|
@@ -0,0 +1,85 @@
|
|
|
|
+package convert
|
|
|
|
+
|
|
|
|
+import (
|
|
|
|
+ "cmp"
|
|
|
|
+
|
|
|
|
+ "github.com/ollama/ollama/llm"
|
|
|
|
+)
|
|
|
|
+
|
|
|
|
+type cohere2Model struct {
|
|
|
|
+ ModelParameters
|
|
|
|
+ MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
|
|
|
|
+ HiddenSize uint32 `json:"hidden_size"`
|
|
|
|
+ HiddenLayers uint32 `json:"num_hidden_layers"`
|
|
|
|
+ IntermediateSize uint32 `json:"intermediate_size"`
|
|
|
|
+ NumAttentionHeads uint32 `json:"num_attention_heads"`
|
|
|
|
+ NumKeyValueHeads uint32 `json:"num_key_value_heads"`
|
|
|
|
+ LayerNormEPS float32 `json:"layer_norm_eps"`
|
|
|
|
+ RopeTheta float32 `json:"rope_theta"`
|
|
|
|
+ UseQKNorm bool `json:"use_qk_norm"`
|
|
|
|
+ MaxLength uint32 `json:"model_max_length"`
|
|
|
|
+ LogitScale float32 `json:"logit_scale"`
|
|
|
|
+ NCtx uint32 `json:"n_ctx"`
|
|
|
|
+ SlidingWindow uint32 `json:"sliding_window"`
|
|
|
|
+ HeadDim uint32 `json:"head_dim"`
|
|
|
|
+ RotaryPct float32 `json:"rotary_pct"`
|
|
|
|
+ VocabSize uint32 `json:"vocab_size"`
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+var _ ModelConverter = (*cohere2Model)(nil)
|
|
|
|
+
|
|
|
|
+func (p *cohere2Model) KV(t *Tokenizer) llm.KV {
|
|
|
|
+ kv := p.ModelParameters.KV(t)
|
|
|
|
+ kv["general.architecture"] = "cohere2"
|
|
|
|
+ kv["general.name"] = "C4Ai Command R7B"
|
|
|
|
+ kv["cohere2.context_length"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings, p.NCtx)
|
|
|
|
+ kv["cohere2.embedding_length"] = p.HiddenSize
|
|
|
|
+ kv["cohere2.block_count"] = p.HiddenLayers
|
|
|
|
+ kv["cohere2.feed_forward_length"] = p.IntermediateSize
|
|
|
|
+ kv["cohere2.attention.head_count"] = p.NumAttentionHeads
|
|
|
|
+ kv["cohere2.attention.head_count_kv"] = p.NumKeyValueHeads
|
|
|
|
+ kv["cohere2.attention.key_length"] = p.HeadDim
|
|
|
|
+ kv["cohere2.attention.layer_norm_epsilon"] = p.LayerNormEPS
|
|
|
|
+ kv["cohere2.attention.sliding_window"] = p.SlidingWindow
|
|
|
|
+ kv["cohere2.attention.value_length"] = p.HeadDim
|
|
|
|
+ kv["cohere2.max_position_embeddings"] = cmp.Or(p.MaxLength, p.MaxPositionEmbeddings)
|
|
|
|
+ kv["cohere2.logit_scale"] = p.LogitScale
|
|
|
|
+ kv["cohere2.rope.dimension_count"] = uint32(p.RotaryPct * float32(p.HiddenSize / p.NumAttentionHeads))
|
|
|
|
+ kv["cohere2.rope.freq_base"] = p.RopeTheta
|
|
|
|
+ kv["cohere2.rope.scaling.type"] = "none"
|
|
|
|
+ kv["cohere2.vocab_size"] = p.VocabSize
|
|
|
|
+
|
|
|
|
+ return kv
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+func (p *cohere2Model) Tensors(ts []Tensor) []llm.Tensor {
|
|
|
|
+ var out []llm.Tensor
|
|
|
|
+ for _, t := range ts {
|
|
|
|
+ out = append(out, llm.Tensor{
|
|
|
|
+ Name: t.Name(),
|
|
|
|
+ Kind: t.Kind(),
|
|
|
|
+ Shape: t.Shape(),
|
|
|
|
+ WriterTo: t,
|
|
|
|
+ })
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ return out
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+func (p *cohere2Model) Replacements() []string {
|
|
|
|
+ return []string{
|
|
|
|
+ "self_attn.q_norm", "attn_q_norm",
|
|
|
|
+ "self_attn.k_norm", "attn_k_norm",
|
|
|
|
+ "model.layers", "blk",
|
|
|
|
+ "input_layernorm", "attn_norm",
|
|
|
|
+ "mlp.down_proj", "ffn_down",
|
|
|
|
+ "mlp.gate_proj", "ffn_gate",
|
|
|
|
+ "mlp.up_proj", "ffn_up",
|
|
|
|
+ "self_attn.k_proj", "attn_k",
|
|
|
|
+ "self_attn.o_proj", "attn_output",
|
|
|
|
+ "self_attn.q_proj", "attn_q",
|
|
|
|
+ "self_attn.v_proj", "attn_v",
|
|
|
|
+ "model.norm", "output_norm",
|
|
|
|
+ "model.embed_tokens", "token_embd",
|
|
|
|
+ }
|
|
|
|
+}
|