Michael Yang 1 month ago
parent
commit
45df786f09
1 changed files with 117 additions and 95 deletions
  1. 117 95
      ml/backend/ggml/ggml.go

+ 117 - 95
ml/backend/ggml/ggml.go

@@ -12,7 +12,6 @@ import (
 	"errors"
 	"fmt"
 	"io"
-	"iter"
 	"log/slog"
 	"maps"
 	"os"
@@ -29,26 +28,34 @@ import (
 	"golang.org/x/sync/errgroup"
 )
 
-func devices() iter.Seq[*C.struct_ggml_backend_device] {
-	return func(yield func(*C.struct_ggml_backend_device) bool) {
-		ggml.OnceLoad()
-		for i := range C.ggml_backend_dev_count() {
-			if !yield(C.ggml_backend_dev_get(i)) {
-				return
-			}
-		}
+func devices() []*C.struct_ggml_backend_device {
+	ggml.OnceLoad()
+	ds := make([]*C.struct_ggml_backend_device, C.ggml_backend_dev_count())
+	for i := range ds {
+		ds[i] = C.ggml_backend_dev_get(C.size_t(i))
 	}
+
+	return ds
 }
 
 type Backend struct {
 	meta    *fs.GGML
 	sched   *C.struct_ggml_backend_sched
 	tensors map[string]*C.struct_ggml_tensor
-	input   *C.struct_ggml_backend
-	output  *C.struct_ggml_backend
-	layers  map[int]*C.struct_ggml_backend
+
+	// input is the backend used for inputs
+	input *C.struct_ggml_backend
+
+	// output is the backend used for outputs
+	output *C.struct_ggml_backend
+
+	// layers is the backend used for repeating layers
+	layers map[int]*C.struct_ggml_backend
 
 	flashAttention bool
+
+	// maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
+	maxGraphNodes int
 }
 
 func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
@@ -73,7 +80,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
 	}
 
 	var cpus, accels, gpus []*C.struct_ggml_backend_device
-	for d := range devices() {
+	for _, d := range devices() {
 		switch C.ggml_backend_dev_type(d) {
 		case C.GGML_BACKEND_DEVICE_TYPE_CPU:
 			cpus = append(cpus, d)
@@ -84,6 +91,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
 		}
 	}
 
+	// create list of buffer types for the cpu
 	cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
 	for _, d := range append(accels, append(gpus, cpus...)...) {
 		switch C.ggml_backend_dev_type(d) {
@@ -93,6 +101,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
 		}
 	}
 
+	// create list of buffer types for each gpu
 	var gpuDeviceBufferTypes []deviceBufferType
 	for _, d := range gpus {
 		bt := C.ggml_backend_dev_buffer_type(d)
@@ -102,44 +111,53 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
 		})
 	}
 
-	splits := make([]float32, len(gpus))
-	if func() bool {
-		for _, s := range params.TensorSplit {
-			if s != 0 {
-				return true
-			}
+	useDefaultSplit := true
+	for _, s := range params.TensorSplit {
+		if s != 0 {
+			useDefaultSplit = false
+			break
 		}
+	}
 
-		return false
-	}() {
-		splits = params.TensorSplit
-	} else {
+	// calculate splits
+	splits := make([]float32, len(gpus))
+	if useDefaultSplit {
+		// default: split on free memory
 		for i := range splits {
 			var free, total C.size_t
 			C.ggml_backend_dev_memory(gpus[i], &free, &total)
 			splits[i] = float32(free)
 		}
+	} else {
+		splits = params.TensorSplit
 	}
 
 	var sum float32
+	// cumulative sum of all splits
 	for i := range splits {
 		sum += splits[i]
 		splits[i] = sum
 	}
 
+	// normalize splits
 	for i := range splits {
 		splits[i] /= sum
 	}
 
+	// inputs always use cpu
 	input := cpuDeviceBufferType
 
 	blocks := int(meta.KV().BlockCount())
+
+	// define a range of gpu layers. anything outside of this range is assigned to the cpu
+	gpuRangeStart := max(0, blocks-params.NumGPULayers)
+	gpuRangeStop := min(gpuRangeStart+params.NumGPULayers, blocks+1)
 	assignLayer := func(i int) deviceBufferType {
-		if i >= params.NumGPULayers {
+		if i < gpuRangeStart || i >= gpuRangeStop {
 			return cpuDeviceBufferType
 		}
 
-		index := slices.IndexFunc(splits, func(f float32) bool { return float32(i)/float32(blocks+1) < f })
+		index := slices.IndexFunc(splits, func(f float32) bool { return float32(i-gpuRangeStart)/float32(gpuRangeStop-gpuRangeStart) < f })
 		if index < 0 || index >= len(gpuDeviceBufferTypes) {
 			return cpuDeviceBufferType
 		}
@@ -147,15 +165,18 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
 		return gpuDeviceBufferTypes[index]
 	}
 
+	// repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
 	layers := make([]deviceBufferType, blocks)
 	for i := range layers {
 		layers[i] = assignLayer(i)
 	}
 
+	// outputs are assigned iff allowed by splits and configured number of gpu layers
 	output := assignLayer(blocks)
 
 	maxTensors := len(meta.Tensors().Items())
 	maxTensors += 1
+	// each layer has at most 2 extra tensors for rope operations
 	maxTensors += blocks * 2
 
 	type tensor struct {
@@ -163,8 +184,10 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
 		target string
 	}
 
+	// some tensors are mapped to different names so keep a list
 	targets := make(map[string][]string)
 
+	// contexts are shared by tensors of the same buffer type
 	ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
 	createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
 		for _, bt := range bts {
@@ -217,19 +240,21 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
 		case contains(t.Name, "cls", "output", "output_norm"):
 			createTensor(tensor{source: t}, output.bts)
 		case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
+			// TODO: assign vision tensors to the gpu if possible
 			createTensor(tensor{source: t}, input.bts)
 		default:
-			if i := func() int {
-				if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
-					if i, err := strconv.Atoi(fields[0]); err == nil {
-						return i
-					}
+			layerIndex := -1
+			if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
+				if i, err := strconv.Atoi(fields[0]); err == nil {
+					layerIndex = i
 				}
+			}
 
-				return -1
-			}(); i >= 0 {
-				createTensor(tensor{source: t}, layers[i].bts)
+			if layerIndex >= 0 {
+				createTensor(tensor{source: t}, layers[layerIndex].bts)
 			} else {
+				// this is a repeating tensor that doesn't explicitly associated with a layer so
+				// duplicate it for each layer
 				for i, layer := range layers {
 					createTensor(tensor{
 						source: t,
@@ -240,8 +265,8 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
 		}
 	}
 
-	bbs := make(map[*C.struct_ggml_context][]*C.struct_ggml_backend_buffer, len(ctxs))
-
+	// allocate buffers for each context
+	bbs := make(map[*C.struct_ggml_context]*C.struct_ggml_backend_buffer, len(ctxs))
 	for bt, c := range ctxs {
 		if C.ggml_get_first_tensor(c) == nil {
 			continue
@@ -249,15 +274,14 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
 
 		b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
 		C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
-		bbs[c] = append(bbs[c], b)
+		bbs[c] = b
 	}
 
 	for bs := range maps.Values(bbs) {
-		for _, b := range bs {
-			slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(b)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(b))))
-		}
+		slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
 	}
 
+	// map tensor names to tensors for easy lookup later
 	tensors := make(map[string]*C.struct_ggml_tensor)
 	for _, c := range ctxs {
 		for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
@@ -265,6 +289,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
 		}
 	}
 
+	// concurrently read in tensor data. uses a section reader which is safe for concurrent reads
 	sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
 	var g errgroup.Group
 	for _, t := range meta.Tensors().Items() {
@@ -289,10 +314,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
 					return errors.New("short read")
 				}
 
-				cname := C.CString(t.Name)
 				C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), 0, C.size_t(t.Size()))
-				C.free(unsafe.Pointer(cname))
-
 				return nil
 			})
 		}
@@ -302,39 +324,45 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
 		return nil, err
 	}
 
+	// map devices to backends so tensors created post initialization can be assigned to the correct device
 	deviceBackends := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend)
-	var backends []*C.struct_ggml_backend
-	var bufts []*C.struct_ggml_backend_buffer_type
+
+	// create backends and buffer types used for the compute graph scheduler
+	var schedBackends []*C.struct_ggml_backend
+	var schedBufts []*C.struct_ggml_backend_buffer_type
 	for _, d := range append(gpus, append(accels, cpus...)...) {
 		b := C.ggml_backend_dev_init(d, nil)
-		backends = append(backends, b)
+		schedBackends = append(schedBackends, b)
 		deviceBackends[d] = b
 
 		bt := C.ggml_backend_get_default_buffer_type(b)
+		// use the first gpu host buffer type for gpu if possible
 		if d := C.ggml_backend_get_device(b); C.ggml_backend_dev_type(d) == C.GGML_BACKEND_DEVICE_TYPE_CPU && len(gpus) > 0 {
 			if hbt := C.ggml_backend_dev_host_buffer_type(d); hbt != nil {
 				bt = hbt
 			}
 		}
 
-		bufts = append(bufts, bt)
+		schedBufts = append(schedBufts, bt)
 
 		slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
 
 		if C.ggml_backend_is_cpu(b) {
+			// set number of threads for cpu backend
 			C.ggml_backend_cpu_set_n_threads(b, C.int(params.NumThreads))
 		}
 	}
 
+	maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
 	return &Backend{
 		flashAttention: params.FlashAttention,
 		meta:           meta,
 		tensors:        tensors,
 		sched: C.ggml_backend_sched_new(
-			(*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
-			(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
-			C.int(len(backends)),
-			C.size_t(max(8192, len(meta.Tensors().Items())*5)),
+			(*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
+			(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
+			C.int(len(schedBackends)),
+			C.size_t(maxGraphNodes),
 			true,
 		),
 		input:  deviceBackends[input.d],
@@ -346,6 +374,7 @@ func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
 			}
 			return m
 		}(),
+		maxGraphNodes: maxGraphNodes,
 	}, nil
 }
 
@@ -366,10 +395,11 @@ func (b *Backend) Get(name string) ml.Tensor {
 }
 
 func (b *Backend) NewContext() ml.Context {
-	return b.NewContextSize(max(8192, len(b.meta.Tensors().Items())*5))
+	return b.NewContextSize(b.maxGraphNodes)
 }
 
 func (b *Backend) NewContextSize(n int) ml.Context {
+	n = min(n, b.maxGraphNodes)
 	return &Context{
 		b: b,
 		ctx: C.ggml_init(C.struct_ggml_init_params{
@@ -378,9 +408,6 @@ func (b *Backend) NewContextSize(n int) ml.Context {
 		}),
 		backend:       C.ggml_backend_sched_get_backend(b.sched, 0),
 		maxGraphNodes: n,
-		input:         b.input,
-		output:        b.output,
-		layers:        b.layers,
 	}
 }
 
@@ -401,46 +428,38 @@ type Context struct {
 	// backend is the backend used for new tensors
 	backend *C.struct_ggml_backend
 
-	// input is the backend used for inputs
-	input *C.struct_ggml_backend
-
-	// output is the backend used for outputs
-	output *C.struct_ggml_backend
-
-	// output is the backend used for repeating layers
-	layers map[int]*C.struct_ggml_backend
-
+	// maxGraphNodes is the maximum allowed number of graph nodes in this context
 	maxGraphNodes int
 }
 
-func (c *Context) Input() ml.Context {
-	if c.input != nil {
+func (c Context) Input() ml.Context {
+	if c.b.input != nil {
 		return &Context{
 			b:             c.b,
 			ctx:           c.ctx,
-			backend:       c.input,
+			backend:       c.b.input,
 			maxGraphNodes: c.maxGraphNodes,
 		}
 	}
 
-	return c
+	return &c
 }
 
-func (c *Context) Output() ml.Context {
-	if c.output != nil {
+func (c Context) Output() ml.Context {
+	if c.b.output != nil {
 		return &Context{
 			b:             c.b,
 			ctx:           c.ctx,
-			backend:       c.output,
+			backend:       c.b.output,
 			maxGraphNodes: c.maxGraphNodes,
 		}
 	}
 
-	return c
+	return &c
 }
 
-func (c *Context) Layer(i int) ml.Context {
-	if backend, ok := c.layers[i]; ok {
+func (c Context) Layer(i int) ml.Context {
+	if backend, ok := c.b.layers[i]; ok {
 		return &Context{
 			b:             c.b,
 			ctx:           c.ctx,
@@ -449,7 +468,7 @@ func (c *Context) Layer(i int) ml.Context {
 		}
 	}
 
-	return c
+	return &c
 }
 
 func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
@@ -464,10 +483,9 @@ func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
 	return c
 }
 
-func (c *Context) Compute(tensors ...ml.Tensor) {
-	C.ggml_backend_sched_reset(c.b.sched)
-	C.ggml_backend_sched_alloc_graph(c.b.sched, c.graph)
+func (c Context) Compute(tensors ...ml.Tensor) {
 	C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
+	C.ggml_backend_sched_reset(c.b.sched)
 
 	needSync := true
 	sync := func() {
@@ -484,7 +502,7 @@ func (c *Context) Compute(tensors ...ml.Tensor) {
 	}
 }
 
-func (c *Context) MaxGraphNodes() int {
+func (c Context) MaxGraphNodes() int {
 	return c.maxGraphNodes
 }
 
@@ -498,7 +516,22 @@ func shapeToGGML(shape []int) *C.int64_t {
 }
 
 func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
-	if len(shape) < 1 || len(shape) > 4 {
+	var cdtype uint32
+	switch dtype {
+	case ml.DTypeF32:
+		cdtype = C.GGML_TYPE_F32
+	case ml.DTypeF16:
+		cdtype = C.GGML_TYPE_F16
+	case ml.DTypeI32:
+		cdtype = C.GGML_TYPE_I32
+	default:
+		panic("unsupported dtype")
+	}
+
+	if len(shape) < 1 {
+		var shape C.int64_t = 0
+		return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
+	} else if len(shape) > 4 {
 		panic("unsupported number of dimensions")
 	}
 
@@ -508,18 +541,7 @@ func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
 		}
 	}
 
-	var t *C.struct_ggml_tensor
-	switch dtype {
-	case ml.DTypeF32:
-		t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
-	case ml.DTypeF16:
-		t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
-	case ml.DTypeI32:
-		t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
-	default:
-		panic("unsupported dtype")
-	}
-
+	t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
 	b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
 	C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
 	return &Tensor{b: c.b, t: t}
@@ -549,7 +571,7 @@ func checkShape[S ~[]E, E any](s S, shape ...int) error {
 }
 
 func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
-	if err := checkShape(s, shape...); err != nil {
+	if err := checkShape(s, shape...); err != nil && len(shape) > 0 {
 		return nil, err
 	}
 
@@ -559,7 +581,7 @@ func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
 }
 
 func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
-	if err := checkShape(s, shape...); err != nil {
+	if err := checkShape(s, shape...); err != nil && len(shape) > 0 {
 		return nil, err
 	}
 
@@ -568,8 +590,8 @@ func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
 	return t, nil
 }
 
-func (c Context) Close() {
-	if c.ctx != nil {
+func (c *Context) Close() {
+	if c != nil {
 		C.ggml_free(c.ctx)
 	}
 }