Browse Source

add server.cpp and patches

jmorganca 7 months ago
parent
commit
7d5e0ff80e
2 changed files with 721 additions and 0 deletions
  1. 28 0
      llm/ext_server/server.cpp
  2. 693 0
      llm/patches/0009-mllama.patch

+ 28 - 0
llm/ext_server/server.cpp

@@ -173,6 +173,8 @@ struct server_slot {
     double t_prompt_processing; // ms
     double t_token_generation; // ms
 
+    float *cross_attn_state = nullptr;
+
     // multitasks
     int multitask_id = -1;
 
@@ -200,6 +202,11 @@ struct server_slot {
             img.prefix_prompt = "";
         }
 
+        if (cross_attn_state) {
+            free(cross_attn_state);
+            cross_attn_state = nullptr;
+        }
+
         images.clear();
     }
 
@@ -731,6 +738,27 @@ struct llama_server_context
                 {
                     const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
 
+                    // Check for mllama architecture, which processes images differently than llava
+                    char arch_str[256];
+                    llama_model_meta_val_str(model, "general.architecture", arch_str, 256);
+                    bool is_mllama = strcmp(arch_str, "mllama") == 0;
+
+                    if (is_mllama) {
+                        LOG_INFO("MLLAMA architecture detected, processing first image", {{"slot_id", slot->id}});
+
+                        struct clip_image_f32 *img = clip_image_f32_init();
+                        clip_image_load_from_data(image_buffer.data(), image_buffer.size(), 560, 560, 3, 4, img);
+
+                        const int n = clip_embd_nbytes(clp_ctx);
+                        printf("%s: nbytes %d\n", __func__, n);
+
+                        slot->cross_attn_state = (float *)malloc(n);
+                        printf("%s: nbytes %d image_embd: %p\n", __func__, n, slot->cross_attn_state);
+                        clip_image_encode(clp_ctx, 1, img, slot->cross_attn_state);
+                        llama_set_cross_attn_state(ctx, slot->cross_attn_state);
+                        break;
+                    }
+
                     slot_image img_sl;
                     img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
                     img_sl.img_data = clip_image_u8_init();

+ 693 - 0
llm/patches/0009-mllama.patch

@@ -0,0 +1,693 @@
+From 52f526a86b6fdd50784678c02d8212edc2412a5b Mon Sep 17 00:00:00 2001
+From: jmorganca <jmorganca@gmail.com>
+Date: Tue, 24 Sep 2024 11:53:40 -0700
+Subject: [PATCH] add mllama support
+
+mllama adds cross-attention layers to the standard llama architecture
+it also requires a way to input a new tensor: cross_attention_state
+once per generation
+
+cross-attention layers don't change and so they are cached in the
+kv cache once per run
+
+remaining is to implement the cross attention mask
+---
+ include/llama.h |   4 +
+ src/llama.cpp   | 456 ++++++++++++++++++++++++++++++++++++++++++++++--
+ 2 files changed, 447 insertions(+), 13 deletions(-)
+
+diff --git a/include/llama.h b/include/llama.h
+index bfc37e88..792520cc 100644
+--- a/include/llama.h
++++ b/include/llama.h
+@@ -449,6 +449,10 @@ extern "C" {
+                      struct llama_model * model,
+             struct llama_context_params   params);
+ 
++    // TODO (jmorganca): this should most likely be passed in as part of a batch
++    // and not set on the context for all batches.
++    LLAMA_API void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state);
++
+     // Frees all allocated memory
+     LLAMA_API void llama_free(struct llama_context * ctx);
+ 
+diff --git a/src/llama.cpp b/src/llama.cpp
+index b7771f53..cf70ea90 100644
+--- a/src/llama.cpp
++++ b/src/llama.cpp
+@@ -170,6 +170,7 @@ static std::string format(const char * fmt, ...) {
+ 
+ enum llm_arch {
+     LLM_ARCH_LLAMA,
++    LLM_ARCH_MLLAMA,
+     LLM_ARCH_FALCON,
+     LLM_ARCH_BAICHUAN,
+     LLM_ARCH_GROK,
+@@ -219,6 +220,7 @@ enum llm_arch {
+ 
+ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
+     { LLM_ARCH_LLAMA,           "llama"        },
++    { LLM_ARCH_MLLAMA,          "mllama"       },
+     { LLM_ARCH_FALCON,          "falcon"       },
+     { LLM_ARCH_GROK,            "grok"         },
+     { LLM_ARCH_GPT2,            "gpt2"         },
+@@ -317,6 +319,7 @@ enum llm_kv {
+     LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT,
+     LLM_KV_ATTENTION_SLIDING_WINDOW,
+     LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
++    LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
+ 
+     LLM_KV_ROPE_DIMENSION_COUNT,
+     LLM_KV_ROPE_FREQ_BASE,
+@@ -422,6 +425,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
+     { LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, "%s.attention.relative_buckets_count"   },
+     { LLM_KV_ATTENTION_SLIDING_WINDOW,         "%s.attention.sliding_window"           },
+     { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,  "%s.attention.block_skip_connection.%d" },
++    { LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers"   },
+ 
+     { LLM_KV_ROPE_DIMENSION_COUNT,          "%s.rope.dimension_count"                 },
+     { LLM_KV_ROPE_FREQ_BASE,                "%s.rope.freq_base"                       },
+@@ -594,6 +598,14 @@ enum llm_tensor {
+     LLM_TENSOR_ENC_FFN_UP,
+     LLM_TENSOR_ENC_OUTPUT_NORM,
+     LLM_TENSOR_BSKCN_TV,
++    LLM_TENSOR_CROSS_ATTN_K_NORM,
++    LLM_TENSOR_CROSS_ATTN_K_PROJ,
++    LLM_TENSOR_CROSS_ATTN_O_PROJ,
++    LLM_TENSOR_CROSS_ATTN_Q_NORM,
++    LLM_TENSOR_CROSS_ATTN_Q_PROJ,
++    LLM_TENSOR_CROSS_ATTN_V_PROJ,
++    LLM_TENSOR_CROSS_ATTN_ATTN_GATE,
++    LLM_TENSOR_CROSS_ATTN_MLP_GATE,
+ };
+ 
+ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
+@@ -623,6 +635,40 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
+             { LLM_TENSOR_FFN_UP_EXPS,     "blk.%d.ffn_up_exps" },
+         },
+     },
++    {
++        LLM_ARCH_MLLAMA,
++        {
++            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
++            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
++            { LLM_TENSOR_OUTPUT,          "output" },
++            { LLM_TENSOR_ROPE_FREQS,      "rope_freqs" },
++            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
++            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
++            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
++            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
++            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
++            { LLM_TENSOR_ATTN_ROT_EMBD,   "blk.%d.attn_rot_embd" },
++            { LLM_TENSOR_FFN_GATE_INP,    "blk.%d.ffn_gate_inp" },
++            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
++            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
++            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
++            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
++            { LLM_TENSOR_FFN_GATE_EXP,    "blk.%d.ffn_gate.%d" },
++            { LLM_TENSOR_FFN_DOWN_EXP,    "blk.%d.ffn_down.%d" },
++            { LLM_TENSOR_FFN_UP_EXP,      "blk.%d.ffn_up.%d" },
++            { LLM_TENSOR_FFN_GATE_EXPS,   "blk.%d.ffn_gate_exps" },
++            { LLM_TENSOR_FFN_DOWN_EXPS,   "blk.%d.ffn_down_exps" },
++            { LLM_TENSOR_FFN_UP_EXPS,     "blk.%d.ffn_up_exps" },
++            { LLM_TENSOR_CROSS_ATTN_K_NORM,    "blk.%d.cross_attn_k_norm" },
++            { LLM_TENSOR_CROSS_ATTN_K_PROJ,    "blk.%d.cross_attn_k_proj" },
++            { LLM_TENSOR_CROSS_ATTN_O_PROJ,    "blk.%d.cross_attn_o_proj" },
++            { LLM_TENSOR_CROSS_ATTN_Q_NORM,    "blk.%d.cross_attn_q_norm" },
++            { LLM_TENSOR_CROSS_ATTN_Q_PROJ,    "blk.%d.cross_attn_q_proj" },
++            { LLM_TENSOR_CROSS_ATTN_V_PROJ,    "blk.%d.cross_attn_v_proj" },
++            { LLM_TENSOR_CROSS_ATTN_ATTN_GATE, "blk.%d.cross_attn_attn_gate" },
++            { LLM_TENSOR_CROSS_ATTN_MLP_GATE,  "blk.%d.cross_attn_mlp_gate" },
++        },
++    },
+     {
+         LLM_ARCH_BAICHUAN,
+         {
+@@ -2267,6 +2313,7 @@ enum e_model {
+     MODEL_40B,
+     MODEL_65B,
+     MODEL_70B,
++    MODEL_90B,
+     MODEL_236B,
+     MODEL_314B,
+     MODEL_SMALL,
+@@ -2309,6 +2356,7 @@ struct llama_hparams {
+     std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
+ 
+     std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
++    std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
+ 
+     uint32_t n_layer_dense_lead = 0;
+     uint32_t n_lora_q = 0;
+@@ -2372,10 +2420,11 @@ struct llama_hparams {
+         if (this->n_expert      != other.n_expert)      return true;
+         if (this->n_expert_used != other.n_expert_used) return true;
+ 
+-        if (this->n_head_arr    != other.n_head_arr)    return true;
+-        if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
+-        if (this->n_ff_arr      != other.n_ff_arr)      return true;
+-        if (this->n_bskcn_arr   != other.n_bskcn_arr)   return true;
++        if (this->n_head_arr        != other.n_head_arr)        return true;
++        if (this->n_head_kv_arr     != other.n_head_kv_arr)     return true;
++        if (this->n_ff_arr          != other.n_ff_arr)          return true;
++        if (this->n_bskcn_arr       != other.n_bskcn_arr)       return true;
++        if (this->cross_attn_layers != other.cross_attn_layers) return true;
+ 
+         if (this->n_rel_attn_bkts    != other.n_rel_attn_bkts)    return true;
+         if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
+@@ -2490,6 +2539,10 @@ struct llama_hparams {
+ 
+         GGML_ABORT("fatal error");
+     }
++
++    bool cross_attention_layer(uint32_t il) const {
++        return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
++    }
+ };
+ 
+ static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
+@@ -2672,6 +2725,16 @@ struct llama_layer {
+     struct ggml_tensor * ffn_down_scale;
+ 
+     struct ggml_tensor * bskcn_tv;
++
++    // cross attention
++    struct ggml_tensor * cross_attn_k_norm;
++    struct ggml_tensor * cross_attn_k_proj;
++    struct ggml_tensor * cross_attn_o_proj;
++    struct ggml_tensor * cross_attn_q_norm;
++    struct ggml_tensor * cross_attn_q_proj;
++    struct ggml_tensor * cross_attn_v_proj;
++    struct ggml_tensor * cross_attn_attn_gate;
++    struct ggml_tensor * cross_attn_mlp_gate;
+ };
+ 
+ // very similar to llama_batch,
+@@ -3317,6 +3380,12 @@ struct llama_context {
+     struct ggml_tensor * inp_pos_bucket;    // I32 [n_batch|n_kv, n_batch]
+     struct ggml_tensor * inp_embd_enc;      // F32 [n_embd, n_outputs_enc]
+     struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
++
++    // TODO (jmorganca): this should most likely be passed in as part of a batch
++    // and not set on the context for all batches.
++    float * cross_attn_state = nullptr;
++    bool cross_attn_state_first_pass = true;
++    struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
+ };
+ 
+ struct llama_lora_weight {
+@@ -3543,6 +3612,18 @@ static bool llama_kv_cache_init(
+     cache.v_l.reserve(n_layer);
+ 
+     for (int i = 0; i < (int) n_layer; i++) {
++        // for cross attention layers
++        if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layer(i)) {
++            struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
++            ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
++            ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
++            ggml_format_name(k, "cache_k_l%d", i);
++            ggml_format_name(v, "cache_v_l%d", i);
++            cache.k_l.push_back(k);
++            cache.v_l.push_back(v);
++            continue;
++        }
++
+         const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
+         const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
+ 
+@@ -5312,12 +5393,14 @@ static void llm_load_hparams(
+     }
+ 
+     // zero-out the per-layer hparams
+-    std::fill(hparams.n_head_arr.begin(),    hparams.n_head_arr.end(),    0);
+-    std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
+-    std::fill(hparams.n_ff_arr.begin(),      hparams.n_ff_arr.end(),      0);
++    std::fill(hparams.n_head_arr.begin(),             hparams.n_head_arr.end(),        0);
++    std::fill(hparams.n_head_kv_arr.begin(),          hparams.n_head_kv_arr.end(),     0);
++    std::fill(hparams.n_ff_arr.begin(),               hparams.n_ff_arr.end(),          0);
++    std::fill(hparams.cross_attn_layers.begin(),      hparams.cross_attn_layers.end(), -1);
+ 
+-    ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH,  hparams.n_ff_arr,   hparams.n_layer);
+-    ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
++    ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH,       hparams.n_ff_arr,          hparams.n_layer);
++    ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT,      hparams.n_head_arr,        hparams.n_layer);
++    ml.get_arr(LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, hparams.cross_attn_layers, false);
+ 
+     // n_head_kv is optional, default to n_head
+     hparams.n_head_kv_arr = hparams.n_head_arr;
+@@ -5366,7 +5449,7 @@ static void llm_load_hparams(
+ 
+         ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
+ 
+-        if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
++        if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_MLLAMA || model.arch == LLM_ARCH_FALCON) {
+             if (hparams.n_rot != hparams.n_embd_head_k) {
+                 throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
+             }
+@@ -5404,6 +5487,16 @@ static void llm_load_hparams(
+                     }
+                 }
+             } break;
++        case LLM_ARCH_MLLAMA:
++            {
++                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
++
++                switch (hparams.n_layer) {
++                    case 40: model.type = e_model::MODEL_11B; break;
++                    case 100: model.type = e_model::MODEL_90B; break;
++                    default: model.type = e_model::MODEL_UNKNOWN;
++                }
++            } break;
+         case LLM_ARCH_MINICPM:
+             {
+                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+@@ -6918,6 +7011,55 @@ static bool llm_load_tensors(
+                         }
+                     }
+                 } break;
++            case LLM_ARCH_MLLAMA:
++                {
++                    model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+8});
++
++                    // output
++                    {
++                        model.output_norm = ml.create_tensor(ctx_output,       tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
++                        model.output      = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
++
++                        // if output is NULL, init from the input tok embed
++                        if (model.output == NULL) {
++                            model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
++                        }
++                    }
++
++                    for (int i = 0; i < n_layer; ++i) {
++                        ggml_context * ctx_layer = ctx_for_layer(i);
++                        ggml_context * ctx_split = ctx_for_layer_split(i);
++
++                        auto & layer = model.layers[i];
++
++                        if (hparams.cross_attention_layer(i)) {
++                            layer.cross_attn_k_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_NORM,   "weight", i), {128});
++                            layer.cross_attn_k_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_PROJ,   "weight", i), {n_embd, 1024});
++                            layer.cross_attn_o_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_O_PROJ,   "weight", i), {n_embd, n_embd});
++                            layer.cross_attn_q_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_Q_NORM, "weight", i), {128});
++                            layer.cross_attn_q_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_Q_PROJ, "weight", i), {n_embd, n_embd});
++                            layer.cross_attn_v_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_V_PROJ, "weight", i), {n_embd, 1024});
++                            layer.cross_attn_attn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_ATTN_GATE, i), {1});
++                            layer.cross_attn_mlp_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_MLP_GATE, i), {1});
++                            layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
++                            layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
++                            layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
++                            layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
++                            layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
++                        } else {
++                            layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
++                            layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head});
++                            layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_k_gqa});
++                            layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_v_gqa});
++                            layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
++                            layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
++                            layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
++                            layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff});
++                            layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd});
++                            layer.ffn_up   = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff});
++                        }
++                    }
++                } break;
+             case LLM_ARCH_GROK:
+                 {
+                     if (n_expert == 0) {
+@@ -8678,7 +8820,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
+ 
+         if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
+             model.hparams.n_vocab != model.vocab.id_to_token.size()) {
+-            throw std::runtime_error("vocab size mismatch");
++            LLAMA_LOG_WARN("%s: vocab mismatch %u !- %zu ...\n", __func__, model.hparams.n_vocab, model.vocab.id_to_token.size());
+         }
+ 
+         if (params.vocab_only) {
+@@ -8759,7 +8901,7 @@ static struct ggml_tensor * llm_build_inp_embd(
+ 
+         inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
+     } else {
+-       lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
++        lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
+         inpL = lctx.inp_embd;
+         ggml_set_input(lctx.inp_embd);
+     }
+@@ -8769,6 +8911,22 @@ static struct ggml_tensor * llm_build_inp_embd(
+     return inpL;
+ }
+ 
++static struct ggml_tensor * llm_build_inp_cross_attn_state(
++        struct ggml_context * ctx,
++       struct llama_context & lctx,
++        const llama_hparams & hparams,
++         const llm_build_cb & cb) {
++    const int64_t n_embd = hparams.n_embd;
++
++    struct ggml_tensor * inpCAS;
++    lctx.inp_cross_attn_state = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
++    cb(lctx.inp_cross_attn_state, "inp_cross_attn_state", -1);
++    ggml_set_input(lctx.inp_cross_attn_state);
++    inpCAS = lctx.inp_cross_attn_state;
++
++    return inpCAS;
++}
++
+ static void llm_build_kv_store(
+         struct ggml_context * ctx,
+         const llama_hparams & hparams,
+@@ -9743,6 +9901,7 @@ struct llm_build_context {
+         lctx.inp_pos_bucket    = nullptr;
+         lctx.inp_embd_enc      = nullptr;
+         lctx.inp_KQ_mask_cross = nullptr;
++        lctx.inp_cross_attn_state = nullptr;
+     }
+ 
+     void free() {
+@@ -10158,6 +10317,253 @@ struct llm_build_context {
+                 LLM_NORM_RMS, cb, -1);
+         cb(cur, "result_norm", -1);
+ 
++        cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
++        cb(cur, "result_output", -1);
++
++        ggml_build_forward_expand(gf, cur);
++
++        return gf;
++    }
++
++    struct ggml_cgraph * build_mllama() {
++        struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
++
++        // mutable variable, needed during the last layer of the computation to skip unused tokens
++        int32_t n_tokens = this->n_tokens;
++
++        const int64_t n_embd_head = hparams.n_embd_head_v;
++        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
++        GGML_ASSERT(n_embd_head == hparams.n_rot);
++ 
++        struct ggml_tensor * cur;
++        struct ggml_tensor * inpL;
++        struct ggml_tensor * inpCAS;
++
++        inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
++        inpCAS = llm_build_inp_cross_attn_state(ctx0, lctx, hparams, cb);
++
++        // inp_pos - contains the positions
++        struct ggml_tensor * inp_pos = build_inp_pos();
++
++        // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
++        struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
++
++        for (int il = 0; il < n_layer; ++il) {
++            struct ggml_tensor * inpSA = inpL;
++
++            // norm
++            cur = llm_build_norm(ctx0, inpL, hparams,
++                    model.layers[il].attn_norm, NULL,
++                    LLM_NORM_RMS, cb, il);
++            cb(cur, "attn_norm", il);
++
++            if (hparams.cross_attention_layer(il)) {
++                if (!lctx.cross_attn_state) {
++                    continue;
++                }
++
++                // cross attention layer
++                struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_q_proj, cur);
++                cb(Qcur, "Qcur", il);
++
++                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
++                cb(Qcur, "Qcur", il);
++
++                Qcur = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
++                cb(Qcur, "Qcur", il);
++
++                // TODO: is this required?
++                Qcur = ggml_cont(ctx0, Qcur);
++                cb(Qcur, "Qcur", il);
++
++                Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, cb, il);
++                cb(Qcur, "Qcur", il);
++
++                struct ggml_tensor * Kcur;
++                if (lctx.cross_attn_state_first_pass) {
++                    Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
++                    cb(Kcur, "Kcur", il);
++
++                    Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
++                    cb(Kcur, "Kcur", il);
++
++                    Kcur = ggml_permute(ctx0, Kcur, 0, 2, 1, 3);
++                    cb(Kcur, "Kcur", il);
++
++                    // TODO: is this required?
++                    Kcur = ggml_cont(ctx0, Kcur);
++                    cb(Kcur, "Kcur", il);
++
++                    Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, cb, il);
++                    cb(Kcur, "Kcur", il);
++
++                    ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self.k_l[il]));
++                } else {
++                    Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
++                    cb(Kcur, "Kcur (view)", il);
++                }
++
++                struct ggml_tensor * Vcur;
++                if (lctx.cross_attn_state_first_pass) {
++                    Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
++                    cb(Vcur, "Vcur", il);
++
++                    Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, 6404);
++                    cb(Vcur, "Vcur", il);
++
++                    Vcur = ggml_permute(ctx0, Vcur, 0, 2, 1, 3);
++                    cb(Vcur, "Vcur", il);
++
++                    ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self.v_l[il]));
++                } else {
++                    Vcur = ggml_view_tensor(ctx0, kv_self.v_l[il]);
++                    cb(Vcur, "Vcur (view)", il);
++                }
++
++                struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
++                cb(kq, "kq", il);
++
++                kq = ggml_scale_inplace(ctx0, kq, 1.0f/sqrtf(float(n_embd_head)));
++                cb(kq, "kq_scaled", il);
++
++                // TODO: apply causal masks
++                struct ggml_tensor * kq_soft_max = ggml_soft_max_inplace(ctx0, kq);
++                cb(kq_soft_max, "kq_soft_max", il);
++
++                Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
++                cb(Vcur, "Vcur", il);
++
++                struct ggml_tensor * kqv = ggml_mul_mat(ctx0, Vcur, kq_soft_max);
++                cb(kqv, "kqv", il);
++
++                struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
++                cb(kqv_merged, "kqv_merged", il);
++
++                cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
++                cb(cur, "kqv_merged_cont", il);
++
++                cur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_o_proj, cur);
++                cb(cur, "cur", il);
++
++                // TODO: do this in place once?
++                cur = ggml_mul(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_attn_gate));
++
++                struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
++                cb(ffn_inp, "ffn_inp", il);
++
++                // feed-forward network
++                cur = llm_build_norm(ctx0, ffn_inp, hparams,
++                        model.layers[il].ffn_norm, NULL,
++                        LLM_NORM_RMS, cb, il);
++                cb(cur, "ffn_norm", il);
++
++                cur = llm_build_ffn(ctx0, lctx, cur,
++                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
++                        model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
++                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
++                        NULL,
++                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
++                cb(cur, "ffn_out", il);
++
++                // TODO: do this inplace once?
++                cur = ggml_add_inplace(ctx0, ggml_mul_inplace(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_mlp_gate)), ffn_inp);
++                cb(cur, "ffn_out", il);
++
++                cur = lctx.cvec.apply_to(ctx0, cur, il);
++                cb(cur, "l_out", il);
++
++                // input for next layer
++                inpL = cur;
++            } else {
++                // self attention layer
++
++                // rope freq factors for llama3; may return nullptr for llama2 and other models
++                struct ggml_tensor * rope_factors = build_rope_factors(il);
++
++                // compute Q and K and RoPE them
++                struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
++                cb(Qcur, "Qcur", il);
++                if (model.layers[il].bq) {
++                    Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
++                    cb(Qcur, "Qcur", il);
++                }
++
++                struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
++                cb(Kcur, "Kcur", il);
++                if (model.layers[il].bk) {
++                    Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
++                    cb(Kcur, "Kcur", il);
++                }
++
++                struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
++                cb(Vcur, "Vcur", il);
++                if (model.layers[il].bv) {
++                    Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
++                    cb(Vcur, "Vcur", il);
++                }
++
++                Qcur = ggml_rope_ext(
++                    ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
++                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
++                    ext_factor, attn_factor, beta_fast, beta_slow
++                );
++                cb(Qcur, "Qcur", il);
++
++                Kcur = ggml_rope_ext(
++                    ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
++                    n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
++                    ext_factor, attn_factor, beta_fast, beta_slow
++                );
++                cb(Kcur, "Kcur", il);
++
++                cur = llm_build_kv(ctx0, lctx, kv_self, gf,
++                        model.layers[il].wo, model.layers[il].bo,
++                        Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
++
++
++                if (il == n_layer - 1) {
++                    // skip computing output for unused tokens
++                    struct ggml_tensor * inp_out_ids = build_inp_out_ids();
++                    n_tokens = n_outputs;
++                    cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
++                    inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
++                }
++
++                struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
++                cb(ffn_inp, "ffn_inp", il);
++
++                // feed-forward network
++                cur = llm_build_norm(ctx0, ffn_inp, hparams,
++                        model.layers[il].ffn_norm, NULL,
++                        LLM_NORM_RMS, cb, il);
++                cb(cur, "ffn_norm", il);
++
++                cur = llm_build_ffn(ctx0, lctx, cur,
++                        model.layers[il].ffn_up,   model.layers[il].ffn_up_b,   NULL,
++                        model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
++                        model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
++                        NULL,
++                        LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
++                cb(cur, "ffn_out", il);
++
++                cur = ggml_add(ctx0, cur, ffn_inp);
++                cb(cur, "ffn_out", il);
++
++                cur = lctx.cvec.apply_to(ctx0, cur, il);
++                cb(cur, "l_out", il);
++
++                // input for next layer
++                inpL = cur;
++            }
++        }
++
++        cur = inpL;
++
++        cur = llm_build_norm(ctx0, cur, hparams,
++                model.output_norm, NULL,
++                LLM_NORM_RMS, cb, -1);
++        cb(cur, "result_norm", -1);
++
+         // lm_head
+         cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
+         cb(cur, "result_output", -1);
+@@ -15493,6 +15899,10 @@ static struct ggml_cgraph * llama_build_graph(
+             {
+                 result = llm.build_llama();
+             } break;
++        case LLM_ARCH_MLLAMA:
++            {
++                result = llm.build_mllama();
++            } break;
+         case LLM_ARCH_BAICHUAN:
+             {
+                 result = llm.build_baichuan();
+@@ -15753,6 +16163,14 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
+         ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
+     }
+ 
++    // TODO (jmorganca): this might copy a lot of data on every request of a
++    // single generation even though it doesn't change, so we should
++    // find a way to not set this more than one time per image
++    if (lctx.inp_cross_attn_state &&
++        lctx.inp_cross_attn_state->buffer) {
++        ggml_backend_tensor_set(lctx.inp_cross_attn_state, lctx.cross_attn_state, 0, hparams.n_embd * 1601 * 4 * ggml_element_size(lctx.inp_cross_attn_state));
++    }
++
+     if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
+         GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
+         const int64_t n_tokens = batch.n_tokens;
+@@ -16430,6 +16848,10 @@ static int llama_decode_internal(
+ 
+         llama_set_inputs(lctx, ubatch);
+ 
++        // TODO: replace with something better to find out if its
++        // our first actual pass
++        lctx.cross_attn_state_first_pass = false;
++
+         llama_graph_compute(lctx, gf, n_threads, threadpool);
+ 
+         // update the kv ring buffer
+@@ -17586,7 +18008,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
+         if (llama_model_has_encoder(&model)) {
+             n_attn_layer *= 3;
+         }
+-        GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
++        if (qs.n_attention_wv != n_attn_layer) {
++            LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
++        }
+     }
+ 
+     size_t total_size_org = 0;
+@@ -18681,6 +19105,11 @@ struct llama_context * llama_new_context_with_model(
+     return ctx;
+ }
+ 
++void llama_set_cross_attn_state(struct llama_context * ctx, float * cross_attn_state) {
++    ctx->cross_attn_state_first_pass = true;
++    ctx->cross_attn_state = cross_attn_state;
++}
++
+ void llama_free(struct llama_context * ctx) {
+     delete ctx;
+ }
+@@ -18731,6 +19160,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
+ 
+         // use what we call a normal RoPE, operating on pairs of consecutive head values
+         case LLM_ARCH_LLAMA:
++        case LLM_ARCH_MLLAMA:
+         case LLM_ARCH_BAICHUAN:
+         case LLM_ARCH_STARCODER:
+         case LLM_ARCH_PLAMO:
+-- 
+2.39.3 (Apple Git-146)
+