|
@@ -83,7 +83,7 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
|
|
var memoryLayerOutput uint64
|
|
|
|
|
|
// The sizes of a layer
|
|
|
- var layerSize uint64
|
|
|
+ var baseLayerSize uint64
|
|
|
|
|
|
// The sum of all the layer sizes (just for logging)
|
|
|
var memoryWeights uint64
|
|
@@ -110,27 +110,27 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
|
|
layers := ggml.Tensors().Layers()
|
|
|
// add one layer worth of memory as a buffer
|
|
|
if blk0, ok := layers["blk.0"]; ok {
|
|
|
- layerSize = blk0.size()
|
|
|
+ baseLayerSize = blk0.size()
|
|
|
} else {
|
|
|
slog.Warn("model missing blk.0 layer size")
|
|
|
}
|
|
|
|
|
|
// fp16 k,v = sizeof(float16) * n_ctx * n_layer * (n_embd_head_k + n_embd_head_v) * n_head_kv
|
|
|
- var kv uint64 = 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * (ggml.KV().EmbeddingHeadCountK() + ggml.KV().EmbeddingHeadCountV()) * ggml.KV().HeadCountKV()
|
|
|
-
|
|
|
- // KV is proportional to the number of layers
|
|
|
- layerSize += kv / ggml.KV().BlockCount()
|
|
|
+ kv := 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * (ggml.KV().EmbeddingHeadCountK() + ggml.KV().EmbeddingHeadCountV()) * ggml.KV().HeadCountKV()
|
|
|
+ layerKV := kv / ggml.KV().BlockCount()
|
|
|
+ baseLayerSize += layerKV
|
|
|
|
|
|
graphPartialOffload, graphFullOffload = ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)))
|
|
|
if graphPartialOffload == 0 {
|
|
|
graphPartialOffload = ggml.KV().GQA() * kv / 6
|
|
|
}
|
|
|
+
|
|
|
if graphFullOffload == 0 {
|
|
|
graphFullOffload = graphPartialOffload
|
|
|
}
|
|
|
|
|
|
- // on metal there's no partial offload overhead
|
|
|
if gpus[0].Library == "metal" {
|
|
|
+ // there's no partial offload overhead on metal
|
|
|
graphPartialOffload = graphFullOffload
|
|
|
} else if len(gpus) > 1 {
|
|
|
// multigpu should always use the partial graph size
|
|
@@ -140,6 +140,7 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
|
|
if layer, ok := layers["output_norm"]; ok {
|
|
|
memoryLayerOutput += layer.size()
|
|
|
}
|
|
|
+
|
|
|
if layer, ok := layers["output"]; ok {
|
|
|
memoryLayerOutput += layer.size()
|
|
|
} else if layer, ok := layers["token_embd"]; ok {
|
|
@@ -164,12 +165,12 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
|
|
gzo = gpuZeroOverhead
|
|
|
}
|
|
|
// Only include GPUs that can fit the graph, gpu minimum, the layer buffer and at least more layer
|
|
|
- if gpus[i].FreeMemory < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*layerSize {
|
|
|
+ if gpus[i].FreeMemory < gzo+max(graphPartialOffload, graphFullOffload)+gpus[i].MinimumMemory+2*baseLayerSize {
|
|
|
slog.Debug("gpu has too little memory to allocate any layers", "gpu", gpus[i])
|
|
|
continue
|
|
|
}
|
|
|
gpusWithSpace = append(gpusWithSpace, gs{i, &gpus[i]})
|
|
|
- gpuAllocations[i] += gpus[i].MinimumMemory + layerSize // We hold off on graph until we know partial vs. full
|
|
|
+ gpuAllocations[i] += gpus[i].MinimumMemory + baseLayerSize // We hold off on graph until we know partial vs. full
|
|
|
}
|
|
|
|
|
|
var gpuZeroID int
|
|
@@ -180,11 +181,14 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
|
|
|
|
|
// For all the layers, find where they can fit on the GPU(s)
|
|
|
for i := range int(ggml.KV().BlockCount()) {
|
|
|
- // Some models have inconsistent layer sizes
|
|
|
+ var layerSize uint64
|
|
|
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
|
|
|
layerSize = blk.size()
|
|
|
- layerSize += kv / ggml.KV().BlockCount()
|
|
|
+ } else {
|
|
|
+ slog.Error("missing layer", "blk", i)
|
|
|
+ continue
|
|
|
}
|
|
|
+
|
|
|
memoryWeights += layerSize
|
|
|
|
|
|
if opts.NumGPU >= 0 && layerCount >= opts.NumGPU {
|
|
@@ -196,8 +200,8 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
|
|
for j := len(gpusWithSpace); j > 0; j-- {
|
|
|
g := gpusWithSpace[i%j]
|
|
|
used := gpuAllocations[g.i] + max(graphPartialOffload, graphFullOffload)
|
|
|
- if g.g.FreeMemory > used+layerSize {
|
|
|
- gpuAllocations[g.i] += layerSize
|
|
|
+ if g.g.FreeMemory > used+layerSize+layerKV {
|
|
|
+ gpuAllocations[g.i] += layerSize + layerKV
|
|
|
layerCounts[g.i]++
|
|
|
layerCount++
|
|
|
break
|
|
@@ -206,11 +210,12 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
+
|
|
|
if layerCount >= int(ggml.KV().BlockCount()) {
|
|
|
fullyLoaded = true
|
|
|
} else {
|
|
|
for i := layerCount; i < int(ggml.KV().BlockCount()); i++ {
|
|
|
- overflow += layerSize
|
|
|
+ overflow += baseLayerSize
|
|
|
}
|
|
|
}
|
|
|
|
|
@@ -265,9 +270,10 @@ func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts
|
|
|
}
|
|
|
tensorSplit = strings.Join(splits, ",")
|
|
|
}
|
|
|
- allocationsList := []string{}
|
|
|
- for _, a := range gpuAllocations {
|
|
|
- allocationsList = append(allocationsList, format.HumanBytes2(a))
|
|
|
+
|
|
|
+ allocationsList := make([]string, len(gpuAllocations))
|
|
|
+ for i, a := range gpuAllocations {
|
|
|
+ allocationsList[i] = format.HumanBytes2(a)
|
|
|
}
|
|
|
|
|
|
estimate := MemoryEstimate{
|
|
@@ -337,9 +343,9 @@ func (m MemoryEstimate) log() {
|
|
|
slog.Group(
|
|
|
"weights",
|
|
|
// memory of the weights
|
|
|
- "total", format.HumanBytes2(m.memoryWeights),
|
|
|
+ "total", format.HumanBytes2(m.memoryWeights+m.memoryLayerOutput),
|
|
|
// memory of repeating layers
|
|
|
- "repeating", format.HumanBytes2(m.memoryWeights-m.memoryLayerOutput),
|
|
|
+ "repeating", format.HumanBytes2(m.memoryWeights),
|
|
|
// memory of non-repeating layers
|
|
|
"nonrepeating", format.HumanBytes2(m.memoryLayerOutput),
|
|
|
),
|