瀏覽代碼

draft: mllama vision encoder

Michael Yang 7 月之前
父節點
當前提交
cb1118c842
共有 2 個文件被更改,包括 967 次插入0 次删除
  1. 906 0
      llm/ext_server/mllama.cpp
  2. 61 0
      llm/ext_server/mllama.h

+ 906 - 0
llm/ext_server/mllama.cpp

@@ -0,0 +1,906 @@
+// NOTE: This is modified from clip.cpp for Mllama only
+#include "mllama.h"
+
+#include "ggml-alloc.h"
+#include "ggml-backend.h"
+#include "ggml.h"
+
+#ifdef GGML_USE_CUDA
+#include "ggml-cuda.h"
+#endif
+
+#ifdef GGML_USE_METAL
+#include "ggml-metal.h"
+#endif
+
+#ifdef GGML_USE_CANN
+#include "ggml-cann.h"
+#endif
+
+#ifdef GGML_USE_VULKAN
+#include "ggml-vulkan.h"
+#endif
+
+#include <algorithm>
+#include <cmath>
+#include <cstdarg>
+#include <cstdlib>
+#include <cstring>
+#include <fstream>
+#include <stdexcept>
+#include <vector>
+
+#define REQUIRE(x)                                           \
+    do {                                                     \
+        if (!(x)) {                                          \
+            throw std::runtime_error("REQUIRE failed: " #x); \
+        }                                                    \
+    } while (0)
+
+#define LOG(fmt, ...) fprintf(stderr, "%s: " fmt "\n", __func__, ##__VA_ARGS__)
+
+#if defined(_WIN32)
+#define WIN32_LEAN_AND_MEAN
+#ifndef NOMINMAX
+#define NOMINMAX
+#endif
+#include <windows.h>
+#endif
+
+struct mllama_image {
+    int width;
+    int height;
+
+    int num_channels = 3;
+    int num_tiles = 4;
+
+    int aspect_ratio_id;
+
+    std::vector<float> data;
+};
+
+static std::string format(const char *fmt, ...) {
+    va_list args;
+    va_start(args, fmt);
+    std::vector<char> b(128);
+    int n = vsnprintf(b.data(), b.size(), fmt, args);
+    REQUIRE(n >= 0 && n < b.size());
+    va_end(args);
+    return std::string(b.data(), b.size());
+}
+
+//
+// utilities to get data from a gguf file
+//
+
+static int get_key_index(const gguf_context *ctx, const char *key) {
+    int key_index = gguf_find_key(ctx, key);
+    REQUIRE(key_index != -1);
+    return key_index;
+}
+
+static std::vector<uint32_t> get_u32_array(const gguf_context *ctx, const std::string &key) {
+    const int i = get_key_index(ctx, key.c_str());
+    const int n = gguf_get_arr_n(ctx, i);
+    const uint32_t *data = (uint32_t *)gguf_get_arr_data(ctx, i);
+
+    std::vector<uint32_t> s(n);
+    for (size_t j = 0; j < s.size(); j++) {
+        s[j] = data[j];
+    }
+
+    return s;
+}
+
+static uint32_t get_u32(const gguf_context *ctx, const std::string &key) {
+    return gguf_get_val_u32(ctx, get_key_index(ctx, key.c_str()));
+}
+
+static float get_f32(const gguf_context *ctx, const std::string &key) {
+    return gguf_get_val_f32(ctx, get_key_index(ctx, key.c_str()));
+}
+
+static std::string get_ftype(int ftype) {
+    return ggml_type_name(static_cast<ggml_type>(ftype));
+}
+
+//
+// mllama layers
+//
+
+struct mllama_hparams {
+    uint32_t image_size;
+    uint32_t patch_size;
+    uint32_t hidden_size;
+    uint32_t n_intermediate;
+    uint32_t projection_dim;
+    uint32_t n_head;
+    uint32_t n_layer;
+    uint32_t n_global_layer;
+    uint32_t n_tiles;
+
+    float eps;
+
+    std::vector<bool> intermediate_layers;
+};
+
+struct mllama_layer {
+    // attention
+    struct ggml_tensor *k_w;
+    struct ggml_tensor *k_b;
+    struct ggml_tensor *q_w;
+    struct ggml_tensor *q_b;
+    struct ggml_tensor *v_w;
+    struct ggml_tensor *v_b;
+
+    struct ggml_tensor *o_w;
+    struct ggml_tensor *o_b;
+
+    struct ggml_tensor *attn_gate;
+
+    // layernorm 1
+    struct ggml_tensor *ln_1_w;
+    struct ggml_tensor *ln_1_b;
+
+    // ff
+    struct ggml_tensor *ff_i_w;
+    struct ggml_tensor *ff_i_b;
+
+    struct ggml_tensor *ff_o_w;
+    struct ggml_tensor *ff_o_b;
+
+    struct ggml_tensor *ff_gate;
+
+    // layernorm 2
+    struct ggml_tensor *ln_2_w;
+    struct ggml_tensor *ln_2_b;
+};
+
+struct mllama_vision_model {
+    struct mllama_hparams hparams;
+
+    // embeddings
+    struct ggml_tensor *class_embedding;
+    struct ggml_tensor *patch_embeddings;
+    struct ggml_tensor *position_embeddings;
+    struct ggml_tensor *position_embeddings_gate;
+    struct ggml_tensor *tile_position_embeddings;
+    struct ggml_tensor *tile_position_embeddings_gate;
+    struct ggml_tensor *pre_tile_position_embeddings;
+    struct ggml_tensor *pre_tile_position_embeddings_gate;
+    struct ggml_tensor *post_tile_position_embeddings;
+    struct ggml_tensor *post_tile_position_embeddings_gate;
+
+    struct ggml_tensor *pre_ln_w;
+    struct ggml_tensor *pre_ln_b;
+
+    std::vector<mllama_layer> layers;
+    std::vector<mllama_layer> global_layers;
+
+    struct ggml_tensor *post_ln_w;
+    struct ggml_tensor *post_ln_b;
+
+    struct ggml_tensor *mm_0_w = nullptr;
+    struct ggml_tensor *mm_0_b = nullptr;
+};
+
+struct mllama_ctx {
+    struct mllama_vision_model vision_model;
+
+    uint32_t ftype = 1;
+
+    struct gguf_context *ctx_gguf;
+    struct ggml_context *ctx_data;
+
+    std::vector<uint8_t> buf_compute_meta;
+
+    // memory buffers to evaluate the model
+    ggml_backend_buffer_t params_buffer = nullptr;
+
+    ggml_backend_t backend = nullptr;
+    ggml_gallocr_t compute_alloc = nullptr;
+};
+
+static ggml_tensor *mllama_image_build_encoder_layer(
+    struct ggml_context *ctx0, const size_t il, const struct mllama_layer &layer, struct ggml_tensor *embeddings,
+    const float eps, const int hidden_size, const int batch_size, const int n_head, const int d_head) {
+    struct ggml_tensor *cur = embeddings;
+
+    {
+        // layernorm1
+        cur = ggml_norm(ctx0, cur, eps);
+        cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_1_w), layer.ln_1_b);
+        ggml_set_name(cur, format("%d pre layernorm", il).c_str());
+    }
+
+    {
+        // self-attention
+        struct ggml_tensor *Q = ggml_mul_mat(ctx0, layer.q_w, cur);
+        if (layer.q_b != nullptr) {
+            Q = ggml_add(ctx0, Q, layer.q_b);
+        }
+
+        Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, Q->ne[1], batch_size);
+        Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
+        ggml_set_name(Q, format("%d query", il).c_str());
+
+        struct ggml_tensor *K = ggml_mul_mat(ctx0, layer.k_w, cur);
+        if (layer.k_b != nullptr) {
+            K = ggml_add(ctx0, K, layer.k_b);
+        }
+
+        K = ggml_reshape_4d(ctx0, K, d_head, n_head, K->ne[1], batch_size);
+        K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
+        ggml_set_name(K, format("%d key", il).c_str());
+
+        struct ggml_tensor *V = ggml_mul_mat(ctx0, layer.v_w, cur);
+        if (layer.v_b != nullptr) {
+            V = ggml_add(ctx0, V, layer.v_b);
+        }
+
+        V = ggml_reshape_4d(ctx0, V, d_head, n_head, V->ne[1], batch_size);
+        V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
+        ggml_set_name(V, format("%d value", il).c_str());
+
+        struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q);
+        KQ = ggml_scale_inplace(ctx0, KQ, 1.0f / sqrtf((float)d_head));
+        KQ = ggml_soft_max_inplace(ctx0, KQ);
+        ggml_set_name(KQ, format("%d KQ", il).c_str());
+
+        struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V, KQ);
+        KQV = ggml_reshape_4d(ctx0, KQV, d_head, KQV->ne[1], n_head, batch_size);
+        KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
+        KQV = ggml_cont_3d(ctx0, KQV, hidden_size, KQV->ne[2], batch_size);
+        ggml_set_name(KQV, format("%d KQV", il).c_str());
+
+        cur = ggml_mul_mat(ctx0, layer.o_w, KQV);
+        if (layer.o_b != nullptr) {
+            cur = ggml_add(ctx0, cur, layer.o_b);
+        }
+        ggml_set_name(cur, format("%d self attention", il).c_str());
+
+        if (layer.attn_gate != nullptr) {
+            cur = ggml_mul_inplace(ctx0, cur, layer.attn_gate);
+            ggml_set_name(cur, format("%d self attention gate", il).c_str());
+        }
+    }
+
+    cur = ggml_add(ctx0, cur, embeddings);
+    ggml_set_name(cur, format("%d residual", il).c_str());
+
+    embeddings = cur;
+
+    {
+        // layernorm2
+        cur = ggml_norm(ctx0, cur, eps);
+        cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.ln_2_w), layer.ln_2_b);
+        ggml_set_name(cur, format("%d post layernorm", il).c_str());
+    }
+
+    {
+        // feed forward
+        cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_i_w, cur), layer.ff_i_b);
+        cur = ggml_gelu_inplace(ctx0, cur);
+        cur = ggml_add(ctx0, ggml_mul_mat(ctx0, layer.ff_o_w, cur), layer.ff_o_b);
+        ggml_set_name(cur, format("%d feed forward", il).c_str());
+
+        if (layer.ff_gate != nullptr) {
+            cur = ggml_mul_inplace(ctx0, cur, layer.ff_gate);
+            ggml_set_name(cur, format("%d feed forward gate", il).c_str());
+        }
+    }
+
+    // residual 2
+    cur = ggml_add(ctx0, cur, embeddings);
+    ggml_set_name(cur, format("%d residual", il).c_str());
+
+    embeddings = cur;
+
+    return embeddings;
+}
+
+static ggml_cgraph *mllama_image_build_graph(mllama_ctx *ctx, const mllama_image_batch *imgs) {
+    const auto &model = ctx->vision_model;
+    const auto &hparams = model.hparams;
+
+    const int image_size = hparams.image_size;
+    const int image_size_width = image_size;
+    const int image_size_height = image_size;
+
+    const int patch_size = hparams.patch_size;
+    const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
+    const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
+    const int hidden_size = hparams.hidden_size;
+    const int n_head = hparams.n_head;
+    const int d_head = hidden_size / n_head;
+
+    const int batch_size = imgs->size;
+    REQUIRE(batch_size == 1);
+
+    int num_tiles = 4;
+    int num_channels = 3;
+    if (imgs->data != nullptr) {
+        num_tiles = imgs->data[0].num_tiles > 0 ? imgs->data[0].num_tiles : num_tiles;
+        num_channels = imgs->data[0].num_channels > 0 ? imgs->data[0].num_channels : num_channels;
+    }
+
+    struct ggml_init_params params = {
+        ctx->buf_compute_meta.size(), // mem_size
+        ctx->buf_compute_meta.data(), // mem_buffer
+        true,                         // no_alloc
+    };
+
+    struct ggml_context *ctx0 = ggml_init(params);
+    struct ggml_cgraph *gf = ggml_new_graph(ctx0);
+
+    struct ggml_tensor *inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, num_channels, num_tiles);
+    ggml_set_name(inp_raw, "inp_raw");
+    ggml_set_input(inp_raw);
+
+    struct ggml_tensor *inp = ggml_conv_2d(ctx0, model.patch_embeddings, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
+
+    inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, num_tiles);
+    inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
+
+    struct ggml_tensor *aspect_ratios = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, imgs->size);
+    ggml_set_name(aspect_ratios, "aspect_ratios");
+    ggml_set_input(aspect_ratios);
+
+    if (model.pre_tile_position_embeddings != nullptr) {
+        struct ggml_tensor *pre_tile_position_embeddings = ggml_get_rows(ctx0, model.pre_tile_position_embeddings, aspect_ratios);
+        ggml_set_name(pre_tile_position_embeddings, "pre_tile_position_embeddings");
+
+        pre_tile_position_embeddings = ggml_reshape_3d(ctx0, pre_tile_position_embeddings, hidden_size, 1, num_tiles);
+        if (model.pre_tile_position_embeddings_gate != nullptr) {
+            pre_tile_position_embeddings = ggml_mul_inplace(ctx0, pre_tile_position_embeddings, model.pre_tile_position_embeddings_gate);
+        }
+
+        inp = ggml_add(ctx0, inp, pre_tile_position_embeddings);
+    }
+
+    struct ggml_tensor *embeddings = inp;
+
+    if (model.class_embedding != nullptr) {
+        // concat class_embeddings and patch_embeddings
+        embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, num_tiles);
+        ggml_set_name(embeddings, "embeddings");
+        ggml_set_input(embeddings);
+        for (int i = 0; i < num_tiles; ++i) {
+            // repeat class embeddings for each tile
+            embeddings = ggml_acc(ctx0, embeddings, model.class_embedding, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], i * embeddings->nb[2]);
+        }
+
+        embeddings = ggml_acc(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
+    }
+
+    struct ggml_tensor *positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_positions);
+    ggml_set_name(positions, "positions");
+    ggml_set_input(positions);
+
+    struct ggml_tensor *position_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
+    if (model.position_embeddings_gate != nullptr) {
+        position_embd = ggml_mul_inplace(ctx0, position_embd, model.position_embeddings_gate);
+    }
+
+    embeddings = ggml_add(ctx0, embeddings, position_embd);
+
+    if (model.tile_position_embeddings != nullptr) {
+        struct ggml_tensor *tile_position_embeddings = ggml_get_rows(ctx0, model.tile_position_embeddings, aspect_ratios);
+        ggml_set_name(tile_position_embeddings, "tile_position_embeddings");
+
+        tile_position_embeddings = ggml_reshape_3d(ctx0, tile_position_embeddings, hidden_size, num_positions, num_tiles);
+        if (model.tile_position_embeddings_gate != nullptr) {
+            tile_position_embeddings = ggml_mul_inplace(ctx0, tile_position_embeddings, model.tile_position_embeddings_gate);
+        }
+
+        embeddings = ggml_add(ctx0, embeddings, tile_position_embeddings);
+    }
+
+    // pre-layernorm
+    if (model.pre_ln_w != nullptr) {
+        embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.pre_ln_w);
+        if (model.pre_ln_b != nullptr) {
+            embeddings = ggml_add(ctx0, embeddings, model.pre_ln_b);
+        }
+
+        ggml_set_name(embeddings, "pre layernorm");
+    }
+
+    const int num_padding_patches = 8 - (embeddings->ne[1] % 8) % 8;
+
+    embeddings = ggml_pad(ctx0, embeddings, 0, num_padding_patches, 0, 0);
+    embeddings = ggml_view_3d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1] * embeddings->ne[2], batch_size, embeddings->nb[1], embeddings->nb[2] * embeddings->ne[3], 0);
+
+    // encoder
+    auto intermediate_layers = hparams.intermediate_layers;
+    const auto &num_intermediate_layers = std::count(intermediate_layers.begin(), intermediate_layers.end(), true);
+
+    struct ggml_tensor *intermediate_embd = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, num_intermediate_layers, hidden_size, (num_positions + num_padding_patches) * num_tiles);
+    ggml_set_name(intermediate_embd, "intermediate_embeddings");
+    ggml_set_input(intermediate_embd);
+
+    for (size_t il = 0, s = 0; il < model.layers.size(); il++) {
+        if (intermediate_layers[il]) {
+            intermediate_embd = ggml_acc(
+                ctx0, intermediate_embd,
+                ggml_reshape_3d(ctx0, embeddings, 1, embeddings->ne[0], embeddings->ne[1]),
+                intermediate_embd->nb[1], intermediate_embd->nb[2], intermediate_embd->nb[3], s * embeddings->nb[0]);
+            s++;
+        }
+
+        embeddings = mllama_image_build_encoder_layer(
+            ctx0, il, model.layers[il], embeddings,
+            hparams.eps, hidden_size, batch_size, n_head, d_head);
+    }
+
+    // post-layernorm
+    if (model.post_ln_w != nullptr) {
+        embeddings = ggml_mul(ctx0, ggml_norm(ctx0, embeddings, hparams.eps), model.post_ln_w);
+        if (model.post_ln_b != nullptr) {
+            embeddings = ggml_add(ctx0, embeddings, model.post_ln_b);
+        }
+
+        ggml_set_name(embeddings, "post layernorm");
+    }
+
+    embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
+
+    if (model.post_tile_position_embeddings != nullptr) {
+        struct ggml_tensor *post_tile_position_embeddings = ggml_get_rows(ctx0, model.post_tile_position_embeddings, aspect_ratios);
+        ggml_set_name(post_tile_position_embeddings, "post_tile_position_embeddings");
+
+        post_tile_position_embeddings = ggml_reshape_3d(ctx0, post_tile_position_embeddings, hidden_size, 1, num_tiles);
+        if (model.post_tile_position_embeddings_gate != nullptr) {
+            post_tile_position_embeddings = ggml_mul(ctx0, post_tile_position_embeddings, model.post_tile_position_embeddings_gate);
+        }
+
+        embeddings = ggml_add(ctx0, embeddings, post_tile_position_embeddings);
+    }
+
+    embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_tiles * (num_positions + num_padding_patches), 1);
+
+    // global encoder
+    for (size_t il = 0; il < model.global_layers.size(); il++) {
+        embeddings = mllama_image_build_encoder_layer(
+            ctx0, il, model.global_layers[il], embeddings,
+            hparams.eps, hidden_size, batch_size, n_head, d_head);
+    }
+
+    embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size, num_positions + num_padding_patches, num_tiles);
+    embeddings = ggml_view_3d(ctx0, embeddings, hidden_size, num_positions, num_tiles, embeddings->nb[1], embeddings->nb[2], 0);
+
+    intermediate_embd = ggml_reshape_3d(ctx0, intermediate_embd, intermediate_embd->ne[0] * intermediate_embd->ne[1], num_positions + num_padding_patches, num_tiles);
+    intermediate_embd = ggml_view_3d(ctx0, intermediate_embd, intermediate_embd->ne[0], num_positions, num_tiles, intermediate_embd->nb[1], intermediate_embd->nb[2], 0);
+
+    embeddings = ggml_concat(ctx0, embeddings, intermediate_embd, 0);
+    ggml_set_name(embeddings, "cross attention states");
+
+    // mllama projector
+    embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_0_w, embeddings), model.mm_0_b);
+    ggml_set_name(embeddings, "multi modal projector");
+
+    // build the graph
+    ggml_build_forward_expand(gf, embeddings);
+
+    ggml_free(ctx0);
+
+    return gf;
+}
+
+static struct ggml_tensor *mllama_tensor_load(struct ggml_context *ctx, const char *name, const bool optional) {
+    struct ggml_tensor *cur = ggml_get_tensor(ctx, name);
+    REQUIRE(cur != nullptr || optional);
+    return cur;
+}
+
+static std::vector<struct mllama_layer> mllama_layers_load(struct ggml_context *ctx, const char *prefix, const int n) {
+    std::vector<struct mllama_layer> layers(n);
+    for (size_t i = 0; i < layers.size(); i++) {
+        auto &layer = layers[i];
+        layer.ln_1_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.weight", prefix, i).c_str(), false);
+        layer.ln_1_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln1.bias", prefix, i).c_str(), false);
+        layer.ln_2_w = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.weight", prefix, i).c_str(), false);
+        layer.ln_2_b = mllama_tensor_load(ctx, format("%s.blk.%d.ln2.bias", prefix, i).c_str(), false);
+
+        layer.k_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.weight", prefix, i).c_str(), false);
+        layer.k_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_k.bias", prefix, i).c_str(), true);
+        layer.q_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.weight", prefix, i).c_str(), false);
+        layer.q_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_q.bias", prefix, i).c_str(), true);
+        layer.v_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.weight", prefix, i).c_str(), false);
+        layer.v_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_v.bias", prefix, i).c_str(), true);
+        layer.o_w = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.weight", prefix, i).c_str(), false);
+        layer.o_b = mllama_tensor_load(ctx, format("%s.blk.%d.attn_out.bias", prefix, i).c_str(), true);
+
+        layer.ff_i_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.weight", prefix, i).c_str(), false);
+        layer.ff_i_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_down.bias", prefix, i).c_str(), false);
+        layer.ff_o_w = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.weight", prefix, i).c_str(), false);
+        layer.ff_o_b = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_up.bias", prefix, i).c_str(), false);
+
+        layer.attn_gate = mllama_tensor_load(ctx, format("%s.blk.%d.attn_gate", prefix, i).c_str(), true);
+        layer.ff_gate = mllama_tensor_load(ctx, format("%s.blk.%d.ffn_gate", prefix, i).c_str(), true);
+    }
+
+    return layers;
+}
+
+// read and create ggml_context containing the tensors and their data
+struct mllama_ctx *mllama_model_load(const char *fname, const int verbosity = 1) {
+    struct ggml_context *meta = nullptr;
+
+    struct gguf_init_params params = {
+        true,  // no_alloc
+        &meta, // ctx
+    };
+
+    struct gguf_context *ctx = gguf_init_from_file(fname, params);
+    REQUIRE(ctx != nullptr);
+
+    if (verbosity >= 1) {
+        const int n_tensors = gguf_get_n_tensors(ctx);
+        const int n_kv = gguf_get_n_kv(ctx);
+        const std::string ftype = get_ftype(get_u32(ctx, "general.file_type"));
+        const int idx_desc = get_key_index(ctx, "general.description");
+        const std::string description = gguf_get_val_str(ctx, idx_desc);
+        const int idx_name = gguf_find_key(ctx, "general.name");
+        if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
+            const std::string name = gguf_get_val_str(ctx, idx_name);
+            LOG("model name:   %s", name.c_str());
+        }
+        LOG("description:  %s", description.c_str());
+        LOG("GGUF version: %d", gguf_get_version(ctx));
+        LOG("alignment:    %zu", gguf_get_alignment(ctx));
+        LOG("n_tensors:    %d", n_tensors);
+        LOG("n_kv:         %d", n_kv);
+        LOG("ftype:        %s", ftype.c_str());
+        LOG("");
+    }
+    const int n_tensors = gguf_get_n_tensors(ctx);
+
+    mllama_ctx *new_mllama = new mllama_ctx{};
+
+#ifdef GGML_USE_CUDA
+    new_mllama->backend = ggml_backend_cuda_init(0);
+    LOG("vision using CUDA backend");
+#endif
+
+#ifdef GGML_USE_METAL
+    new_mllama->backend = ggml_backend_metal_init();
+    LOG("vision using Metal backend");
+#endif
+
+#ifdef GGML_USE_CANN
+    new_mllama->backend = ggml_backend_cann_init(0);
+    LOG("vision using CANN backend");
+#endif
+
+#ifdef GGML_USE_VULKAN
+    new_mllama->backend = ggml_backend_vk_init(0);
+    LOG("vision using Vulkan backend");
+#endif
+
+    if (!new_mllama->backend) {
+        new_mllama->backend = ggml_backend_cpu_init();
+        LOG("vision using CPU backend");
+    }
+
+    // load tensors
+    {
+        std::vector<uint8_t> read_buf;
+        struct ggml_init_params params = {
+            (n_tensors + 1) * ggml_tensor_overhead(), // mem_size
+            nullptr,                                  // mem_buffer
+            true,                                     // no_alloc
+        };
+
+        new_mllama->ctx_data = ggml_init(params);
+        if (!new_mllama->ctx_data) {
+            LOG("ggml_init() failed");
+            mllama_free(new_mllama);
+            gguf_free(ctx);
+            return nullptr;
+        }
+
+#ifdef _WIN32
+        int wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, NULL, 0);
+        if (!wlen) {
+            return NULL;
+        }
+        wchar_t *wbuf = (wchar_t *)malloc(wlen * sizeof(wchar_t));
+        wlen = MultiByteToWideChar(CP_UTF8, 0, fname, -1, wbuf, wlen);
+        if (!wlen) {
+            free(wbuf);
+            return NULL;
+        }
+        auto fin = std::ifstream(wbuf, std::ios::binary);
+        free(wbuf);
+#else
+        auto fin = std::ifstream(fname, std::ios::binary);
+#endif
+        if (!fin) {
+            LOG("cannot open model file for loading tensors\n");
+            mllama_free(new_mllama);
+            gguf_free(ctx);
+            return nullptr;
+        }
+
+        // add tensors to context
+        for (int i = 0; i < n_tensors; ++i) {
+            const char *name = gguf_get_tensor_name(ctx, i);
+            struct ggml_tensor *t = ggml_get_tensor(meta, name);
+            struct ggml_tensor *cur = ggml_dup_tensor(new_mllama->ctx_data, t);
+            ggml_set_name(cur, name);
+        }
+
+        // alloc memory and offload data
+        new_mllama->params_buffer = ggml_backend_alloc_ctx_tensors(new_mllama->ctx_data, new_mllama->backend);
+        for (int i = 0; i < n_tensors; ++i) {
+            const char *name = gguf_get_tensor_name(ctx, i);
+            struct ggml_tensor *cur = ggml_get_tensor(new_mllama->ctx_data, name);
+            const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
+            fin.seekg(offset, std::ios::beg);
+            if (!fin) {
+                LOG("failed to seek for tensor %s\n", name);
+                mllama_free(new_mllama);
+                gguf_free(ctx);
+                return nullptr;
+            }
+            int num_bytes = ggml_nbytes(cur);
+            if (ggml_backend_buffer_is_host(new_mllama->params_buffer)) {
+                // for the CPU and Metal backend, we can read directly into the tensor
+                fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
+            } else {
+                // read into a temporary buffer first, then copy to device memory
+                read_buf.resize(num_bytes);
+                fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
+                ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
+            }
+        }
+
+        fin.close();
+    }
+
+    // vision model
+    // load vision model
+    auto &vision_model = new_mllama->vision_model;
+    auto &hparams = vision_model.hparams;
+    hparams.hidden_size = get_u32(ctx, "mllama.vision.embedding_length");
+    hparams.n_head = get_u32(ctx, "mllama.vision.attention.head_count");
+    hparams.n_intermediate = get_u32(ctx, "mllama.vision.feed_forward_length");
+    hparams.n_layer = get_u32(ctx, "mllama.vision.block_count");
+    hparams.n_global_layer = get_u32(ctx, "mllama.vision.global.block_count");
+    hparams.n_tiles = get_u32(ctx, "mllama.vision.max_num_tiles");
+    hparams.image_size = get_u32(ctx, "mllama.vision.image_size");
+    hparams.patch_size = get_u32(ctx, "mllama.vision.patch_size");
+    hparams.projection_dim = get_u32(ctx, "mllama.vision.projection_dim");
+    hparams.eps = get_f32(ctx, "mllama.vision.attention.layer_norm_epsilon");
+
+    std::vector<uint32_t> intermediate_layers_indices = get_u32_array(ctx, "mllama.vision.intermediate_layers_indices");
+    hparams.intermediate_layers.resize(hparams.n_layer);
+    for (size_t i = 0; i < intermediate_layers_indices.size(); i++) {
+        hparams.intermediate_layers[intermediate_layers_indices[i]] = true;
+    }
+
+    if (verbosity >= 2) {
+        LOG("");
+        LOG("vision model hparams");
+        LOG("image_size         %d", hparams.image_size);
+        LOG("patch_size         %d", hparams.patch_size);
+        LOG("v_hidden_size      %d", hparams.hidden_size);
+        LOG("v_n_intermediate   %d", hparams.n_intermediate);
+        LOG("v_projection_dim   %d", hparams.projection_dim);
+        LOG("v_n_head           %d", hparams.n_head);
+        LOG("v_n_layer          %d", hparams.n_layer);
+        LOG("v_n_global_layer   %d", hparams.n_global_layer);
+        LOG("v_eps              %f", hparams.eps);
+    }
+
+    vision_model.class_embedding = mllama_tensor_load(new_mllama->ctx_data, "v.class_embd", true);
+    vision_model.patch_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.patch_embd.weight", true);
+
+    vision_model.position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.weight", true);
+    vision_model.position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.position_embd.gate", true);
+
+    vision_model.pre_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.weight", true);
+    vision_model.pre_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.pre_ln.bias", true);
+    vision_model.post_ln_w = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.weight", true);
+    vision_model.post_ln_b = mllama_tensor_load(new_mllama->ctx_data, "v.post_ln.bias", true);
+
+    vision_model.tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.weight", true);
+    vision_model.tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.tile_position_embd.gate", true);
+
+    vision_model.pre_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.weight", true);
+    vision_model.pre_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.pre_tile_position_embd.gate", true);
+
+    vision_model.post_tile_position_embeddings = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.weight", true);
+    vision_model.post_tile_position_embeddings_gate = mllama_tensor_load(new_mllama->ctx_data, "v.post_tile_position_embd.gate", true);
+
+    vision_model.mm_0_w = mllama_tensor_load(new_mllama->ctx_data, "mm.0.weight", false);
+    vision_model.mm_0_b = mllama_tensor_load(new_mllama->ctx_data, "mm.0.bias", false);
+
+    vision_model.layers = mllama_layers_load(new_mllama->ctx_data, "v", hparams.n_layer);
+    vision_model.global_layers = mllama_layers_load(new_mllama->ctx_data, "v.global", hparams.n_global_layer);
+
+    ggml_free(meta);
+
+    new_mllama->ctx_gguf = ctx;
+
+    {
+        // measure mem requirement and allocate
+        new_mllama->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
+        new_mllama->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_mllama->backend));
+        struct mllama_image_batch batch;
+        batch.size = 1;
+        ggml_cgraph *gf = mllama_image_build_graph(new_mllama, &batch);
+        ggml_gallocr_reserve(new_mllama->compute_alloc, gf);
+        size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_mllama->compute_alloc, 0);
+        LOG("compute allocated memory: %.2f MB", compute_memory_buffer_size / 1024.0 / 1024.0);
+    }
+
+    return new_mllama;
+}
+
+struct mllama_image *mllama_image_init() {
+    return new mllama_image();
+}
+
+void mllama_image_free(struct mllama_image *img) { delete img; }
+void mllama_image_batch_free(struct mllama_image_batch *batch) {
+    if (batch->size > 0) {
+        delete[] batch->data;
+        batch->size = 0;
+    }
+}
+
+bool mllama_image_load_from_data(const void *data, const int n, const int width, const int height, const int num_channels, const int num_tiles, const int aspect_ratio_id, struct mllama_image *img) {
+    img->width = width;
+    img->height = height;
+    img->num_channels = num_channels;
+    img->num_tiles = num_tiles;
+    img->aspect_ratio_id = aspect_ratio_id;
+    img->data.resize(n);
+
+    memcpy(img->data.data(), data, n);
+    return true;
+}
+
+inline int mllama(int x, int lower, int upper) {
+    return std::max(lower, std::min(x, upper));
+}
+
+void mllama_free(mllama_ctx *ctx) {
+    ggml_free(ctx->ctx_data);
+    gguf_free(ctx->ctx_gguf);
+
+    ggml_backend_buffer_free(ctx->params_buffer);
+    ggml_backend_free(ctx->backend);
+    ggml_gallocr_free(ctx->compute_alloc);
+    delete ctx;
+}
+
+bool mllama_image_encode(struct mllama_ctx *ctx, const int n_threads, mllama_image *img, float *vec) {
+    mllama_image_batch imgs{};
+    imgs.size = 1;
+    imgs.data = img;
+    return mllama_image_batch_encode(ctx, n_threads, &imgs, vec);
+}
+
+bool mllama_image_batch_encode(mllama_ctx *ctx, const int n_threads, const mllama_image_batch *imgs, float *vec) {
+    int batch_size = imgs->size;
+    REQUIRE(batch_size == 1);
+
+    // build the inference graph
+    ggml_cgraph *gf = mllama_image_build_graph(ctx, imgs);
+    ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
+
+    // set inputs
+    const auto &model = ctx->vision_model;
+    const auto &hparams = model.hparams;
+
+    const int image_size = hparams.image_size;
+    int image_size_width = image_size;
+    int image_size_height = image_size;
+
+    const int patch_size = hparams.patch_size;
+    const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
+    const int num_positions = num_patches + (model.class_embedding == nullptr ? 0 : 1);
+
+    {
+        struct ggml_tensor *inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
+        ggml_backend_tensor_set(inp_raw, imgs->data[0].data.data(), 0, ggml_nbytes(inp_raw));
+    }
+
+    {
+        struct ggml_tensor *embeddings = ggml_graph_get_tensor(gf, "embeddings");
+        if (embeddings != nullptr) {
+            void *zeros = malloc(ggml_nbytes(embeddings));
+            memset(zeros, 0, ggml_nbytes(embeddings));
+            ggml_backend_tensor_set(embeddings, zeros, 0, ggml_nbytes(embeddings));
+            free(zeros);
+        }
+    }
+
+    {
+        struct ggml_tensor *positions = ggml_graph_get_tensor(gf, "positions");
+        if (positions != nullptr) {
+            int *positions_data = (int *)malloc(ggml_nbytes(positions));
+            for (int i = 0; i < num_positions; i++) {
+                positions_data[i] = i;
+            }
+            ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
+            free(positions_data);
+        }
+    }
+
+    {
+        struct ggml_tensor *aspect_ratios = ggml_graph_get_tensor(gf, "aspect_ratios");
+        if (aspect_ratios != nullptr) {
+            int *aspect_ratios_data = (int *)malloc(ggml_nbytes(aspect_ratios));
+            aspect_ratios_data[0] = imgs->data[0].aspect_ratio_id;
+            ggml_backend_tensor_set(aspect_ratios, aspect_ratios_data, 0, ggml_nbytes(aspect_ratios));
+            free(aspect_ratios_data);
+        }
+    }
+
+    {
+        struct ggml_tensor *intermediate_embeddings = ggml_graph_get_tensor(gf, "intermediate_embeddings");
+        if (intermediate_embeddings != nullptr) {
+            void *zeros = malloc(ggml_nbytes(intermediate_embeddings));
+            memset(zeros, 0, ggml_nbytes(intermediate_embeddings));
+            ggml_backend_tensor_set(intermediate_embeddings, zeros, 0, ggml_nbytes(intermediate_embeddings));
+            free(zeros);
+        }
+    }
+
+    if (ggml_backend_is_cpu(ctx->backend)) {
+        ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
+    }
+
+#ifdef GGML_USE_METAL
+    if (ggml_backend_is_metal(ctx->backend)) {
+        ggml_backend_metal_set_n_cb(ctx->backend, n_threads);
+    }
+#endif
+
+    ggml_backend_graph_compute(ctx->backend, gf);
+
+    // the last node is the embedding tensor
+    struct ggml_tensor *embeddings = gf->nodes[gf->n_nodes - 1];
+
+    // copy the embeddings to the location passed by the user
+    ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
+
+    return true;
+}
+
+int32_t mllama_image_size(const struct mllama_ctx *ctx) {
+    return ctx->vision_model.hparams.image_size;
+}
+
+int32_t mllama_patch_size(const struct mllama_ctx *ctx) {
+    return ctx->vision_model.hparams.patch_size;
+}
+
+int32_t mllama_hidden_size(const struct mllama_ctx *ctx) {
+    return ctx->vision_model.hparams.hidden_size;
+}
+
+int mllama_n_patches(const struct mllama_ctx *ctx) {
+    const auto &hparams = ctx->vision_model.hparams;
+    return (hparams.image_size / hparams.patch_size) * (hparams.image_size / hparams.patch_size);
+}
+
+int mllama_n_positions(const struct mllama_ctx *ctx) {
+    return mllama_n_patches(ctx) + (ctx->vision_model.class_embedding == nullptr ? 0 : 1);
+}
+
+int mllama_n_tiles(const struct mllama_ctx *ctx) {
+    return ctx->vision_model.hparams.n_tiles;
+}
+
+int mllama_n_embd(const struct mllama_ctx *ctx) {
+    return ctx->vision_model.hparams.projection_dim;
+}
+
+size_t mllama_n_embd_bytes(const struct mllama_ctx *ctx) {
+    return mllama_n_positions(ctx) * mllama_n_embd(ctx) * mllama_n_tiles(ctx) * sizeof(float);
+}

+ 61 - 0
llm/ext_server/mllama.h

@@ -0,0 +1,61 @@
+#ifndef MLLAMA_H
+#define MLLAMA_H
+
+#include <stddef.h>
+#include <stdint.h>
+
+#ifdef LLAMA_SHARED
+#if defined(_WIN32) && !defined(__MINGW32__)
+#ifdef LLAMA_BUILD
+#define MLLAMA_API __declspec(dllexport)
+#else
+#define MLLAMA_API __declspec(dllimport)
+#endif
+#else
+#define MLLAMA_API __attribute__((visibility("default")))
+#endif
+#else
+#define MLLAMA_API
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+struct mllama_ctx;
+
+struct mllama_image_batch {
+    struct mllama_image *data;
+    size_t size;
+};
+
+MLLAMA_API struct mllama_ctx *mllama_model_load(const char *fname, int verbosity);
+MLLAMA_API struct mllama_ctx *mllama_model_load_cpu(const char *fname, int verbosity);
+
+MLLAMA_API void mllama_free(struct mllama_ctx *ctx);
+
+MLLAMA_API int32_t mllama_image_size(const struct mllama_ctx *ctx);
+MLLAMA_API int32_t mllama_patch_size(const struct mllama_ctx *ctx);
+MLLAMA_API int32_t mllama_hidden_size(const struct mllama_ctx *ctx);
+
+MLLAMA_API int mllama_n_patches(const struct mllama_ctx *ctx);
+MLLAMA_API int mllama_n_positions(const struct mllama_ctx *ctx);
+MLLAMA_API int mllama_n_tiles(const struct mllama_ctx *ctx);
+MLLAMA_API int mllama_n_embd(const struct mllama_ctx *ctx);
+MLLAMA_API size_t mllama_n_embd_bytes(const struct mllama_ctx *ctx);
+
+MLLAMA_API struct mllama_image *mllama_image_init();
+
+MLLAMA_API void mllama_image_free(struct mllama_image *img);
+MLLAMA_API void mllama_image_batch_free(struct mllama_image_batch *batch);
+
+MLLAMA_API bool mllama_image_load_from_data(const void *data, const int n, const int nx, const int ny, const int nc, const int nt, const int aspect_ratio_id, struct mllama_image *img);
+
+MLLAMA_API bool mllama_image_encode(struct mllama_ctx *ctx, int n_threads, struct mllama_image *img, float *vec);
+MLLAMA_API bool mllama_image_batch_encode(struct mllama_ctx *ctx, int n_threads, const struct mllama_image_batch *imgs, float *vec);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif // MLLAMA_H