|
@@ -219,7 +219,7 @@ func (b *Backend) Get(name string) ml.Tensor {
|
|
|
|
|
|
for _, c := range append(b.gpus, b.cpus...) {
|
|
|
if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
|
|
|
- return &Tensor{t: t}
|
|
|
+ return &Tensor{b: b, t: t}
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -330,7 +330,7 @@ func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
|
|
|
b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
|
|
|
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
|
|
C.ggml_set_zero(t)
|
|
|
- return &Tensor{t: t}
|
|
|
+ return &Tensor{b: c.b, t: t}
|
|
|
}
|
|
|
|
|
|
func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
|
|
@@ -339,7 +339,7 @@ func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype u
|
|
|
if n == 0 {
|
|
|
var shape C.int64_t = 0
|
|
|
t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
|
|
|
- return &Tensor{t: t}, nil
|
|
|
+ return &Tensor{b: ctx.b, t: t}, nil
|
|
|
}
|
|
|
|
|
|
for _, v := range shape {
|
|
@@ -354,7 +354,7 @@ func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype u
|
|
|
b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
|
|
|
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
|
|
|
C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
|
|
|
- return &Tensor{t: t}, nil
|
|
|
+ return &Tensor{b: ctx.b, t: t}, nil
|
|
|
}
|
|
|
|
|
|
func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
|
|
@@ -372,6 +372,7 @@ func (c *Context) Close() {
|
|
|
}
|
|
|
|
|
|
type Tensor struct {
|
|
|
+ b *Backend
|
|
|
t *C.struct_ggml_tensor
|
|
|
sync func()
|
|
|
}
|
|
@@ -438,6 +439,7 @@ func (t *Tensor) DType() ml.DType {
|
|
|
|
|
|
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
|
}
|
|
|
}
|
|
@@ -452,24 +454,28 @@ func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
|
|
|
|
|
|
func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_cont(ctx.(*Context).ctx, t.t),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
|
}
|
|
|
}
|
|
@@ -479,12 +485,13 @@ func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
|
C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
|
|
|
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: mul,
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
|
|
|
- tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
|
|
|
+ tt := (&Tensor{b: t.b, t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
|
|
|
if b != nil {
|
|
|
tt = tt.Add(ctx, b)
|
|
|
}
|
|
@@ -493,7 +500,7 @@ func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tenso
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
|
|
|
- return (&Tensor{t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
|
|
|
+ return (&Tensor{b: t.b, t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
|
|
@@ -502,6 +509,7 @@ func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
|
|
|
}
|
|
|
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
|
}
|
|
|
}
|
|
@@ -512,18 +520,21 @@ func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
|
|
|
}
|
|
|
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
|
|
|
}
|
|
|
}
|
|
@@ -532,18 +543,22 @@ func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
|
|
|
switch len(shape) {
|
|
|
case 1:
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
|
|
|
}
|
|
|
case 2:
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
|
|
|
}
|
|
|
case 3:
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
|
|
|
}
|
|
|
case 4:
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
|
|
|
}
|
|
|
default:
|
|
@@ -553,18 +568,21 @@ func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
|
|
|
|
|
|
func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
|
|
|
}
|
|
|
}
|
|
@@ -575,6 +593,7 @@ func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
|
|
|
}
|
|
|
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
|
|
|
}
|
|
|
}
|
|
@@ -583,10 +602,12 @@ func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
|
|
switch len(shape) {
|
|
|
case 1:
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
|
|
|
}
|
|
|
case 3:
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
|
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]),
|
|
|
C.size_t(shape[1]),
|
|
@@ -594,6 +615,7 @@ func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
|
|
}
|
|
|
case 5:
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
|
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
|
|
|
C.size_t(shape[1]), C.size_t(shape[3]),
|
|
@@ -601,6 +623,7 @@ func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
|
|
|
}
|
|
|
case 7:
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
|
|
|
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
|
|
|
C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
|
|
@@ -617,7 +640,7 @@ const (
|
|
|
|
|
|
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
|
|
|
if ropeFactors == nil {
|
|
|
- ropeFactors = &Tensor{}
|
|
|
+ ropeFactors = &Tensor{b: t.b}
|
|
|
}
|
|
|
|
|
|
dequant := t.t
|
|
@@ -626,6 +649,7 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
|
|
|
}
|
|
|
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_rope_ext(
|
|
|
ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
|
|
|
C.int(ropeDim),
|
|
@@ -643,18 +667,21 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
|
|
|
|
|
|
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
|
|
|
}
|
|
|
}
|
|
|
|
|
|
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
|
|
|
return &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
|
|
|
}
|
|
|
}
|
|
@@ -670,6 +697,7 @@ func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.T
|
|
|
|
|
|
kq := key.MulmatFullPrec(ctx, query)
|
|
|
kq = &Tensor{
|
|
|
+ b: t.b,
|
|
|
t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
|
|
|
}
|
|
|
|