ソースを参照

Merge pull request #9703 from ollama/mxyng/gemma3-memory

count gemma3 vision tensors
Michael Yang 1 ヶ月 前
コミット
4ea4d2b189
2 ファイル変更34 行追加21 行削除
  1. 32 19
      fs/ggml/ggml.go
  2. 2 2
      llm/memory.go

+ 32 - 19
fs/ggml/ggml.go

@@ -583,39 +583,52 @@ func (f GGML) GraphSize(context, batch uint64, kvCacheType string) (kv, partialO
 }
 
 func (llm GGML) VisionGraphSize() (weights, graphSize uint64) {
-	switch llm.KV().Architecture() {
-	case "mllama":
-		for _, layer := range llm.Tensors().GroupLayers()["v"] {
-			weights += layer.Size()
-		}
+	if llm.KV().Uint("vision.block_count") == 0 {
+		return
+	}
 
-		kv := func(n string) uint64 {
-			if v, ok := llm.KV()["mllama.vision."+n].(uint32); ok {
-				return uint64(v)
+	for name, layer := range llm.Tensors().GroupLayers() {
+		if name == "v" || strings.HasPrefix(name, "v.") {
+			for _, tensor := range layer {
+				weights += tensor.Size()
 			}
-
-			return 0
 		}
+	}
+
+	imageSize := uint64(llm.KV().Uint("vision.image_size"))
+	patchSize := uint64(llm.KV().Uint("vision.patch_size"))
+	if patchSize == 0 {
+		slog.Warn("unknown patch size for vision model")
+		return
+	}
 
-		imageSize := kv("image_size")
+	numChannels := uint64(llm.KV().Uint("vision.num_channels"))
 
-		maxNumTiles := kv("max_num_tiles")
-		embeddingLength := kv("embedding_length")
-		headCount := kv("attention.head_count")
+	numPatches := (imageSize / patchSize) * (imageSize / patchSize)
+	if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
+		numPatches++
+	}
 
-		numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
-		if _, ok := llm.Tensors().GroupLayers()["v"]["class_embd"]; ok {
-			numPatches++
-		}
+	headCount := uint64(llm.KV().Uint("vision.attention.head_count"))
+	embeddingLength := uint64(llm.KV().Uint("vision.embedding_length"))
 
+	switch llm.KV().Architecture() {
+	case "mllama":
 		numPaddedPatches := numPatches + 8 - (numPatches%8)%8
 
+		maxNumTiles := uint64(llm.KV().Uint("vision.max_num_tiles"))
+
 		graphSize = 4 * (8 +
-			imageSize*imageSize*kv("num_channels")*maxNumTiles +
+			imageSize*imageSize*numChannels*maxNumTiles +
 			embeddingLength*numPatches*maxNumTiles +
 			9*embeddingLength*numPaddedPatches*maxNumTiles +
 			numPaddedPatches*maxNumTiles*numPaddedPatches*maxNumTiles*headCount)
+	case "gemma3":
+		graphSize = 4 * (imageSize*imageSize*numChannels +
+			embeddingLength*patchSize +
+			numPatches*numPatches*headCount)
 	}
+
 	return weights, graphSize
 }
 

+ 2 - 2
llm/memory.go

@@ -218,8 +218,8 @@ func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []strin
 		if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
 			layerSize = blk.Size()
 			layerSize += kv / f.KV().BlockCount()
+			memoryWeights += blk.Size()
 		}
-		memoryWeights += layerSize
 
 		if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
 			// Stop allocating on GPU(s) once we hit the users target NumGPU
@@ -376,7 +376,7 @@ func (m MemoryEstimate) LogValue() slog.Value {
 				// memory of the weights
 				"total", format.HumanBytes2(m.memoryWeights),
 				// memory of repeating layers
-				"repeating", format.HumanBytes2(m.memoryWeights-m.memoryLayerOutput),
+				"repeating", format.HumanBytes2(m.memoryWeights),
 				// memory of non-repeating layers
 				"nonrepeating", format.HumanBytes2(m.memoryLayerOutput),
 			),