|
@@ -1,17 +1,17 @@
|
|
|
package convert
|
|
|
|
|
|
import (
|
|
|
- "encoding/binary"
|
|
|
+ "cmp"
|
|
|
+ "errors"
|
|
|
"fmt"
|
|
|
"io"
|
|
|
- "log/slog"
|
|
|
+ "os"
|
|
|
+ "path/filepath"
|
|
|
"regexp"
|
|
|
"strings"
|
|
|
|
|
|
- "github.com/nlpodyssey/gopickle/pytorch"
|
|
|
"github.com/pdevine/tensor"
|
|
|
"github.com/pdevine/tensor/native"
|
|
|
- "github.com/x448/float16"
|
|
|
|
|
|
"github.com/ollama/ollama/llm"
|
|
|
)
|
|
@@ -20,81 +20,12 @@ type LlamaModel struct {
|
|
|
ModelData
|
|
|
}
|
|
|
|
|
|
-func llamaLayerHandler(w io.Writer, r torchWriterTo) error {
|
|
|
- slog.Debug(fmt.Sprintf("repacking layer '%s'", r.t.Name))
|
|
|
-
|
|
|
- data := r.storage.(*pytorch.HalfStorage).Data
|
|
|
- tData := make([]uint16, len(data))
|
|
|
- for cnt, v := range data {
|
|
|
- tData[cnt] = uint16(float16.Fromfloat32(v))
|
|
|
- }
|
|
|
-
|
|
|
- var err error
|
|
|
- var heads uint32
|
|
|
- if strings.Contains(r.t.Name, "attn_q") {
|
|
|
- heads = uint32(r.params.AttentionHeads)
|
|
|
- } else if strings.Contains(r.t.Name, "attn_k") {
|
|
|
- heads = uint32(r.params.KeyValHeads)
|
|
|
- if heads == 0 {
|
|
|
- heads = uint32(r.params.AttentionHeads)
|
|
|
- }
|
|
|
- } else {
|
|
|
- return fmt.Errorf("unknown layer type")
|
|
|
- }
|
|
|
-
|
|
|
- slog.Debug(fmt.Sprintf("heads = %d", heads))
|
|
|
-
|
|
|
- tData, err = llamaRepack(tData, int(heads), r.t.Shape)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
-
|
|
|
- if err = binary.Write(w, r.bo, tData); err != nil {
|
|
|
- return err
|
|
|
- }
|
|
|
- return nil
|
|
|
-}
|
|
|
-
|
|
|
-func llamaRepack(data []uint16, heads int, shape []uint64) ([]uint16, error) {
|
|
|
- n := tensor.New(tensor.WithShape(int(shape[0]), int(shape[1])), tensor.WithBacking(data))
|
|
|
- origShape := n.Shape().Clone()
|
|
|
-
|
|
|
- // reshape the tensor and swap axes 1 and 2 to unpack the layer for gguf
|
|
|
- if err := n.Reshape(heads, 2, origShape[0]/heads/2, origShape[1]); err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- if err := n.T(0, 2, 1, 3); err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- if err := n.Reshape(origShape...); err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- if err := n.Transpose(); err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
- newN, err := native.SelectU16(n, 1)
|
|
|
- if err != nil {
|
|
|
- return nil, err
|
|
|
- }
|
|
|
-
|
|
|
- var fullTensor []uint16
|
|
|
- for _, v := range newN {
|
|
|
- fullTensor = append(fullTensor, v...)
|
|
|
- }
|
|
|
- return fullTensor, nil
|
|
|
-}
|
|
|
-
|
|
|
func (m *LlamaModel) GetTensors() error {
|
|
|
t, err := m.Format.GetTensors(m.Path, m.Params)
|
|
|
if err != nil {
|
|
|
return err
|
|
|
}
|
|
|
|
|
|
- m.Tensors = []llm.Tensor{}
|
|
|
-
|
|
|
pattern := `^blk\.[0-9]+\.attn_(?P<layer>q|k)\.weight$`
|
|
|
re, err := regexp.Compile(pattern)
|
|
|
if err != nil {
|
|
@@ -104,10 +35,16 @@ func (m *LlamaModel) GetTensors() error {
|
|
|
for _, l := range t {
|
|
|
matches := re.FindAllStringSubmatch(l.Name, -1)
|
|
|
if len(matches) > 0 {
|
|
|
- slog.Debug(fmt.Sprintf("setting handler for: %s", l.Name))
|
|
|
- wt := l.WriterTo.(torchWriterTo)
|
|
|
- wt.handler = llamaLayerHandler
|
|
|
- l.WriterTo = wt
|
|
|
+ switch m.Format.(type) {
|
|
|
+ case *TorchFormat:
|
|
|
+ wt := l.WriterTo.(torchWriterTo)
|
|
|
+ wt.repacker = m.Repack
|
|
|
+ l.WriterTo = wt
|
|
|
+ case *SafetensorFormat:
|
|
|
+ wt := l.WriterTo.(safetensorWriterTo)
|
|
|
+ wt.repacker = m.Repack
|
|
|
+ l.WriterTo = wt
|
|
|
+ }
|
|
|
}
|
|
|
m.Tensors = append(m.Tensors, l)
|
|
|
}
|
|
@@ -115,19 +52,22 @@ func (m *LlamaModel) GetTensors() error {
|
|
|
return nil
|
|
|
}
|
|
|
|
|
|
-func (m *LlamaModel) LoadVocab() error {
|
|
|
- var v *Vocab
|
|
|
- var err error
|
|
|
-
|
|
|
- slog.Debug("loading vocab")
|
|
|
- v, err = LoadSentencePieceTokens(m.Path, m.Params)
|
|
|
- if err != nil {
|
|
|
+func (m *LlamaModel) LoadVocab() (err error) {
|
|
|
+ pre, ts, merges, err := parseTokens(filepath.Join(m.Path, "tokenizer.json"))
|
|
|
+ if errors.Is(err, os.ErrNotExist) {
|
|
|
+ return nil
|
|
|
+ } else if err != nil {
|
|
|
return err
|
|
|
}
|
|
|
|
|
|
- slog.Debug("vocab loaded")
|
|
|
+ m.Vocab = &Vocab{}
|
|
|
+ for _, t := range ts {
|
|
|
+ m.Vocab.Tokens = append(m.Vocab.Tokens, t.Content)
|
|
|
+ m.Vocab.Types = append(m.Vocab.Types, t.Type())
|
|
|
+ }
|
|
|
|
|
|
- m.Vocab = v
|
|
|
+ m.Vocab.Merges = merges
|
|
|
+ m.Params.PreTokenizer = pre
|
|
|
return nil
|
|
|
}
|
|
|
|
|
@@ -140,23 +80,79 @@ func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
|
|
|
"llama.embedding_length": uint32(m.Params.HiddenSize),
|
|
|
"llama.block_count": uint32(m.Params.HiddenLayers),
|
|
|
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
|
|
|
+ "llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
|
|
|
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
|
|
|
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
|
|
|
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
|
|
|
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
|
|
|
"general.file_type": uint32(1),
|
|
|
- "tokenizer.ggml.model": "llama",
|
|
|
+ "tokenizer.ggml.model": "gpt2",
|
|
|
|
|
|
+ "tokenizer.ggml.pre": m.Params.PreTokenizer,
|
|
|
"tokenizer.ggml.tokens": m.Vocab.Tokens,
|
|
|
- "tokenizer.ggml.scores": m.Vocab.Scores,
|
|
|
"tokenizer.ggml.token_type": m.Vocab.Types,
|
|
|
|
|
|
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
|
|
|
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
|
|
|
"tokenizer.ggml.unknown_token_id": uint32(0),
|
|
|
- "tokenizer.ggml.add_bos_token": true,
|
|
|
- "tokenizer.ggml.add_eos_token": false,
|
|
|
+ }
|
|
|
+
|
|
|
+ if len(m.Vocab.Merges) > 0 {
|
|
|
+ kv["tokenizer.ggml.merges"] = m.Vocab.Merges
|
|
|
+ } else {
|
|
|
+ kv["tokenizer.ggml.scores"] = m.Vocab.Scores
|
|
|
}
|
|
|
|
|
|
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
|
|
|
}
|
|
|
+
|
|
|
+func (m *LlamaModel) Repack(name string, data []float32, shape []uint64) ([]float32, error) {
|
|
|
+ return llamaRepack(name, m.Params, data, shape)
|
|
|
+}
|
|
|
+
|
|
|
+func llamaRepack(name string, params *Params, data []float32, shape []uint64) ([]float32, error) {
|
|
|
+ var dims []int
|
|
|
+ for _, dim := range shape {
|
|
|
+ if dim != 0 {
|
|
|
+ dims = append(dims, int(dim))
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ var heads int
|
|
|
+ if strings.HasSuffix(name, "attn_q.weight") {
|
|
|
+ heads = params.AttentionHeads
|
|
|
+ } else if strings.HasSuffix(name, "attn_k.weight") {
|
|
|
+ heads = cmp.Or(params.KeyValHeads, params.AttentionHeads)
|
|
|
+ } else {
|
|
|
+ return nil, fmt.Errorf("unknown tensor name: %s", name)
|
|
|
+ }
|
|
|
+
|
|
|
+ n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
|
|
|
+ if err := n.Reshape(append([]int{heads, 2, dims[0] / heads / 2}, dims[1:]...)...); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ if err := n.T(0, 2, 1, 3); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ if err := n.Reshape(dims...); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ if err := n.Transpose(); err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ ts, err := native.SelectF32(n, 1)
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ var f32s []float32
|
|
|
+ for _, t := range ts {
|
|
|
+ f32s = append(f32s, t...)
|
|
|
+ }
|
|
|
+
|
|
|
+ return f32s, nil
|
|
|
+}
|