|
@@ -2,7 +2,7 @@
|
|
|
|
|
|
> **Note**: This guide and the Go inference engine are in early development and will be updated as implementation details evolve.
|
|
|
|
|
|
-This guide outlines the process of implementing a new model in Ollama's inference engine. It covers everything from initial setup to deploying your model to ollama.com.
|
|
|
+This guide outlines the process of implementing a new model in Ollama's inference engine. It covers everything from initial setup to publishing your model to ollama.com.
|
|
|
|
|
|
## Architecture Overview
|
|
|
|
|
@@ -12,96 +12,49 @@ Below is a diagram showing Ollama's inference engine architecture layers and how
|
|
|
graph TB
|
|
|
subgraph Models["Model Layer: LLM Implementations"]
|
|
|
direction TB
|
|
|
- llama["model/models/llama/model.go"]
|
|
|
- mllama["model/models/mllama/model.go"]
|
|
|
- qwen["model/models/qwen2/model.go"]
|
|
|
- qwen_vl["model/models/qwen2vl/model.go"]
|
|
|
+ llama["model/models/llama"]
|
|
|
+ mllama["model/models/mllama"]
|
|
|
+ qwen["model/models/qwen2"]
|
|
|
+ etc["...etc"]
|
|
|
|
|
|
- note1["Each model implements a specific architecture
|
|
|
- - Defines model parameters
|
|
|
- - Implements forward pass"]
|
|
|
+ note1[" Each model implements a<br>specific architecture:<br>- Defines model parameters<br>- Implements forward pass"]
|
|
|
end
|
|
|
|
|
|
subgraph ML_Ops["Neural Network Operations"]
|
|
|
direction TB
|
|
|
- nn_ops["nn/
|
|
|
- linear.go - Matrix operations
|
|
|
- embedding.go - Token embeddings
|
|
|
- normalization.go - Layer normalization
|
|
|
- convolution.go - Conv operations"]
|
|
|
+ nn_ops[" nn/<br>linear.go: Matrix multiplication<br>embedding.go: Token embedding lookups<br>normalization.go: Layer norm operations<br>convolution.go: Convolutional operations "]
|
|
|
|
|
|
- backend["ml/backend.go
|
|
|
- Hardware Abstraction Layer
|
|
|
- - Defines tensor operations
|
|
|
- - Manages computation graphs
|
|
|
- - Handles memory allocation"]
|
|
|
-
|
|
|
- note2["Common neural net operations
|
|
|
- used across different models
|
|
|
- - Abstracts hardware details
|
|
|
- - Provides unified API
|
|
|
- - Manages computation flow"]
|
|
|
+ backend[" ml/backend.go<br>Hardware Abstraction Layer:<br>- Defines tensor operations<br>- Manages computation graphs<br>- Handles memory allocation "]
|
|
|
+
|
|
|
+ note2[" Common neural net operations:<br>- Abstracts hardware details<br>- Provides unified API<br>- Manages computation flow "]
|
|
|
end
|
|
|
|
|
|
- subgraph GGML["Hardware Execution Layer"]
|
|
|
+ subgraph Hardware["Backend Execution Layer"]
|
|
|
direction TB
|
|
|
- ggml["ggml.go
|
|
|
- CGO Interface
|
|
|
- - Bridges Go and C++
|
|
|
- - Handles type conversion
|
|
|
- - Manages memory between languages"]
|
|
|
-
|
|
|
- subgraph Hardware_Specific["Hardware-Specific Implementations"]
|
|
|
- direction LR
|
|
|
- cpu["ggml-cpu.h
|
|
|
- CPU optimized ops"]
|
|
|
- cuda["ggml-cuda.h
|
|
|
- NVIDIA GPU ops"]
|
|
|
- metal["ggml-metal.h
|
|
|
- Apple GPU ops"]
|
|
|
- vulkan["ggml-vulkan.h
|
|
|
- Cross-platform GPU"]
|
|
|
- opencl["ggml-opencl.h
|
|
|
- OpenCL acceleration"]
|
|
|
- end
|
|
|
-
|
|
|
- note3["GGML provides optimized
|
|
|
- implementations for each hardware:
|
|
|
- - Automatic dispatch
|
|
|
- - Hardware-specific optimizations
|
|
|
- - Memory management
|
|
|
- - Parallel execution"]
|
|
|
+ backend_impl[" The backend package provides:<br>- Unified computation interface<br>- Automatic hardware selection<br>- Optimized kernels<br>- Efficient memory management "]
|
|
|
end
|
|
|
|
|
|
- %% Connections with explanations
|
|
|
- Models --> |"Makes high-level calls
|
|
|
- (e.g., self-attention)"| ML_Ops
|
|
|
- ML_Ops --> |"Translates to tensor operations
|
|
|
- (e.g., matmul, softmax)"| GGML
|
|
|
- GGML --> |"Executes optimized code
|
|
|
- on target hardware"| Hardware_Specific
|
|
|
-
|
|
|
- %% Styling
|
|
|
- classDef model fill:#fff,stroke:#01579b,stroke-width:2px
|
|
|
- classDef ml fill:#fff,stroke:#e65100,stroke-width:2px
|
|
|
- classDef hw fill:#fff,stroke:#b71c1c,stroke-width:2px
|
|
|
- classDef note fill:#fff,stroke:#666,stroke-dasharray: 5 5
|
|
|
-
|
|
|
- class llama,mllama,qwen,qwen_vl,pixtral model
|
|
|
- class nn_ops,backend ml
|
|
|
- class ggml,cpu,cuda,metal,vulkan,opencl hw
|
|
|
- class note1,note2,note3 note
|
|
|
-
|
|
|
- %% Style subgraphs
|
|
|
- style Models fill:#fff,stroke:#01579b,stroke-width:2px
|
|
|
- style ML_Ops fill:#fff,stroke:#e65100,stroke-width:2px
|
|
|
- style GGML fill:#fff,stroke:#b71c1c,stroke-width:2px
|
|
|
- style Hardware_Specific fill:#fff,stroke:#b71c1c,stroke-width:1px
|
|
|
+ Models --> |" Makes high-level calls<br>(e.g., self-attention) "| ML_Ops
|
|
|
+ ML_Ops --> |" Translates to tensor operations<br>(e.g., matmul, softmax) "| Hardware
|
|
|
```
|
|
|
|
|
|
When implementing a new model, you'll primarily work in the model layer, interfacing with the neural network operations layer.
|
|
|
|
|
|
-## Implementation Steps
|
|
|
+## Implementation Process Overview
|
|
|
+
|
|
|
+Here's the high-level process for implementing a new model in Ollama:
|
|
|
+
|
|
|
+1. **Environment Setup**: Clone the repository and set up your development environment
|
|
|
+2. **Research Implementation**: Understand the original model architecture
|
|
|
+3. **Project Structure Setup**: Set up the necessary file structure
|
|
|
+4. **Create Basic Modelfile**: Create a simple Modelfile for testing
|
|
|
+5. **Implement Weight Conversion**: Map from original format to GGUF
|
|
|
+6. **Open a Draft PR**: Create a draft pull request to establish communication with maintainers
|
|
|
+7. **Implement Model Logic**: Create the model architecture and forward pass
|
|
|
+8. **Quality Check and Final Steps**: Create a Modelfile, add tests and ensure functionality
|
|
|
+10. **Finalize PR and Publish**: Complete the PR and publish to ollama.com
|
|
|
+
|
|
|
+## Implementation Steps in Detail
|
|
|
|
|
|
### 1. Environment Setup
|
|
|
|
|
@@ -121,11 +74,11 @@ Get the original model implementation running. This typically involves:
|
|
|
Create the necessary file structure by referencing previous model implementations. You'll need:
|
|
|
|
|
|
```
|
|
|
+convert/
|
|
|
+└── convert_your-model.go # Weight conversion logic (PyTorch/SafeTensors to GGML)
|
|
|
model/
|
|
|
└── your-model/
|
|
|
- ├── model.go # Architecture and forward pass implementation
|
|
|
- ├── convert.go # Weight conversion logic (PyTorch/SafeTensors to GGML)
|
|
|
- └── convert_test.go # Conversion logic tests
|
|
|
+ └── model.go # Architecture and forward pass implementation
|
|
|
```
|
|
|
|
|
|
Add your model to the main paths in [model/models/models.go](https://github.com/ollama/ollama/blob/main/model/models/models.go):
|
|
@@ -140,45 +93,194 @@ import (
|
|
|
)
|
|
|
```
|
|
|
|
|
|
-### 4. Development Process
|
|
|
+### 4. Create a Basic Modelfile
|
|
|
|
|
|
-1. **Open a Draft PR**
|
|
|
- - Create a draft pull request in the `ollama/ollama` repository
|
|
|
- - Use this as a communication channel with Ollama maintainers
|
|
|
+Create a simple Modelfile early in the process to facilitate testing:
|
|
|
|
|
|
-2. **Implement Weight Conversion**
|
|
|
- - Work on `convert.go`
|
|
|
- - Reference existing conversion implementations
|
|
|
- - Create a basic Modelfile:
|
|
|
- ```
|
|
|
- FROM /path/to/model
|
|
|
- ```
|
|
|
- - Test conversion:
|
|
|
- ```bash
|
|
|
- go run . create <my-model> -f /path/to/Modelfile
|
|
|
- ```
|
|
|
-
|
|
|
-3. **Implement Model Logic**
|
|
|
- - Implement `New()` and `Forward()` functions in `model.go`
|
|
|
- - Reference existing model implementations
|
|
|
- - Debug forward pass:
|
|
|
- ```bash
|
|
|
- OLLAMA_DEBUG=1 go run . run <my-model>
|
|
|
- ```
|
|
|
- - Compare output with research implementation
|
|
|
-
|
|
|
-4. **Tokenizer Implementation**
|
|
|
- - Implement a new tokenizer if required
|
|
|
- - Ensure compatibility with model architecture
|
|
|
+```
|
|
|
+FROM /path/to/model
|
|
|
+TEMPLATE "{{.Prompt}}" # Use a static prompt format for initial testing
|
|
|
+```
|
|
|
|
|
|
-5. **Text Generation Testing**
|
|
|
- - Implement proper prompt formatting
|
|
|
- - Test basic generation:
|
|
|
- ```bash
|
|
|
- go run . run <my-model> "hello"
|
|
|
+This allows you to test your implementation with consistent inputs before finalizing the proper prompt template.
|
|
|
+
|
|
|
+### 5. Implement Weight Conversion
|
|
|
+
|
|
|
+- Work on `convert/convert_your-model.go`
|
|
|
+- Reference existing conversion implementations
|
|
|
+- Conversion involves mapping from PyTorch/SafeTensors naming to GGUF naming as you see fit
|
|
|
+- Understand typical GGUF layout and structure:
|
|
|
+
|
|
|
+ **Typical GGUF Layout:**
|
|
|
+ ```
|
|
|
+ GGUF
|
|
|
+ ├── Metadata Section
|
|
|
+ │ ├── Model Parameters
|
|
|
+ │ │ ├── General architecture parameters
|
|
|
+ │ │ │ ├── "{arch}.vocab_size" (e.g., "llama.vocab_size")
|
|
|
+ │ │ │ ├── "{arch}.context_length" (e.g., "llama.context_length")
|
|
|
+ │ │ │ ├── "{arch}.embedding_length" (e.g., "llama.embedding_length")
|
|
|
+ │ │ │ └── "{arch}.block_count" (e.g., "llama.block_count")
|
|
|
+ │ │ │
|
|
|
+ │ │ └── Architecture-specific parameters
|
|
|
+ │ │ ├── "{arch}.attention.head_count" (e.g., "llama.attention.head_count")
|
|
|
+ │ │ ├── "{arch}.attention.head_count_kv" (e.g., "llama.attention.head_count_kv")
|
|
|
+ │ │ ├── "{arch}.rope.dimension_count" (e.g., "llama.rope.dimension_count")
|
|
|
+ │ │ └── "{arch}.attention.layer_norm_rms_epsilon" (e.g., "llama.attention.layer_norm_rms_epsilon")
|
|
|
+ │ │
|
|
|
+ │ ├── Tokenizer parameters
|
|
|
+ │ │ ├── "tokenizer.ggml.model" (e.g., "llama")
|
|
|
+ │ │ ├── "tokenizer.ggml.tokens" (vocabulary tokens)
|
|
|
+ │ │ ├── "tokenizer.ggml.bos_id" (beginning of sequence token ID)
|
|
|
+ │ │ └── "tokenizer.ggml.eos_id" (end of sequence token ID)
|
|
|
+ │ │
|
|
|
+ │ └── General metadata
|
|
|
+ │ └── "general.architecture" (e.g., "llama", "qwen2", "phi")
|
|
|
+ │
|
|
|
+ └── Tensor Data Section
|
|
|
+ ├── Common tensors:
|
|
|
+ │ ├── "token_embd.weight" (token embedding matrix)
|
|
|
+ │ ├── "rope_freqs.weight" (RoPE frequency weights)
|
|
|
+ │ ├── "output_norm.weight" (final layer normalization)
|
|
|
+ │ └── "output.weight" (output projection)
|
|
|
+ │
|
|
|
+ └── Layer-specific tensors:
|
|
|
+ ├── "blk.{i}.attn_q.weight" (query projection)
|
|
|
+ ├── "blk.{i}.attn_k.weight" (key projection)
|
|
|
+ ├── "blk.{i}.attn_v.weight" (value projection)
|
|
|
+ ├── "blk.{i}.attn_output.weight" (attention output)
|
|
|
+ ├── "blk.{i}.attn_norm.weight" (attention normalization)
|
|
|
+ ├── "blk.{i}.ffn_norm.weight" (feed-forward normalization)
|
|
|
+ ├── "blk.{i}.ffn_up.weight" (FFN up projection)
|
|
|
+ ├── "blk.{i}.ffn_down.weight" (FFN down projection)
|
|
|
+ └── "blk.{i}.ffn_gate.weight" (FFN gate projection)
|
|
|
+ ```
|
|
|
+
|
|
|
+ - Key conversion details include:
|
|
|
+ - Linear weight matrices (sometimes need transposition)
|
|
|
+ - Layer normalization weights (might need reshaping)
|
|
|
+ - **Note: In GGML, FFN values are for the MLP (Multi-Layer Perceptron) part of the architecture**
|
|
|
+
|
|
|
+- Test conversion:
|
|
|
+ ```bash
|
|
|
+ go run . create <my-model> -f /path/to/Modelfile
|
|
|
+ ```
|
|
|
+
|
|
|
+### 6. Open a Draft PR
|
|
|
+
|
|
|
+After implementing the initial weight conversion, creating a draft pull request is recommended as it:
|
|
|
+- Establishes a communication channel with Ollama maintainers
|
|
|
+- Allows for early feedback on your approach
|
|
|
+- Makes it easier to track progress and changes
|
|
|
+
|
|
|
+To open a draft PR:
|
|
|
+1. Fork the repository
|
|
|
+2. Create a new branch for your model implementation
|
|
|
+3. Make initial commits with your weight conversion implementation
|
|
|
+4. Open a PR in the `ollama/ollama` repository and mark it as draft
|
|
|
+5. Include a clear description of the model you're implementing
|
|
|
+
|
|
|
+### 7. Implement Model Logic
|
|
|
+
|
|
|
+- Reference existing model implementations
|
|
|
+- Implement `New()` and `Forward()` functions in `model.go`:
|
|
|
+
|
|
|
+ **The `New()` function:**
|
|
|
+ - Creates and initializes your model structure
|
|
|
+ - Loads configuration parameters (embedding size, attention heads, etc.)
|
|
|
+ - Sets up the tokenizer with vocabulary and special tokens
|
|
|
+ - Initializes all model layers and weights
|
|
|
+ - **Important**: Sets up the KV cache for efficient inference
|
|
|
+ - Example:
|
|
|
+ ```go
|
|
|
+ func New(c ml.Config) (model.Model, error) {
|
|
|
+ m := &Model{
|
|
|
+ // Initialize tokenizer
|
|
|
+ BytePairEncoding: model.NewBytePairEncoding(...),
|
|
|
+ // Create layer arrays
|
|
|
+ Layers: make([]Layer, c.Uint("block_count")),
|
|
|
+ // Set model parameters
|
|
|
+ Options: &Options{...},
|
|
|
+ }
|
|
|
+ // Initialize KV cache for efficient inference
|
|
|
+ m.Cache = kvcache.NewCausalCache(m.Shift)
|
|
|
+ return m, nil
|
|
|
+ }
|
|
|
+ ```
|
|
|
+
|
|
|
+ **The `Forward()` function:**
|
|
|
+ - **What it does**: Defines the computational graph of your model
|
|
|
+ - **Important**: The graph is NOT executed immediately - it's built first, then executed later when predictions are needed
|
|
|
+ - Takes input tokens and converts them to embeddings
|
|
|
+ - Processes inputs through transformer layers (attention and feed-forward networks)
|
|
|
+ - Creates the path for data flow through your model's components
|
|
|
+ - Example:
|
|
|
+ ```go
|
|
|
+ func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
|
|
|
+ // Convert inputs to tensors
|
|
|
+ inputTensor, _ := ctx.FromIntSlice(opts.Inputs, len(opts.Inputs))
|
|
|
+ positionsTensor, _ := ctx.FromIntSlice(opts.Positions, len(opts.Positions))
|
|
|
+
|
|
|
+ // Initial token embedding
|
|
|
+ hiddenStates := m.TokenEmbedding.Forward(ctx, inputTensor)
|
|
|
+
|
|
|
+ // Process through transformer layers
|
|
|
+ for i, layer := range m.Layers {
|
|
|
+ m.Cache.SetLayer(i)
|
|
|
+ hiddenStates = layer.Forward(ctx, hiddenStates, positionsTensor, m.Cache, m.Options)
|
|
|
+ }
|
|
|
+
|
|
|
+ // Final processing and output
|
|
|
+ normalizedOutput := m.OutputNorm.Forward(ctx, hiddenStates, m.modelEpsilon)
|
|
|
+ logits := m.Output.Forward(ctx, normalizedOutput)
|
|
|
+
|
|
|
+ // Return logits for requested positions
|
|
|
+ outputsTensor, _ := ctx.FromIntSlice(opts.Outputs, len(opts.Outputs))
|
|
|
+ return logits.Rows(ctx, outputsTensor), nil
|
|
|
+ }
|
|
|
+ ```
|
|
|
+
|
|
|
+ **Key Components to Implement:**
|
|
|
+
|
|
|
+ 1. **KV Cache**:
|
|
|
+ - Improves inference performance for text generation
|
|
|
+ - How it works: Stores previously computed key and value tensors from self-attention, avoiding redundant computations
|
|
|
+ - Implementation: Use the `kvcache.NewCausalCache()` for autoregressive models
|
|
|
+ - Important: Must implement the `Shift()` function to handle rotary position embeddings with the cache
|
|
|
+
|
|
|
+ 2. **Self-Attention**:
|
|
|
+ - Core component that learns contextual relationships between tokens
|
|
|
+ - Implements query, key, value projections and their interactions
|
|
|
+ - Must handle positional encoding (usually Rotary Position Embeddings)
|
|
|
+ - Uses the KV cache to make generation efficient
|
|
|
+
|
|
|
+ 3. **Normalization Layers**:
|
|
|
+ - Purpose: Stabilizes training and maintains consistent activation distributions
|
|
|
+ - Types: RMSNorm, LayerNorm, etc. depending on model architecture
|
|
|
+ - Implementation: Apply before attention and feed-forward networks
|
|
|
+ - Example: `normalizedOutput := m.OutputNorm.Forward(ctx, hiddenStates, m.modelEpsilon)`
|
|
|
+
|
|
|
+ 4. **Activation Functions**:
|
|
|
+ - Purpose: Introduces non-linearity into the model
|
|
|
+ - Common types: SILU (Sigmoid Linear Unit), GELU, ReLU
|
|
|
+ - Found in feed-forward/MLP blocks
|
|
|
+ - Example:
|
|
|
+ ```go
|
|
|
+ // SwiGLU activation in MLP
|
|
|
+ gateActivation := mlp.Gate.Forward(ctx, hiddenState).SILU(ctx)
|
|
|
+ upProjection := mlp.Up.Forward(ctx, hiddenState)
|
|
|
+ intermediateStates := gateActivation.Mul(ctx, upProjection)
|
|
|
```
|
|
|
+- Run your forward pass:
|
|
|
+ ```bash
|
|
|
+ # in the root of the ollama directory
|
|
|
+ go build .
|
|
|
+ OLLAMA_DEBUG=1 ./ollama serve
|
|
|
+ OLLAMA_DEBUG=1 ./ollama run <my-model>
|
|
|
+ ```
|
|
|
+- Compare output with research implementation
|
|
|
|
|
|
-### 5. Testing
|
|
|
+### 8. Quality Check and Final Steps
|
|
|
|
|
|
1. Add comprehensive tests to:
|
|
|
- `model_test.go`
|
|
@@ -189,28 +291,36 @@ import (
|
|
|
- Model initialization
|
|
|
- Text generation
|
|
|
|
|
|
-### 6. Model Deployment
|
|
|
+3. **Create Final Modelfile**
|
|
|
+ - Replace the static prompt with the proper Go template for your model:
|
|
|
+ ```
|
|
|
+ FROM <converted-gguf>
|
|
|
+ TEMPLATE <prompt-template> # Add the proper Go template for your model, including tools if needed
|
|
|
+ LICENSE <license-info> # Add appropriate license information
|
|
|
+ # Add additional parameters if needed
|
|
|
+ ```
|
|
|
+
|
|
|
+4. **End-to-end Testing**
|
|
|
+ - Run your model with your local Ollama build to ensure that it functions as expected
|
|
|
+
|
|
|
+5. Benchmark
|
|
|
+ - Run performance benchmarks on your model implementation
|
|
|
+ ```go
|
|
|
+ # from the root of the Ollama directory, while a server is running locally
|
|
|
+ go build .
|
|
|
+ OLLAMA_DEBUG=1 ./ollama serve
|
|
|
+ go test -bench=. -m <your-model-name> ./...
|
|
|
+ ```
|
|
|
+
|
|
|
+### 9. Finalize PR and Publish to ollama.com
|
|
|
|
|
|
1. **Finalize Pull Request**
|
|
|
- Move PR out of draft state
|
|
|
- Address reviewer feedback
|
|
|
|
|
|
-2. **Deploy to ollama.com**
|
|
|
- - Determine model prompt format
|
|
|
- - Convert prompt format to Go template
|
|
|
- - Create final Modelfile:
|
|
|
- ```
|
|
|
- FROM <converted-gguf>
|
|
|
- TEMPLATE <prompt-template>
|
|
|
- LICENSE <license-info>
|
|
|
- # Add additional parameters if needed
|
|
|
- ```
|
|
|
+2. **Publish to ollama.com**
|
|
|
- Push to ollama.com:
|
|
|
```bash
|
|
|
ollama create <your-namespace>/<your-model> -f /path/to/Modelfile
|
|
|
ollama push <your-namespace>/<your-model>
|
|
|
- ```
|
|
|
-
|
|
|
-3. **Integration Testing**
|
|
|
- - Run end-to-end tests
|
|
|
- - Verify model behavior in production environment
|
|
|
+ ```
|