浏览代码

ggml-backend: Store parent backend as part of tensor

It can be important for a tensor to know what backend it came from -
for example, to know if flash attention is enabled.
Jesse Gross 2 月之前
父节点
当前提交
55e5776c44
共有 1 个文件被更改,包括 35 次插入7 次删除
  1. 35 7
      ml/backend/ggml/ggml.go

+ 35 - 7
ml/backend/ggml/ggml.go

@@ -219,7 +219,7 @@ func (b *Backend) Get(name string) ml.Tensor {
 
 	for _, c := range append(b.gpus, b.cpus...) {
 		if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
-			return &Tensor{t: t}
+			return &Tensor{b: b, t: t}
 		}
 	}
 
@@ -330,7 +330,7 @@ func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
 	b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
 	C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
 	C.ggml_set_zero(t)
-	return &Tensor{t: t}
+	return &Tensor{b: c.b, t: t}
 }
 
 func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
@@ -339,7 +339,7 @@ func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype u
 	if n == 0 {
 		var shape C.int64_t = 0
 		t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
-		return &Tensor{t: t}, nil
+		return &Tensor{b: ctx.b, t: t}, nil
 	}
 
 	for _, v := range shape {
@@ -354,7 +354,7 @@ func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype u
 	b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
 	C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
 	C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
-	return &Tensor{t: t}, nil
+	return &Tensor{b: ctx.b, t: t}, nil
 }
 
 func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
@@ -372,6 +372,7 @@ func (c *Context) Close() {
 }
 
 type Tensor struct {
+	b    *Backend
 	t    *C.struct_ggml_tensor
 	sync func()
 }
@@ -438,6 +439,7 @@ func (t *Tensor) DType() ml.DType {
 
 func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
 	}
 }
@@ -452,24 +454,28 @@ func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
 
 func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
 	}
 }
 
 func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_cont(ctx.(*Context).ctx, t.t),
 	}
 }
 
 func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
 	}
 }
 
 func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
 	}
 }
@@ -479,12 +485,13 @@ func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
 	C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
 
 	return &Tensor{
+		b: t.b,
 		t: mul,
 	}
 }
 
 func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
-	tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
+	tt := (&Tensor{b: t.b, t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
 	if b != nil {
 		tt = tt.Add(ctx, b)
 	}
@@ -493,7 +500,7 @@ func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tenso
 }
 
 func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
-	return (&Tensor{t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
+	return (&Tensor{b: t.b, t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
 }
 
 func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
@@ -502,6 +509,7 @@ func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
 	}
 
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
 	}
 }
@@ -512,18 +520,21 @@ func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
 	}
 
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
 	}
 }
 
 func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
 	}
 }
 
 func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
 	}
 }
@@ -532,18 +543,22 @@ func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
 	switch len(shape) {
 	case 1:
 		return &Tensor{
+			b: t.b,
 			t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
 		}
 	case 2:
 		return &Tensor{
+			b: t.b,
 			t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
 		}
 	case 3:
 		return &Tensor{
+			b: t.b,
 			t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
 		}
 	case 4:
 		return &Tensor{
+			b: t.b,
 			t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
 		}
 	default:
@@ -553,18 +568,21 @@ func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
 
 func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
 	}
 }
 
 func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
 	}
 }
 
 func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
 	}
 }
@@ -575,6 +593,7 @@ func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
 	}
 
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
 	}
 }
@@ -583,10 +602,12 @@ func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
 	switch len(shape) {
 	case 1:
 		return &Tensor{
+			b: t.b,
 			t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
 		}
 	case 3:
 		return &Tensor{
+			b: t.b,
 			t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
 				C.int64_t(shape[0]), C.int64_t(shape[2]),
 				C.size_t(shape[1]),
@@ -594,6 +615,7 @@ func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
 		}
 	case 5:
 		return &Tensor{
+			b: t.b,
 			t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
 				C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
 				C.size_t(shape[1]), C.size_t(shape[3]),
@@ -601,6 +623,7 @@ func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
 		}
 	case 7:
 		return &Tensor{
+			b: t.b,
 			t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
 				C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
 				C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
@@ -617,7 +640,7 @@ const (
 
 func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
 	if ropeFactors == nil {
-		ropeFactors = &Tensor{}
+		ropeFactors = &Tensor{b: t.b}
 	}
 
 	dequant := t.t
@@ -626,6 +649,7 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
 	}
 
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_rope_ext(
 			ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
 			C.int(ropeDim),
@@ -643,18 +667,21 @@ func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDi
 
 func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
 	}
 }
 
 func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
 	}
 }
 
 func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
 	return &Tensor{
+		b: t.b,
 		t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
 	}
 }
@@ -670,6 +697,7 @@ func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.T
 
 	kq := key.MulmatFullPrec(ctx, query)
 	kq = &Tensor{
+		b: t.b,
 		t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
 	}