	for {
-		token, err := llm.next()
-		if llm.gc {
-			return nil
-		} else if errors.Is(err, io.EOF) {
-			break
-		} else if err != nil {
-			return err
-		}
-
-		b.WriteString(llm.Decode(int(token)))
-
-		stop, endsWithStopPrefix := handleStopSequences(&b, llm.Stop)
-		if endsWithStopPrefix {
-			continue
-		}
-
-		if utf8.Valid(b.Bytes()) || b.Len() >= utf8.UTFMax {
-			fn(api.GenerateResponse{Response: b.String()})
-			b.Reset()
-		}
-		if stop {
-			break
-		}
-	}
-
-	embd := make([]int, len(llm.embd))
-	for i := range llm.embd {
-		embd[i] = int(llm.embd[i])
-	}
-
-	timings := C.llama_get_timings(llm.ctx)
-	fn(api.GenerateResponse{
-		Done:               true,
-		Context:            embd,
-		SampleCount:        int(timings.n_sample),
-		SampleDuration:     parseDurationMs(float64(timings.t_sample_ms)),
-		PromptEvalCount:    int(timings.n_p_eval),
-		PromptEvalDuration: parseDurationMs(float64(timings.t_p_eval_ms)),
-		EvalCount:          int(timings.n_eval),
-		EvalDuration:       parseDurationMs(float64(timings.t_eval_ms)),
-	})
-
-	return nil
-}
-
-// handleStopSequences checks whether b contains any of the stop sequences, or ends with a prefix of
-// any stop sequence (and therefore might contain data that should not ultimately be returned to the
-// client).
-//
-// If b contains a stop sequence, it modifies b to remove the stop sequence and all subsequent data.
-func handleStopSequences(b *bytes.Buffer, stopSequences []string) (stop bool, endsWithStopPrefix bool) {
-	s := b.String()
-	for _, seq := range stopSequences {
-		// Check for an exact or substring match.
-		if i := strings.Index(s, seq); i != -1 {
-			b.Truncate(i)
-			return true, false
-		}
-
-		// Check if b ends with a prefix of the stop sequence.
-		if len(seq) > 1 {
-			for i := 1; i < len(seq); i++ {
-				if strings.HasSuffix(s, seq[:i]) {
-					return false, true
-				}
-			}
-		}
-	}
-
-	return false, false
-}
-
-func (llm *llama) marshalPrompt(ctx []int, prompt string) []C.llama_token {
-	tokens := append(ctx, llm.Encode(prompt)...)
-	if llm.NumKeep < 0 {
-		llm.NumKeep = len(tokens)
-	}
-
-	cTokens := make([]C.llama_token, len(tokens))
-	for i := range tokens {
-		cTokens[i] = C.llama_token(tokens[i])
-	}
-
-	// min(llm.NumCtx - 4, llm.NumKeep)
-	if llm.NumCtx-4 < llm.NumKeep {
-		llm.NumKeep = llm.NumCtx - 4
-	}
-
-	if len(tokens) >= llm.NumCtx {
-		// truncate input
-		numLeft := (llm.NumCtx - llm.NumKeep) / 2
-		truncated := cTokens[:llm.NumKeep]
-		erasedBlocks := (len(cTokens) - llm.NumKeep - numLeft - 1) / numLeft
-		truncated = append(truncated, cTokens[llm.NumKeep+erasedBlocks*numLeft:]...)
-		copy(llm.last, cTokens[len(cTokens)-llm.NumCtx:])
-
-		cTokens = truncated
-		log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated))
-	} else {
-		llm.last = make([]C.llama_token, llm.NumCtx-len(cTokens))
-		llm.last = append(llm.last, cTokens...)
-	}
-
-	var i int
-	for i = 0; i < len(llm.embd) && i < len(cTokens) && llm.embd[i] == cTokens[i]; i++ {
-		// noop
-	}
-
-	llm.embd = cTokens
-	if i == len(cTokens) {
-		// evaluate at least one token to generate logits
-		i--
-	}
-
-	llm.cursor = i
-
-	log.Printf("prompt: num_past=%d cached=%v eval=%v", i, len(llm.embd[:i]), len(llm.embd[i:]))
-	return cTokens
-}
-
-func (llm *llama) Encode(prompt string) []int {
-	cPrompt := C.CString(prompt)
-	defer C.free(unsafe.Pointer(cPrompt))
-
-	cTokens := make([]C.llama_token, len(prompt)+1)
-	if n := C.llama_tokenize(llm.ctx, cPrompt, unsafe.SliceData(cTokens), C.int(len(cTokens)), true); n > 0 {
-		tokens := make([]int, n)
-		for i := range cTokens[:n] {
-			tokens[i] = int(cTokens[i])
-		}
-
-		return tokens
-	}
-
-	return nil
-}
-
-func (llm *llama) Decode(tokens ...int) string {
-	var sb strings.Builder
-	for _, token := range tokens {
-		sb.WriteString(C.GoString(C.llama_token_to_str(llm.ctx, C.llama_token(token))))
-	}
-
-	return sb.String()
-}
-
-func (llm *llama) next() (C.llama_token, error) {
-	llm.mu.Lock()
-	defer llm.mu.Unlock()
-
-	if len(llm.embd) >= llm.NumCtx {
-		numLeft := (llm.NumCtx - llm.NumKeep) / 2
-		truncated := llm.embd[:llm.NumKeep]
-		truncated = append(truncated, llm.embd[len(llm.embd)-numLeft:]...)
-
-		llm.embd = truncated
-		llm.cursor = llm.NumKeep
-		log.Printf("input truncated: num_ctx=%d num_keep=%d num_left=%d num_tokens=%d cursor=%d", llm.NumCtx, llm.NumKeep, numLeft, len(truncated), llm.cursor)
-	}
-
-	for {
-		if llm.gc {
-			return 0, io.EOF
-		}
-
-		if llm.cursor >= len(llm.embd) {
-			break
-		}
-
-		numEval := len(llm.embd) - llm.cursor
-		if numEval > llm.NumBatch {
-			numEval = llm.NumBatch
-		}
-
-		if retval := C.llama_eval(llm.ctx, unsafe.SliceData(llm.embd[llm.cursor:]), C.int(numEval), C.int(llm.cursor), C.int(llm.NumThread)); retval != 0 {
-			return 0, fmt.Errorf("llama_eval: %d", retval)
-		}
-
-		llm.cursor += numEval
-	}
-
-	var sampleOpts C.struct_llama_sample_options
-	sampleOpts.repeat_penalty = C.float(llm.RepeatPenalty)
-	sampleOpts.frequency_penalty = C.float(llm.FrequencyPenalty)
-	sampleOpts.presence_penalty = C.float(llm.PresencePenalty)
-	sampleOpts.temperature = C.float(llm.Temperature)
-	sampleOpts.top_k = C.int(llm.TopK)
-	sampleOpts.top_p = C.float(llm.TopP)
-	sampleOpts.tfs_z = C.float(llm.TFSZ)
-	sampleOpts.typical_p = C.float(llm.TypicalP)
-	sampleOpts.mirostat = C.int(llm.Mirostat)
-	sampleOpts.mirostat_tau = C.float(llm.MirostatTau)
-	sampleOpts.mirostat_eta = C.float(llm.MirostatEta)
-	sampleOpts.penalize_newline = C.bool(llm.PenalizeNewline)
-
-	numVocab := C.llama_n_vocab(llm.ctx)
-	logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
-
-	// TODO: logit bias
-
-	candidates := make([]C.llama_token_data, numVocab)
-	for i := range logits {
-		candidates[i] = C.llama_token_data{
-			id:    C.int(i),
-			logit: logits[i],
-			p:     0,
-		}
-	}
-
-	repeatLastN := llm.RepeatLastN
-	if len(llm.last) < repeatLastN {
-		repeatLastN = len(llm.last)
-	}
-
-	if llm.NumCtx < repeatLastN {
-		repeatLastN = llm.NumCtx
-	}
-
-	lastN := llm.last[len(llm.last)-repeatLastN:]
-
-	token := C.llama_sample(
-		llm.ctx,
-		unsafe.SliceData(candidates), C.size_t(len(candidates)),
-		unsafe.SliceData(lastN), C.size_t(len(lastN)),
-		&sampleOpts,
-	)
-
-	llm.last = append(llm.last, token)
-	llm.embd = append(llm.embd, token)
-
-	if token == C.llama_token_eos() {
-		return 0, io.EOF
-	}
-
-	return token, nil
-}
-
-func (llm *llama) Embedding(input string) ([]float64, error) {
-	if !llm.EmbeddingOnly {
-		return nil, errors.New("llama: embedding not enabled")
-	}
-
-	tokens := llm.Encode(input)
-	if tokens == nil {
-		return nil, errors.New("llama: tokenize embedding")
-	}
-
-	cTokens := make([]C.llama_token, len(tokens))
-	for i := range tokens {
-		cTokens[i] = C.llama_token(tokens[i])
-	}
-
-	retval := C.llama_eval(llm.ctx, unsafe.SliceData(cTokens), C.int(len(tokens)), 0, C.int(llm.NumThread))
-	if retval != 0 {
-		return nil, errors.New("llama: eval")
-	}
-
-	C.llama_print_timings(llm.ctx)
-
-	n := C.llama_n_embd(llm.ctx)
-	if n <= 0 {
-		return nil, errors.New("llama: no embeddings generated")
-	}
-	cEmbeddings := unsafe.Slice(C.llama_get_embeddings(llm.ctx), n)
-
-	embeddings := make([]float64, len(cEmbeddings))
-	for i, v := range cEmbeddings {
-		embeddings[i] = float64(v)
-	}
-	return embeddings, nil
-}

+ 0 - 512
llm/llama.h

@@ -1,512 +0,0 @@
-/**
- * llama.cpp - git 3ebb00935f3f0522b75df49c2769ab1774b91380
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
-
-#ifndef LLAMA_H
-#define LLAMA_H
-
-#include "ggml.h"
-#ifdef GGML_USE_CUBLAS
-#include "ggml-cuda.h"
-#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
-#else
-#define LLAMA_MAX_DEVICES 1
-#endif // GGML_USE_CUBLAS
-#include <stddef.h>
-#include <stdint.h>
-#include <stdbool.h>
-
-#ifdef LLAMA_SHARED
-#    if defined(_WIN32) && !defined(__MINGW32__)
-#        ifdef LLAMA_BUILD
-#            define LLAMA_API __declspec(dllexport)
-#        else
-#            define LLAMA_API __declspec(dllimport)
-#        endif
-#    else
-#        define LLAMA_API __attribute__ ((visibility ("default")))
-#    endif
-#else
-#    define LLAMA_API
-#endif
-
-#ifdef __GNUC__
-#    define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
-#elif defined(_MSC_VER)
-#    define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
-#else
-#    define DEPRECATED(func, hint) func
-#endif
-
-#define LLAMA_FILE_MAGIC_GGJT        0x67676a74u // 'ggjt'
-#define LLAMA_FILE_MAGIC_GGLA        0x67676c61u // 'ggla'
-#define LLAMA_FILE_MAGIC_GGMF        0x67676d66u // 'ggmf'
-#define LLAMA_FILE_MAGIC_GGML        0x67676d6cu // 'ggml'
-#define LLAMA_FILE_MAGIC_GGSN        0x6767736eu // 'ggsn'
-
-#define LLAMA_FILE_VERSION           3
-#define LLAMA_FILE_MAGIC             LLAMA_FILE_MAGIC_GGJT
-#define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
-#define LLAMA_SESSION_MAGIC          LLAMA_FILE_MAGIC_GGSN
-#define LLAMA_SESSION_VERSION        1
-
-#define LLAMA_DEFAULT_SEED           0xFFFFFFFF
-
-#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
-// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
-#define LLAMA_SUPPORTS_GPU_OFFLOAD
-#endif
-
-#ifndef LLAMA_DEFAULT_RMS_EPS
-#define LLAMA_DEFAULT_RMS_EPS 5e-6f
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-    //
-    // C interface
-    //
-    // TODO: show sample usage
-    //
-
-    struct llama_model;
-    struct llama_context;
-
-    typedef int llama_token;
-
-    typedef struct llama_token_data {
-        llama_token id; // token id
-        float logit;    // log-odds of the token
-        float p;        // probability of the token
-    } llama_token_data;
-
-    typedef struct llama_token_data_array {
-        llama_token_data * data;
-        size_t size;
-        bool sorted;
-    } llama_token_data_array;
-
-    typedef void (*llama_progress_callback)(float progress, void *ctx);
-
-    enum llama_log_level {
-        LLAMA_LOG_LEVEL_ERROR = 2,
-        LLAMA_LOG_LEVEL_WARN  = 3,
-        LLAMA_LOG_LEVEL_INFO  = 4
-    };
-
-    // Signature for logging events
-    // Note that text includes the new line character at the end for most events.
-    // If your logging mechanism cannot handle that, check if the last character is '\n' and strip it
-    // if it exists.
-    // It might not exist for progress report where '.' is output repeatedly.
-    typedef void (*llama_log_callback)(enum llama_log_level level, const char * text, void * user_data);
-
-    struct llama_context_params {
-        uint32_t seed;         // RNG seed, -1 for random
-        int32_t  n_ctx;        // text context
-        int32_t  n_batch;      // prompt processing batch size
-        int32_t  n_gqa;        // grouped-query attention (TEMP - will be moved to model hparams)
-        float    rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
-        int32_t  n_gpu_layers; // number of layers to store in VRAM
-        int32_t  main_gpu;     // the GPU that is used for scratch and small tensors
-
-        const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
-
-        // ref: https://github.com/ggerganov/llama.cpp/pull/2054
-        float    rope_freq_base;  // RoPE base frequency
-        float    rope_freq_scale; // RoPE frequency scaling factor
-
-        // called with a progress value between 0 and 1, pass NULL to disable
-        llama_progress_callback progress_callback;
-        // context pointer passed to the progress callback
-        void * progress_callback_user_data;
-
-        // Keep the booleans together to avoid misalignment during copy-by-value.
-        bool low_vram;   // if true, reduce VRAM usage at the cost of performance
-        bool mul_mat_q;  // if true, use experimental mul_mat_q kernels
-        bool f16_kv;     // use fp16 for KV cache
-        bool logits_all; // the llama_eval() call computes all logits, not just the last one
-        bool vocab_only; // only load the vocabulary, no weights
-        bool use_mmap;   // use mmap if possible
-        bool use_mlock;  // force system to keep model in RAM
-        bool embedding;  // embedding mode only
-    };
-    // model file types
-    enum llama_ftype {
-        LLAMA_FTYPE_ALL_F32              = 0,
-        LLAMA_FTYPE_MOSTLY_F16           = 1, // except 1d tensors
-        LLAMA_FTYPE_MOSTLY_Q4_0          = 2, // except 1d tensors
-        LLAMA_FTYPE_MOSTLY_Q4_1          = 3, // except 1d tensors
-        LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
-        // LLAMA_FTYPE_MOSTLY_Q4_2       = 5, // support has been removed
-        // LLAMA_FTYPE_MOSTLY_Q4_3       = 6, // support has been removed
-        LLAMA_FTYPE_MOSTLY_Q8_0          = 7, // except 1d tensors
-        LLAMA_FTYPE_MOSTLY_Q5_0          = 8, // except 1d tensors
-        LLAMA_FTYPE_MOSTLY_Q5_1          = 9, // except 1d tensors
-        LLAMA_FTYPE_MOSTLY_Q2_K          = 10,// except 1d tensors
-        LLAMA_FTYPE_MOSTLY_Q3_K_S        = 11,// except 1d tensors
-        LLAMA_FTYPE_MOSTLY_Q3_K_M        = 12,// except 1d tensors
-        LLAMA_FTYPE_MOSTLY_Q3_K_L        = 13,// except 1d tensors
-        LLAMA_FTYPE_MOSTLY_Q4_K_S        = 14,// except 1d tensors
-        LLAMA_FTYPE_MOSTLY_Q4_K_M        = 15,// except 1d tensors
-        LLAMA_FTYPE_MOSTLY_Q5_K_S        = 16,// except 1d tensors
-        LLAMA_FTYPE_MOSTLY_Q5_K_M        = 17,// except 1d tensors
-        LLAMA_FTYPE_MOSTLY_Q6_K          = 18,// except 1d tensors
-    };
-
-    // model quantization parameters
-    typedef struct llama_model_quantize_params {
-        int nthread;                 // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
-        enum llama_ftype   ftype;    // quantize to this llama_ftype
-        bool allow_requantize;       // allow quantizing non-f32/f16 tensors
-        bool quantize_output_tensor; // quantize output.weight
-    } llama_model_quantize_params;
-
-    // grammar types
-    struct llama_grammar;
-
-    // grammar element type
-    enum llama_gretype {
-        // end of rule definition
-        LLAMA_GRETYPE_END            = 0,
-
-        // start of alternate definition for rule
-        LLAMA_GRETYPE_ALT            = 1,
-
-        // non-terminal element: reference to rule
-        LLAMA_GRETYPE_RULE_REF       = 2,
-
-        // terminal element: character (code point)
-        LLAMA_GRETYPE_CHAR           = 3,
-
-        // inverse char(s) ([^a], [^a-b] [^abc])
-        LLAMA_GRETYPE_CHAR_NOT       = 4,
-
-        // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
-        // be an inclusive range ([a-z])
-        LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
-
-        // modifies a preceding LLAMA_GRETYPE_CHAR or
-        // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
-        LLAMA_GRETYPE_CHAR_ALT       = 6,
-    };
-
-    typedef struct llama_grammar_element {
-        enum llama_gretype type;
-        uint32_t           value; // Unicode code point or rule ID
-    } llama_grammar_element;
-
-    // performance timing information
-    struct llama_timings {
-        double t_start_ms;
-        double t_end_ms;
-        double t_load_ms;
-        double t_sample_ms;
-        double t_p_eval_ms;
-        double t_eval_ms;
-
-        int32_t n_sample;
-        int32_t n_p_eval;
-        int32_t n_eval;
-    };
-
-    // Set callback for all future logging events.
-    // If this is not called, or NULL is supplied, everything is output on stderr.
-    LLAMA_API void llama_log_set(llama_log_callback log_callback, void * user_data);
-
-    LLAMA_API int llama_max_devices();
-
-    LLAMA_API struct llama_context_params llama_context_default_params();
-    LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
-
-    LLAMA_API bool llama_mmap_supported();
-    LLAMA_API bool llama_mlock_supported();
-
-    // TODO: not great API - very likely to change
-    // Initialize the llama + ggml backend
-    // If numa is true, use NUMA optimizations
-    // Call once at the start of the program
-    LLAMA_API void llama_backend_init(bool numa);
-    // Call once at the end of the program - currently only used for MPI
-    LLAMA_API void llama_backend_free();
-
-    LLAMA_API int64_t llama_time_us();
-
-    LLAMA_API struct llama_model * llama_load_model_from_file(
-                             const char * path_model,
-            struct llama_context_params   params);
-
-    LLAMA_API void llama_free_model(struct llama_model * model);
-
-    LLAMA_API struct llama_context * llama_new_context_with_model(
-                     struct llama_model * model,
-            struct llama_context_params   params);
-
-    // Various functions for loading a ggml llama model.
-    // Allocate (almost) all memory needed for the model.
-    // Return NULL on failure
-    LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
-                             const char * path_model,
-            struct llama_context_params   params),
-            "please use llama_load_model_from_file combined with llama_new_context_with_model instead");
-
-    // Frees all allocated memory
-    LLAMA_API void llama_free(struct llama_context * ctx);
-
-    // Returns 0 on success
-    LLAMA_API int llama_model_quantize(
-            const char * fname_inp,
-            const char * fname_out,
-            const llama_model_quantize_params * params);
-
-    // Apply a LoRA adapter to a loaded model
-    // path_base_model is the path to a higher quality model to use as a base for
-    // the layers modified by the adapter. Can be NULL to use the current loaded model.
-    // The model needs to be reloaded before applying a new adapter, otherwise the adapter
-    // will be applied on top of the previous one
-    // Returns 0 on success
-    LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
-            struct llama_context * ctx,
-                      const char * path_lora,
-                      const char * path_base_model,
-                             int   n_threads),
-            "please use llama_model_apply_lora_from_file instead");
-
-    LLAMA_API int llama_model_apply_lora_from_file(
-            const struct llama_model * model,
-                      const char * path_lora,
-                      const char * path_base_model,
-                             int   n_threads);
-
-    // Returns the number of tokens in the KV cache
-    LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
-
-    // Sets the current rng seed.
-    LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
-
-    // Returns the maximum size in bytes of the state (rng, logits, embedding
-    // and kv_cache) - will often be smaller after compacting tokens
-    LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
-
-    // Copies the state to the specified destination address.
-    // Destination needs to have allocated enough memory.
-    // Returns the number of bytes copied
-    LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
-
-    // Set the state reading from the specified address
-    // Returns the number of bytes read
-    LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
-
-    // Save/load session file
-    LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
-    LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
-
-    // Run the llama inference to obtain the logits and probabilities for the next token.
-    // tokens + n_tokens is the provided batch of new tokens to process
-    // n_past is the number of tokens to use from previous eval calls
-    // Returns 0 on success
-    LLAMA_API int llama_eval(
-            struct llama_context * ctx,
-               const llama_token * tokens,
-                             int   n_tokens,
-                             int   n_past,
-                             int   n_threads);
-
-    // Same as llama_eval, but use float matrix input directly.
-    LLAMA_API int llama_eval_embd(
-            struct llama_context * ctx,
-                     const float * embd,
-                             int   n_tokens,
-                             int   n_past,
-                             int   n_threads);
-
-    // Export a static computation graph for context of 511 and batch size of 1
-    // NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
-    //       parameters here to keep things simple
-    // IMPORTANT: do not use for anything else other than debugging and testing!
-    LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
-
-    // Convert the provided text into tokens.
-    // The tokens pointer must be large enough to hold the resulting tokens.
-    // Returns the number of tokens on success, no more than n_max_tokens
-    // Returns a negative number on failure - the number of tokens that would have been returned
-    // TODO: not sure if correct
-    LLAMA_API int llama_tokenize(
-            struct llama_context * ctx,
-                      const char * text,
-                     llama_token * tokens,
-                             int   n_max_tokens,
-                            bool   add_bos);
-
-    LLAMA_API int llama_tokenize_with_model(
-        const struct llama_model * model,
-                      const char * text,
-                     llama_token * tokens,
-                             int   n_max_tokens,
-                            bool   add_bos);
-
-    LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
-    LLAMA_API int llama_n_ctx  (const struct llama_context * ctx);
-    LLAMA_API int llama_n_embd (const struct llama_context * ctx);
-
-    LLAMA_API int llama_n_vocab_from_model(const struct llama_model * model);
-    LLAMA_API int llama_n_ctx_from_model  (const struct llama_model * model);
-    LLAMA_API int llama_n_embd_from_model (const struct llama_model * model);
-
-    // Get the vocabulary as output parameters.
-    // Returns number of results.
-    LLAMA_API int llama_get_vocab(
-            const struct llama_context * ctx,
-                          const char * * strings,
-                                 float * scores,
-                                   int   capacity);
-
-    LLAMA_API int llama_get_vocab_from_model(
-              const struct llama_model * model,
-                          const char * * strings,
-                                 float * scores,
-                                   int   capacity);
-
-    // Token logits obtained from the last call to llama_eval()
-    // The logits for the last token are stored in the last row
-    // Can be mutated in order to change the probabilities of the next token
-    // Rows: n_tokens
-    // Cols: n_vocab
-    LLAMA_API float * llama_get_logits(struct llama_context * ctx);
-
-    // Get the embeddings for the input
-    // shape: [n_embd] (1-dimensional)
-    LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
-
-    // Token Id -> String. Uses the vocabulary in the provided context
-    LLAMA_API const char * llama_token_to_str(
-            const struct llama_context * ctx,
-                           llama_token   token);
-
-    LLAMA_API const char * llama_token_to_str_with_model(
-              const struct llama_model * model,
-                           llama_token   token);
-
-    // Special tokens
-    LLAMA_API llama_token llama_token_bos();  // beginning-of-sentence
-    LLAMA_API llama_token llama_token_eos();  // end-of-sentence
-    LLAMA_API llama_token llama_token_nl();   // next-line
-
-    // Grammar
-    //
-    LLAMA_API struct llama_grammar * llama_grammar_init(
-            const llama_grammar_element ** rules,
-                                 size_t    n_rules,
-                                 size_t    start_rule_index);
-
-    LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
-
-    // Sampling functions
-
-    /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
-    LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
-
-    /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
-    LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
-
-    /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
-    /// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
-    /// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
-    /// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
-    LLAMA_API void llama_sample_classifier_free_guidance(
-              struct llama_context * ctx,
-            llama_token_data_array * candidates,
-              struct llama_context * guidance_ctx,
-                             float   scale);
-
-    /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
-    LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
-
-    /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
-    LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
-
-    /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
-    LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
-
-    /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
-    LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
-
-    /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
-    LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
-    LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
-
-    /// @details Apply constraints from grammar
-    LLAMA_API void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar);
-
-    /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
-    /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
-    /// @param tau  The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
-    /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
-    /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
-    /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
-    LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
-
-    /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
-    /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
-    /// @param tau  The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
-    /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
-    /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
-    LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
-
-    /// @details Selects the token with the highest probability.
-    LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
-
-    /// @details Randomly selects a token from the candidates based on their probabilities.
-    LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
-
-    /// @details Accepts the sampled token into the grammar
-    LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token);
-
-    // Performance information
-    LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
-    LLAMA_API void llama_print_timings(struct llama_context * ctx);
-    LLAMA_API void llama_reset_timings(struct llama_context * ctx);
-
-    // Print system information
-    LLAMA_API const char * llama_print_system_info(void);
-
-#ifdef __cplusplus
-}
-#endif
-
-// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
-#ifdef LLAMA_API_INTERNAL
-
-#include <vector>
-#include <string>
-struct ggml_tensor;
-
-const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
-
-#endif
-
-#endif // LLAMA_H

+ 0 - 81
llm/llama_darwin.go

@@ -1,81 +0,0 @@
-package llm
-
-import (
-	"bytes"
-	"crypto/sha256"
-	"errors"
-	"io"
-	"log"
-	"os"
-	"path/filepath"
-)
-
-func init() {
-	if err := initBackend(); err != nil {
-		log.Printf("WARNING: GPU could not be initialized correctly: %v", err)
-		log.Printf("WARNING: falling back to CPU")
-	}
-}
-
-func initBackend() error {
-	exec, err := os.Executable()
-	if err != nil {
-		return err
-	}
-
-	exec, err = filepath.EvalSymlinks(exec)
-	if err != nil {
-		return err
-	}
-
-	metal := filepath.Join(filepath.Dir(exec), "ggml-metal.metal")
-	fi, err := os.Stat(metal)
-	if err != nil && !errors.Is(err, os.ErrNotExist) {
-		return err
-	}
-
-	if fi != nil {
-		actual, err := os.Open(metal)
-		if err != nil {
-			return err
-		}
-		defer actual.Close()
-
-		actualSum := sha256.New()
-		if _, err := io.Copy(actualSum, actual); err != nil {
-			return err
-		}
-
-		expect, err := fs.Open("ggml-metal.metal")
-		if err != nil {
-			return err
-		}
-
-		expectSum := sha256.New()
-		if _, err := io.Copy(expectSum, expect); err != nil {
-			return err
-		}
-
-		if bytes.Equal(actualSum.Sum(nil), expectSum.Sum(nil)) {
-			return nil
-		}
-	}
-
-	dst, err := os.Create(filepath.Join(filepath.Dir(exec), "ggml-metal.metal"))
-	if err != nil {
-		return err
-	}
-	defer dst.Close()
-
-	src, err := fs.Open("ggml-metal.metal")
-	if err != nil {
-		return err
-	}
-	defer src.Close()
-
-	if _, err := io.Copy(dst, src); err != nil {
-		return err
-	}
-
-	return nil
-}

+ 7 - 5
llm/llm.go

@@ -1,6 +1,7 @@
 package llm
 
 import (
+	"context"
 	"fmt"
 	"log"
 	"os"
@@ -11,12 +12,13 @@ import (
 )
 
 type LLM interface {
-	Predict([]int, string, func(api.GenerateResponse)) error
-	Embedding(string) ([]float64, error)
-	Encode(string) []int
-	Decode(...int) string
+	Predict(context.Context, []int, string, func(api.GenerateResponse)) error
+	Embedding(context.Context, string) ([]float64, error)
+	Encode(context.Context, string) ([]int, error)
+	Decode(context.Context, []int) (string, error)
 	SetOptions(api.Options)
 	Close()
+	Ping(context.Context) error
 }
 
 func New(model string, adapters []string, opts api.Options) (LLM, error) {
@@ -75,7 +77,7 @@ func New(model string, adapters []string, opts api.Options) (LLM, error) {
 
 	switch ggml.ModelFamily() {
 	case ModelFamilyLlama:
-		return newLlama(model, adapters, opts)
+		return newLlama(model, adapters, ggmlRunner(), opts)
 	default:
 		return nil, fmt.Errorf("unknown ggml type: %s", ggml.ModelFamily())
 	}

+ 0 - 70
llm/update-llama-cpp.sh

@@ -1,70 +0,0 @@
-#!/bin/sh
-
-set -eu
-
-
-status() { echo >&2 ">>> $*"; }
-error() { status "ERROR $*"; }
-usage() {
-    echo "usage: $(basename $0) /path/to/repo"
-    exit 1
-}
-
-OUT=$(dirname $0)
-while getopts "hC:" OPTION; do
-    case $OPTION in
-        C) OUT=$OPTARG ;;
-        *) usage ;;
-    esac
-done
-
-shift $(( $OPTIND - 1 ))
-[ $# -eq 1 ] || usage
-
-status "updating source..."
-cp -a "$1"/*.{c,h,cpp,m,metal,cu} "$OUT"
-
-status "removing incompatible files..."
-rm -f "$OUT"/build-info.h
-
-SHA1=$(git -C $1 rev-parse @)
-
-LICENSE=$(mktemp)
-cleanup() {
-    rm -f $LICENSE
-}
-trap cleanup 0
-
-cat <<EOF | sed 's/ *$//' >$LICENSE
-/**
- * llama.cpp - git $SHA1
- *
-$(sed 's/^/ * /' <$1/LICENSE)
- */
-
-EOF
-
-for IN in $OUT/*.{c,h,cpp,m,metal,cu}; do
-    TMP=$(mktemp)
-    status "updating license $IN"
-    cat $LICENSE $IN >$TMP
-    mv $TMP $IN
-done
-
-touchup() {
-    local CONSTRAINT=$1 && shift
-
-    for IN in $*; do
-        status "touching up $IN..."
-        TMP=$(mktemp)
-        {
-            echo "//go:build $CONSTRAINT"
-            echo
-        } | cat - $IN >$TMP
-        mv $TMP $IN
-    done
-}
-
-touchup darwin $OUT/ggml-metal.*
-touchup mpi $OUT/ggml-mpi.*
-touchup opencl $OUT/ggml-opencl.*

+ 2 - 2
server/images.go

@@ -521,7 +521,7 @@ func embeddingLayers(e EmbeddingParams) ([]*LayerReader, error) {
 			model = &Model{ModelPath: e.model}
 		}
 
-		if err := load(model, e.opts, defaultSessionDuration); err != nil {
+		if err := load(context.Background(), model, e.opts, defaultSessionDuration); err != nil {
 			return nil, fmt.Errorf("load model to generate embeddings: %v", err)
 		}
 
@@ -584,7 +584,7 @@ func embeddingLayers(e EmbeddingParams) ([]*LayerReader, error) {
 						embeddings = append(embeddings, vector.Embedding{Data: d, Vector: existing[d]})
 						continue
 					}
-					embed, err := loaded.llm.Embedding(d)
+					embed, err := loaded.llm.Embedding(context.Background(), d)
 					if err != nil {
 						log.Printf("failed to generate embedding for '%s' line %d: %v", filePath, i+1, err)
 						continue

+ 39 - 8
server/routes.go

@@ -10,10 +10,12 @@ import (
 	"net"
 	"net/http"
 	"os"
+	"os/signal"
 	"path/filepath"
 	"reflect"
 	"strings"
 	"sync"
+	"syscall"
 	"time"
 
 	"github.com/gin-contrib/cors"
@@ -55,7 +57,7 @@ var loaded struct {
 var defaultSessionDuration = 5 * time.Minute
 
 // load a model into memory if it is not already loaded, it is up to the caller to lock loaded.mu before calling this function
-func load(model *Model, reqOpts map[string]interface{}, sessionDuration time.Duration) error {
+func load(ctx context.Context, model *Model, reqOpts map[string]interface{}, sessionDuration time.Duration) error {
 	opts := api.DefaultOptions()
 	if err := opts.FromMap(model.Options); err != nil {
 		log.Printf("could not load model options: %v", err)
@@ -67,8 +69,20 @@ func load(model *Model, reqOpts map[string]interface{}, sessionDuration time.Dur
 		return err
 	}
 
+	// check if the loaded model is still running in a subprocess, in case something unexpected happened
+	if loaded.llm != nil {
+		if err := loaded.llm.Ping(ctx); err != nil {
+			log.Print("loaded llm process not responding, closing now")
+			// the subprocess is no longer running, so close it
+			loaded.llm.Close()
+			loaded.llm = nil
+			loaded.digest = ""
+		}
+	}
+
 	if model.Digest != loaded.digest || !reflect.DeepEqual(loaded.options, opts) {
 		if loaded.llm != nil {
+			log.Println("changing loaded model")
 			loaded.llm.Close()
 			loaded.llm = nil
 			loaded.digest = ""
@@ -100,8 +114,14 @@ func load(model *Model, reqOpts map[string]interface{}, sessionDuration time.Dur
 				return err
 			}
 
-			tokensWithSystem := llmModel.Encode(promptWithSystem)
-			tokensNoSystem := llmModel.Encode(promptNoSystem)
+			tokensWithSystem, err := llmModel.Encode(ctx, promptWithSystem)
+			if err != nil {
+				return err
+			}
+			tokensNoSystem, err := llmModel.Encode(ctx, promptNoSystem)
+			if err != nil {
+				return err
+			}
 
 			opts.NumKeep = len(tokensWithSystem) - len(tokensNoSystem) + 1
 
@@ -151,7 +171,7 @@ func GenerateHandler(c *gin.Context) {
 	}
 
 	sessionDuration := defaultSessionDuration // TODO: set this duration from the request if specified
-	if err := load(model, req.Options, sessionDuration); err != nil {
+	if err := load(c.Request.Context(), model, req.Options, sessionDuration); err != nil {
 		c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
 		return
 	}
@@ -160,7 +180,7 @@ func GenerateHandler(c *gin.Context) {
 
 	embedding := ""
 	if model.Embeddings != nil && len(model.Embeddings) > 0 {
-		promptEmbed, err := loaded.llm.Embedding(req.Prompt)
+		promptEmbed, err := loaded.llm.Embedding(c.Request.Context(), req.Prompt)
 		if err != nil {
 			c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
 			return
@@ -196,7 +216,7 @@ func GenerateHandler(c *gin.Context) {
 			ch <- r
 		}
 
-		if err := loaded.llm.Predict(req.Context, prompt, fn); err != nil {
+		if err := loaded.llm.Predict(c.Request.Context(), req.Context, prompt, fn); err != nil {
 			ch <- gin.H{"error": err.Error()}
 		}
 	}()
@@ -219,7 +239,7 @@ func EmbeddingHandler(c *gin.Context) {
 		c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
 		return
 	}
-	if err := load(model, req.Options, 5*time.Minute); err != nil {
+	if err := load(c.Request.Context(), model, req.Options, 5*time.Minute); err != nil {
 		c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
 		return
 	}
@@ -229,7 +249,7 @@ func EmbeddingHandler(c *gin.Context) {
 		return
 	}
 
-	embedding, err := loaded.llm.Embedding(req.Prompt)
+	embedding, err := loaded.llm.Embedding(c.Request.Context(), req.Prompt)
 	if err != nil {
 		log.Printf("embedding generation failed: %v", err)
 		c.JSON(http.StatusInternalServerError, gin.H{"error": "failed to generate embedding"})
@@ -455,6 +475,17 @@ func Serve(ln net.Listener, origins []string) error {
 		Handler: r,
 	}
 
+	// listen for a ctrl+c and stop any loaded llm
+	signals := make(chan os.Signal, 1)
+	signal.Notify(signals, syscall.SIGINT)
+	go func() {
+		<-signals
+		if loaded.llm != nil {
+			loaded.llm.Close()
+		}
+		os.Exit(0)
+	}()
+
 	return s.Serve(ln)
 }