|
@@ -1,7 +1,6 @@
|
|
|
package bert
|
|
|
|
|
|
import (
|
|
|
- "fmt"
|
|
|
"math"
|
|
|
|
|
|
"github.com/ollama/ollama/ml"
|
|
@@ -13,21 +12,32 @@ func init() {
|
|
|
model.Register("bert", New)
|
|
|
}
|
|
|
|
|
|
+type PoolingType int
|
|
|
+
|
|
|
+const (
|
|
|
+ PoolingTypeNone PoolingType = iota
|
|
|
+ PoolingTypeMean
|
|
|
+ PoolingTypeCLS
|
|
|
+ PoolingTypeLast
|
|
|
+ PoolingTypeRank
|
|
|
+)
|
|
|
+
|
|
|
type Options struct {
|
|
|
hiddenSize, numHeads int64
|
|
|
eps float32
|
|
|
+ poolingType PoolingType
|
|
|
}
|
|
|
|
|
|
type Model struct {
|
|
|
model.Base
|
|
|
model.BytePairEncoding
|
|
|
|
|
|
- TokenEmbedding *nn.Embedding `ggml:"token_embd"`
|
|
|
- TypeEmbedding *nn.Embedding `ggml:"type_embd,alt:token_types"`
|
|
|
- PositionEmbedding *nn.Embedding `ggml:"position_embd"`
|
|
|
- TokenEmbeddingNorm *nn.LayerNorm `ggml:"token_embd_norm"`
|
|
|
+ TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
|
|
+ TypeEmbedding *nn.Embedding `gguf:"type_embd,alt:token_types"`
|
|
|
+ PositionEmbedding *nn.Embedding `gguf:"position_embd"`
|
|
|
+ TokenEmbeddingNorm *nn.LayerNorm `gguf:"token_embd_norm"`
|
|
|
|
|
|
- Layers []EncoderLayer `ggml:"blk"`
|
|
|
+ Layers []EncoderLayer `gguf:"blk"`
|
|
|
|
|
|
*Options
|
|
|
}
|
|
@@ -38,33 +48,49 @@ func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
|
|
|
if err != nil {
|
|
|
return nil, err
|
|
|
}
|
|
|
- fmt.Println("inputs", inputs.Shape(), ml.Dump(inputs))
|
|
|
|
|
|
types, err := ctx.FromIntSlice([]int32{0}, 1)
|
|
|
if err != nil {
|
|
|
return nil, err
|
|
|
}
|
|
|
- fmt.Println("types", types.Shape(), ml.Dump(types))
|
|
|
|
|
|
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
|
|
|
if err != nil {
|
|
|
return nil, err
|
|
|
}
|
|
|
- fmt.Println("positions", positions.Shape(), ml.Dump(positions))
|
|
|
|
|
|
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
|
|
- fmt.Println("TokenEmbedding.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
|
|
|
- return hiddenState, nil
|
|
|
hiddenState = hiddenState.Add(ctx, m.TypeEmbedding.Forward(ctx, types))
|
|
|
- fmt.Println("TypeEmbedding.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
|
|
|
hiddenState = hiddenState.Add(ctx, m.PositionEmbedding.Forward(ctx, positions))
|
|
|
- fmt.Println("PositionEmbedding.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
|
|
|
hiddenState = m.TokenEmbeddingNorm.Forward(ctx, hiddenState, m.eps)
|
|
|
- fmt.Println("TokenEmbeddingNorm.Forward", hiddenState.Shape(), ml.Dump(hiddenState))
|
|
|
|
|
|
for i, layer := range m.Layers {
|
|
|
hiddenState = layer.Forward(ctx, hiddenState, positions, opts.Cache.Sub(i), m.Options)
|
|
|
- fmt.Println("EncoderLayer.Forward", i, hiddenState.Shape(), ml.Dump(hiddenState))
|
|
|
+ }
|
|
|
+
|
|
|
+ switch m.poolingType {
|
|
|
+ case PoolingTypeMean:
|
|
|
+ sum := func(s []int32) (sum int32) {
|
|
|
+ for _, v := range s {
|
|
|
+ sum += v
|
|
|
+ }
|
|
|
+
|
|
|
+ return
|
|
|
+ }
|
|
|
+
|
|
|
+ // TODO: handle batch
|
|
|
+ f32s := make([]float32, len(opts.Positions())*len(opts.Positions()))
|
|
|
+ for i := range opts.Positions() {
|
|
|
+ f32s[i] = 1 / float32(sum(opts.Positions()))
|
|
|
+ }
|
|
|
+
|
|
|
+ means, err := ctx.FromFloatSlice(f32s, len(opts.Positions()), len(opts.Positions()))
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
|
|
|
+ hiddenState = hiddenState.Mulmat(ctx, means)
|
|
|
}
|
|
|
|
|
|
return hiddenState, nil
|
|
@@ -72,9 +98,9 @@ func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
|
|
|
|
|
|
type EncoderLayer struct {
|
|
|
*SelfAttention
|
|
|
- MLPNorm *nn.LayerNorm `ggml:"attn_output_norm"`
|
|
|
+ MLPNorm *nn.LayerNorm `gguf:"attn_output_norm"`
|
|
|
*MLP
|
|
|
- LayerOutputNorm *nn.LayerNorm `ggml:"ffn_output_norm"`
|
|
|
+ LayerOutputNorm *nn.LayerNorm `gguf:"layer_output_norm"`
|
|
|
}
|
|
|
|
|
|
func (e *EncoderLayer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
|
|
@@ -82,19 +108,19 @@ func (e *EncoderLayer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tenso
|
|
|
|
|
|
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
|
|
hiddenState = hiddenState.Add(ctx, residual)
|
|
|
+ hiddenState = e.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
residual = hiddenState
|
|
|
|
|
|
- hiddenState = e.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
|
|
|
hiddenState = hiddenState.Add(ctx, residual)
|
|
|
return e.LayerOutputNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
}
|
|
|
|
|
|
type SelfAttention struct {
|
|
|
- Query *nn.Linear `ggml:"attn_q"`
|
|
|
- Key *nn.Linear `ggml:"attn_k"`
|
|
|
- Value *nn.Linear `ggml:"attn_v"`
|
|
|
- Output *nn.Linear `ggml:"attn_output"`
|
|
|
+ Query *nn.Linear `gguf:"attn_q"`
|
|
|
+ Key *nn.Linear `gguf:"attn_k"`
|
|
|
+ Value *nn.Linear `gguf:"attn_v"`
|
|
|
+ Output *nn.Linear `gguf:"attn_output"`
|
|
|
}
|
|
|
|
|
|
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
|
|
@@ -105,7 +131,7 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
|
|
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
|
|
|
|
|
key := sa.Key.Forward(ctx, hiddenState)
|
|
|
- key = key.Reshape(ctx, opts.numHeads, headDim, batchSize)
|
|
|
+ key = key.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
|
|
|
|
|
value := sa.Value.Forward(ctx, hiddenState)
|
|
|
value = value.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
|
@@ -128,8 +154,8 @@ func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Ten
|
|
|
}
|
|
|
|
|
|
type MLP struct {
|
|
|
- Up *nn.Linear `ggml:"ffn_up"`
|
|
|
- Down *nn.Linear `ggml:"ffn_down"`
|
|
|
+ Up *nn.Linear `gguf:"ffn_up"`
|
|
|
+ Down *nn.Linear `gguf:"ffn_down"`
|
|
|
}
|
|
|
|
|
|
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
|
|
@@ -138,6 +164,7 @@ func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml
|
|
|
|
|
|
func New(c ml.Config) (model.Model, error) {
|
|
|
return &Model{
|
|
|
+ Layers: make([]EncoderLayer, c.Uint("block_count")),
|
|
|
BytePairEncoding: model.NewBytePairEncoding(
|
|
|
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
|
|
&model.Vocabulary{
|
|
@@ -149,9 +176,10 @@ func New(c ml.Config) (model.Model, error) {
|
|
|
},
|
|
|
),
|
|
|
Options: &Options{
|
|
|
- hiddenSize: int64(c.Uint("embedding_length")),
|
|
|
- numHeads: int64(c.Uint("attention.head_count")),
|
|
|
- eps: c.Float("attention.layer_norm_epsilon"),
|
|
|
+ hiddenSize: int64(c.Uint("embedding_length")),
|
|
|
+ numHeads: int64(c.Uint("attention.head_count")),
|
|
|
+ eps: c.Float("attention.layer_norm_epsilon"),
|
|
|
+ poolingType: PoolingType(c.Uint("pooling_type")),
|
|
|
},
|
|
|
}, nil
|
|
|
}
|