|
@@ -5,6 +5,8 @@ import (
|
|
|
"fmt"
|
|
|
"io"
|
|
|
"log/slog"
|
|
|
+ "os"
|
|
|
+ "path/filepath"
|
|
|
"regexp"
|
|
|
"strings"
|
|
|
|
|
@@ -105,12 +107,12 @@ func (m *LlamaModel) GetTensors() error {
|
|
|
matches := re.FindAllStringSubmatch(l.Name, -1)
|
|
|
if len(matches) > 0 {
|
|
|
slog.Debug(fmt.Sprintf("setting handler for: %s", l.Name))
|
|
|
- switch l.WriterTo.(type) {
|
|
|
- case torchWriterTo:
|
|
|
+ switch m.Format.(type) {
|
|
|
+ case *TorchFormat:
|
|
|
wt := l.WriterTo.(torchWriterTo)
|
|
|
wt.handler = llamaTorchLayerHandler
|
|
|
l.WriterTo = wt
|
|
|
- case safetensorWriterTo:
|
|
|
+ case *SafetensorFormat:
|
|
|
wt := l.WriterTo.(safetensorWriterTo)
|
|
|
wt.handler = mistralLayerHandler
|
|
|
l.WriterTo = wt
|
|
@@ -123,18 +125,46 @@ func (m *LlamaModel) GetTensors() error {
|
|
|
}
|
|
|
|
|
|
func (m *LlamaModel) LoadVocab() error {
|
|
|
- var v *Vocab
|
|
|
- var err error
|
|
|
-
|
|
|
- slog.Debug("loading vocab")
|
|
|
- v, err = LoadSentencePieceTokens(m.Path, m.Params)
|
|
|
- if err != nil {
|
|
|
- return err
|
|
|
+ v := &Vocab{
|
|
|
+ Tokens: []string{},
|
|
|
+ Types: []int32{},
|
|
|
+ Merges: []string{},
|
|
|
}
|
|
|
|
|
|
- slog.Debug("vocab loaded")
|
|
|
+ tokpath := filepath.Join(m.Path, "tokenizer.json")
|
|
|
+ slog.Debug(fmt.Sprintf("looking for %s", tokpath))
|
|
|
+ if _, err := os.Stat(tokpath); !os.IsNotExist(err) {
|
|
|
+ t, err := newTokenizer(tokpath)
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+
|
|
|
+ for _, tok := range t.Model.Tokens {
|
|
|
+ v.Tokens = append(v.Tokens, tok.Content)
|
|
|
+ var tokType int32
|
|
|
+ switch {
|
|
|
+ case tok.Special:
|
|
|
+ tokType = 3
|
|
|
+ case tok.UserDefined:
|
|
|
+ tokType = 4
|
|
|
+ default:
|
|
|
+ tokType = 1
|
|
|
+ }
|
|
|
+ v.Types = append(v.Types, tokType)
|
|
|
+ }
|
|
|
+ v.Merges = t.Model.Merges
|
|
|
+ } else {
|
|
|
+ slog.Debug("loading sentence piece vocab")
|
|
|
+ v, err = LoadSentencePieceTokens(m.Path, m.Params)
|
|
|
+ if err != nil {
|
|
|
+ return err
|
|
|
+ }
|
|
|
+
|
|
|
+ slog.Debug("vocab loaded")
|
|
|
|
|
|
+ }
|
|
|
m.Vocab = v
|
|
|
+
|
|
|
return nil
|
|
|
}
|
|
|
|
|
@@ -147,22 +177,30 @@ func (m *LlamaModel) WriteGGUF(ws io.WriteSeeker) error {
|
|
|
"llama.embedding_length": uint32(m.Params.HiddenSize),
|
|
|
"llama.block_count": uint32(m.Params.HiddenLayers),
|
|
|
"llama.feed_forward_length": uint32(m.Params.IntermediateSize),
|
|
|
+ "llama.rope.freq_base": float32(m.Params.RopeFrequencyBase),
|
|
|
"llama.rope.dimension_count": uint32(m.Params.HiddenSize / m.Params.AttentionHeads),
|
|
|
"llama.attention.head_count": uint32(m.Params.AttentionHeads),
|
|
|
"llama.attention.head_count_kv": uint32(m.Params.KeyValHeads),
|
|
|
"llama.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS),
|
|
|
- "general.file_type": uint32(1),
|
|
|
- "tokenizer.ggml.model": "llama",
|
|
|
+ //"general.file_type": uint32(1),
|
|
|
+ "general.file_type": uint32(2),
|
|
|
+ //"tokenizer.ggml.model": "llama",
|
|
|
+ "tokenizer.ggml.model": "gpt2",
|
|
|
|
|
|
"tokenizer.ggml.tokens": m.Vocab.Tokens,
|
|
|
- "tokenizer.ggml.scores": m.Vocab.Scores,
|
|
|
"tokenizer.ggml.token_type": m.Vocab.Types,
|
|
|
|
|
|
"tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID),
|
|
|
"tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID),
|
|
|
"tokenizer.ggml.unknown_token_id": uint32(0),
|
|
|
- "tokenizer.ggml.add_bos_token": true,
|
|
|
- "tokenizer.ggml.add_eos_token": false,
|
|
|
+ //"tokenizer.ggml.add_bos_token": true,
|
|
|
+ //"tokenizer.ggml.add_eos_token": false,
|
|
|
+ }
|
|
|
+
|
|
|
+ if len(m.Vocab.Merges) > 0 {
|
|
|
+ kv["tokenizer.ggml.merges"] = m.Vocab.Merges
|
|
|
+ } else {
|
|
|
+ kv["tokenizer.ggml.scores"] = m.Vocab.Scores
|
|
|
}
|
|
|
|
|
|
return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors)
|