|
@@ -10,10 +10,15 @@ import (
|
|
|
)
|
|
|
|
|
|
type Options struct {
|
|
|
- RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
|
|
- ctxLen, hiddenSize, numHeads, numKVHeads int
|
|
|
- eps, ropeBase, ropeScale float32
|
|
|
- ropeDim uint32
|
|
|
+ RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
|
|
+ contextLength int
|
|
|
+ hiddenSize int
|
|
|
+ numAttnHeads int
|
|
|
+ numKVHeads int
|
|
|
+ modelEpsilon float32
|
|
|
+ ropeBaseFreq float32
|
|
|
+ ropeFreqScale float32
|
|
|
+ ropeDimensions uint32
|
|
|
}
|
|
|
|
|
|
type Model struct {
|
|
@@ -42,14 +47,14 @@ func New(c ml.Config) (model.Model, error) {
|
|
|
),
|
|
|
Layers: make([]Layer, c.Uint("block_count")),
|
|
|
Options: &Options{
|
|
|
- hiddenSize: int(c.Uint("embedding_length")),
|
|
|
- numHeads: int(c.Uint("attention.head_count")),
|
|
|
- numKVHeads: int(c.Uint("attention.head_count_kv")),
|
|
|
- eps: c.Float("attention.layer_norm_rms_epsilon"),
|
|
|
- ctxLen: int(c.Uint("context_length")),
|
|
|
- ropeBase: c.Float("rope.freq_base"),
|
|
|
- ropeScale: c.Float("rope.freq_scale", 1),
|
|
|
- ropeDim: c.Uint("rope.dimension_count", 64),
|
|
|
+ hiddenSize: int(c.Uint("embedding_length")),
|
|
|
+ numAttnHeads: int(c.Uint("attention.head_count")),
|
|
|
+ numKVHeads: int(c.Uint("attention.head_count_kv")),
|
|
|
+ modelEpsilon: c.Float("attention.layer_norm_rms_epsilon"),
|
|
|
+ contextLength: int(c.Uint("context_length")),
|
|
|
+ ropeBaseFreq: c.Float("rope.freq_base"),
|
|
|
+ ropeFreqScale: c.Float("rope.freq_scale", 1),
|
|
|
+ ropeDimensions: c.Uint("rope.dimension_count", 64),
|
|
|
},
|
|
|
}
|
|
|
|
|
@@ -58,21 +63,24 @@ func New(c ml.Config) (model.Model, error) {
|
|
|
return m, nil
|
|
|
}
|
|
|
|
|
|
+// Shift applies rotary position embeddings to the key tensor for causal attention caching
|
|
|
func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
|
|
return key.RoPE(
|
|
|
ctx,
|
|
|
ml.RopeConfig{
|
|
|
PositionIDs: shift,
|
|
|
RopeFactors: m.Options.RopeFactors,
|
|
|
- RopeDim: m.Options.ropeDim,
|
|
|
+ RopeDim: m.Options.ropeDimensions,
|
|
|
RopeType: ml.RopeTypeNeoX,
|
|
|
- OrigCtxLen: m.Options.ctxLen,
|
|
|
- RopeBase: m.Options.ropeBase,
|
|
|
- RopeScale: m.Options.ropeScale,
|
|
|
+ OrigCtxLen: m.Options.contextLength,
|
|
|
+ RopeBase: m.Options.ropeBaseFreq,
|
|
|
+ RopeScale: m.Options.ropeFreqScale,
|
|
|
},
|
|
|
), nil
|
|
|
}
|
|
|
|
|
|
+// SelfAttention implements the multi-head self-attention mechanism
|
|
|
+// with separate projections for query, key, value and output transformations
|
|
|
type SelfAttention struct {
|
|
|
Query *nn.Linear `gguf:"attn_q"`
|
|
|
Key *nn.Linear `gguf:"attn_k"`
|
|
@@ -81,49 +89,59 @@ type SelfAttention struct {
|
|
|
}
|
|
|
|
|
|
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, inputPositions ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
|
|
+ // Initialize dimensions and configuration
|
|
|
batchSize := hiddenState.Dim(1)
|
|
|
- headDim := opts.hiddenSize / opts.numHeads
|
|
|
- rc := ml.RopeConfig{
|
|
|
+ headDimension := opts.hiddenSize / opts.numAttnHeads
|
|
|
+ ropeConfig := ml.RopeConfig{
|
|
|
PositionIDs: inputPositions,
|
|
|
RopeFactors: nil,
|
|
|
- RopeDim: opts.ropeDim,
|
|
|
+ RopeDim: opts.ropeDimensions,
|
|
|
RopeType: ml.RopeTypeNeoX,
|
|
|
- OrigCtxLen: opts.ctxLen,
|
|
|
- RopeBase: opts.ropeBase,
|
|
|
- RopeScale: opts.ropeScale,
|
|
|
+ OrigCtxLen: opts.contextLength,
|
|
|
+ RopeBase: opts.ropeBaseFreq,
|
|
|
+ RopeScale: opts.ropeFreqScale,
|
|
|
}
|
|
|
|
|
|
- q := sa.Query.Forward(ctx, hiddenState)
|
|
|
-
|
|
|
- q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
|
|
- q = q.RoPE(ctx, rc)
|
|
|
-
|
|
|
- k := sa.Key.Forward(ctx, hiddenState)
|
|
|
- k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
|
|
- k = k.RoPE(ctx, rc)
|
|
|
-
|
|
|
- v := sa.Value.Forward(ctx, hiddenState)
|
|
|
- v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
|
|
-
|
|
|
- cache.Put(ctx, k, v)
|
|
|
- k, v, mask := cache.Get(ctx)
|
|
|
-
|
|
|
- q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
|
- k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
|
- v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
|
|
-
|
|
|
- kq := k.MulmatFullPrec(ctx, q)
|
|
|
- kq = kq.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
|
|
|
- kq = kq.Add(ctx, mask)
|
|
|
- kq = kq.Softmax(ctx)
|
|
|
-
|
|
|
- kqv := v.Mulmat(ctx, kq)
|
|
|
- kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
|
- kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
|
|
|
-
|
|
|
- return sa.Output.Forward(ctx, kqv)
|
|
|
+ // Project and reshape query states with rotary embeddings
|
|
|
+ queryStates := sa.Query.Forward(ctx, hiddenState)
|
|
|
+ queryStates = queryStates.Reshape(ctx, headDimension, opts.numAttnHeads, batchSize)
|
|
|
+ queryStates = queryStates.RoPE(ctx, ropeConfig)
|
|
|
+
|
|
|
+ // Project and reshape key states with rotary embeddings
|
|
|
+ keyStates := sa.Key.Forward(ctx, hiddenState)
|
|
|
+ keyStates = keyStates.Reshape(ctx, headDimension, opts.numKVHeads, batchSize)
|
|
|
+ keyStates = keyStates.RoPE(ctx, ropeConfig)
|
|
|
+
|
|
|
+ // Project and reshape value states
|
|
|
+ valueStates := sa.Value.Forward(ctx, hiddenState)
|
|
|
+ valueStates = valueStates.Reshape(ctx, headDimension, opts.numKVHeads, batchSize)
|
|
|
+
|
|
|
+ // Update and retrieve from KV cache
|
|
|
+ cache.Put(ctx, keyStates, valueStates)
|
|
|
+ keyStates, valueStates, attentionMask := cache.Get(ctx)
|
|
|
+
|
|
|
+ // Prepare tensors for attention computation
|
|
|
+ queryStates = queryStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
|
+ keyStates = keyStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
|
+ valueStates = valueStates.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
|
|
|
+
|
|
|
+ // Apply scaling and attention mask to scores
|
|
|
+ attentionScores := keyStates.MulmatFullPrec(ctx, queryStates)
|
|
|
+ attentionScores = attentionScores.Scale(ctx, 1.0/math.Sqrt(float64(headDimension)))
|
|
|
+ attentionScores = attentionScores.Add(ctx, attentionMask)
|
|
|
+ // Compute scaled dot-product attention
|
|
|
+ attentionProbs := attentionScores.Softmax(ctx)
|
|
|
+
|
|
|
+ // Apply attention weights and reshape
|
|
|
+ weightedStates := valueStates.Mulmat(ctx, attentionProbs)
|
|
|
+ weightedStates = weightedStates.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
|
|
|
+ weightedStates = weightedStates.Reshape(ctx, opts.hiddenSize, batchSize)
|
|
|
+
|
|
|
+ // Project to output dimension
|
|
|
+ return sa.Output.Forward(ctx, weightedStates)
|
|
|
}
|
|
|
|
|
|
+// MLP implements the feed-forward network component with SwiGLU activation
|
|
|
type MLP struct {
|
|
|
Up *nn.Linear `gguf:"ffn_up"`
|
|
|
Down *nn.Linear `gguf:"ffn_down"`
|
|
@@ -131,10 +149,16 @@ type MLP struct {
|
|
|
}
|
|
|
|
|
|
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
|
|
|
- hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
|
|
- return mlp.Down.Forward(ctx, hiddenState)
|
|
|
+ // Apply SwiGLU activation gating
|
|
|
+ gateActivation := mlp.Gate.Forward(ctx, hiddenState).SILU(ctx)
|
|
|
+ upProjection := mlp.Up.Forward(ctx, hiddenState)
|
|
|
+ intermediateStates := gateActivation.Mul(ctx, upProjection)
|
|
|
+
|
|
|
+ // Project back to hidden dimension
|
|
|
+ return mlp.Down.Forward(ctx, intermediateStates)
|
|
|
}
|
|
|
|
|
|
+// Layer represents a single transformer layer combining self-attention and feed-forward components
|
|
|
type Layer struct {
|
|
|
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
|
|
SelfAttention *SelfAttention
|
|
@@ -143,52 +167,54 @@ type Layer struct {
|
|
|
}
|
|
|
|
|
|
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
|
|
+ // Self-attention branch with residual connection
|
|
|
residual := hiddenState
|
|
|
|
|
|
- hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
+ normalizedAttention := l.AttentionNorm.Forward(ctx, hiddenState, opts.modelEpsilon)
|
|
|
+ attentionOutput := l.SelfAttention.Forward(ctx, normalizedAttention, positionIDs, cache, opts)
|
|
|
+ hiddenState = attentionOutput.Add(ctx, residual)
|
|
|
|
|
|
- hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
|
|
-
|
|
|
- hiddenState = hiddenState.Add(ctx, residual)
|
|
|
+ // Feed-forward branch with residual connection
|
|
|
residual = hiddenState
|
|
|
-
|
|
|
- hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
-
|
|
|
- hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
|
|
-
|
|
|
- output := hiddenState.Add(ctx, residual)
|
|
|
+ normalizedMLP := l.MLPNorm.Forward(ctx, hiddenState, opts.modelEpsilon)
|
|
|
+ mlpOutput := l.MLP.Forward(ctx, normalizedMLP, opts)
|
|
|
+ output := mlpOutput.Add(ctx, residual)
|
|
|
|
|
|
return output
|
|
|
}
|
|
|
|
|
|
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
|
|
|
- inputs, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
|
|
|
+ // Convert input tokens and positions to tensors
|
|
|
+ inputTensor, err := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
|
|
|
if err != nil {
|
|
|
return nil, err
|
|
|
}
|
|
|
|
|
|
- positions, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
|
|
|
+ positionsTensor, err := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
|
|
|
if err != nil {
|
|
|
return nil, err
|
|
|
}
|
|
|
|
|
|
- hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
|
|
+ // Initial token embedding
|
|
|
+ hiddenStates := m.TokenEmbedding.Forward(ctx, inputTensor)
|
|
|
|
|
|
+ // Process through transformer layers
|
|
|
for i, layer := range m.Layers {
|
|
|
m.Cache.SetLayer(i)
|
|
|
- hiddenState = layer.Forward(ctx, hiddenState, positions, m.Cache, m.Options)
|
|
|
+ hiddenStates = layer.Forward(ctx, hiddenStates, positionsTensor, m.Cache, m.Options)
|
|
|
}
|
|
|
|
|
|
- hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
|
|
-
|
|
|
- hiddenState = m.Output.Forward(ctx, hiddenState)
|
|
|
+ // Final layer normalization and output projection
|
|
|
+ normalizedOutput := m.OutputNorm.Forward(ctx, hiddenStates, m.modelEpsilon)
|
|
|
+ logits := m.Output.Forward(ctx, normalizedOutput)
|
|
|
|
|
|
- outputs, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
|
|
|
+ // Extract requested output token positions
|
|
|
+ outputsTensor, err := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
|
|
|
if err != nil {
|
|
|
return nil, err
|
|
|
}
|
|
|
|
|
|
- return hiddenState.Rows(ctx, outputs), nil
|
|
|
+ return logits.Rows(ctx, outputsTensor), nil
|
|
|
}
|
|
|
|
|
|
func init() {
|