|
@@ -0,0 +1,190 @@
|
|
|
+package llama
|
|
|
+
|
|
|
+import (
|
|
|
+ "fmt"
|
|
|
+ "math"
|
|
|
+ "strings"
|
|
|
+
|
|
|
+ "github.com/ollama/ollama/kvcache"
|
|
|
+ "github.com/ollama/ollama/ml"
|
|
|
+ "github.com/ollama/ollama/ml/nn"
|
|
|
+ "github.com/ollama/ollama/model"
|
|
|
+ "github.com/ollama/ollama/model/input"
|
|
|
+)
|
|
|
+
|
|
|
+type Options struct {
|
|
|
+ hiddenSize, numHeads, numKVHeads, headDim int
|
|
|
+ eps, ropeBase, ropeScale float32
|
|
|
+ ropeDim uint32
|
|
|
+}
|
|
|
+
|
|
|
+type Model struct {
|
|
|
+ model.Base
|
|
|
+ model.BytePairEncoding
|
|
|
+
|
|
|
+ TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
|
|
+ Layers []Layer `gguf:"blk"`
|
|
|
+ OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
|
|
+ Output *nn.Linear `gguf:"output,alt:token_embd"`
|
|
|
+
|
|
|
+ *Options
|
|
|
+}
|
|
|
+
|
|
|
+func New(c ml.Config) (model.Model, error) {
|
|
|
+ if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
|
|
|
+ return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
|
|
|
+ }
|
|
|
+
|
|
|
+ m := Model{
|
|
|
+ BytePairEncoding: model.NewBytePairEncoding(
|
|
|
+ c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
|
|
+ &model.Vocabulary{
|
|
|
+ Values: c.Strings("tokenizer.ggml.tokens"),
|
|
|
+ Types: c.Uints("tokenizer.ggml.token_type"),
|
|
|
+ Merges: c.Strings("tokenizer.ggml.merges"),
|
|
|
+ BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
|
|
|
+ AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
|
|
+ EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
|
|
|
+ AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
|
+ },
|
|
|
+ ),
|
|
|
+ Layers: make([]Layer, c.Uint("block_count")),
|
|
|
+ Options: &Options{
|
|
|
+ hiddenSize: int(c.Uint("embedding_length")),
|
|
|
+ numHeads: int(c.Uint("attention.head_count")),
|
|
|
+ numKVHeads: int(c.Uint("attention.head_count_kv")),
|
|
|
+ headDim: int(c.Uint("attention.key_length")),
|
|
|
+ eps: c.Float("attention.layer_norm_rms_epsilon"),
|
|
|
+ ropeBase: c.Float("rope.freq_base"),
|
|
|
+ ropeScale: c.Float("rope.freq_scale", 1),
|
|
|
+ ropeDim: c.Uint("rope.dimension_count"),
|
|
|
+ },
|
|
|
+ }
|
|
|
+
|
|
|
+ m.Cache = kvcache.NewCausalCache(m.Shift)
|
|
|
+
|
|
|
+ return &m, nil
|
|
|
+}
|
|
|
+
|
|
|
+type SelfAttention struct {
|
|
|
+ Query *nn.Linear `gguf:"attn_q"`
|
|
|
+ Key *nn.Linear `gguf:"attn_k"`
|
|
|
+ Value *nn.Linear `gguf:"attn_v"`
|
|
|
+ Output *nn.Linear `gguf:"attn_output"`
|
|
|
+ RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
|
|
+}
|
|
|
+
|
|
|
+func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
|
|
+ batchSize := hiddenState.Dim(1)
|
|
|
+ ropeType := uint32(0)
|
|
|
+ // Get head dimension - use explicit value if available, otherwise calculate
|
|
|
+ headDim := opts.headDim
|
|
|
+ if headDim == 0 {
|
|
|
+ headDim = opts.hiddenSize / opts.numHeads
|
|
|
+ }
|
|
|
+
|
|
|
+ // Query projection and reshape
|
|
|
+ q := sa.Query.Forward(ctx, hiddenState)
|
|
|
+ q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
|
|
+ q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
|
|
+
|
|
|
+ // Key projection and reshape
|
|
|
+ k := sa.Key.Forward(ctx, hiddenState)
|
|
|
+ k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
|
|
+ k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
|
|
+
|
|
|
+ // Value projection and reshape
|
|
|
+ v := sa.Value.Forward(ctx, hiddenState)
|
|
|
+ v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
|
|
+
|
|
|
+ // Attention computation
|
|
|
+ scaleFactor := 1.0 / math.Sqrt(float64(headDim))
|
|
|
+ kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
|
|
|
+
|
|
|
+ // Reshape attention output for final projection
|
|
|
+ outputDim := headDim * opts.numHeads
|
|
|
+ kqv = kqv.Reshape(ctx, outputDim, batchSize)
|
|
|
+
|
|
|
+ // Apply output projection
|
|
|
+ return sa.Output.Forward(ctx, kqv)
|
|
|
+}
|
|
|
+
|
|
|
+func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
|
|
+ return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
|
|
|
+}
|
|
|
+
|
|
|
+type MLP struct {
|
|
|
+ Up *nn.Linear `gguf:"ffn_up"`
|
|
|
+ Down *nn.Linear `gguf:"ffn_down"`
|
|
|
+ Gate *nn.Linear `gguf:"ffn_gate"`
|
|
|
+}
|
|
|
+
|
|
|
+func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
|
|
|
+ hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
|
|
+ return mlp.Down.Forward(ctx, hiddenState)
|
|
|
+}
|
|
|
+
|
|
|
+type Layer struct {
|
|
|
+ AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
|
|
+ SelfAttention *SelfAttention
|
|
|
+ MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
|
|
+ MLP *MLP
|
|
|
+}
|
|
|
+
|
|
|
+func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
|
|
|
+ residual := hiddenState
|
|
|
+
|
|
|
+ hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
+ hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
|
|
+
|
|
|
+ // In the final layer (outputs != nil), optimize by pruning to just the token positions
|
|
|
+ // we need logits for.
|
|
|
+ if outputs != nil {
|
|
|
+ hiddenState = hiddenState.Rows(ctx, outputs)
|
|
|
+ residual = residual.Rows(ctx, outputs)
|
|
|
+ }
|
|
|
+
|
|
|
+ hiddenState = hiddenState.Add(ctx, residual)
|
|
|
+ residual = hiddenState
|
|
|
+
|
|
|
+ hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
+ hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
|
|
+ return hiddenState.Add(ctx, residual)
|
|
|
+}
|
|
|
+
|
|
|
+func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
|
|
|
+ inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions))
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs))
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
+ }
|
|
|
+
|
|
|
+ hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
|
|
+
|
|
|
+ for i, layer := range m.Layers {
|
|
|
+ m.Cache.SetLayer(i)
|
|
|
+
|
|
|
+ var lastLayerOutputs ml.Tensor
|
|
|
+ if i == len(m.Layers)-1 {
|
|
|
+ lastLayerOutputs = outputs
|
|
|
+ }
|
|
|
+
|
|
|
+ hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
|
|
|
+ }
|
|
|
+
|
|
|
+ hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
|
|
+ return m.Output.Forward(ctx, hiddenState), nil
|
|
|
+}
|
|
|
+
|
|
|
+func init() {
|
|
|
+ model.Register("mistral", New)
|
|
|
+}
|