|
@@ -1,78 +1,72 @@
|
|
|
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
|
|
|
-index 7cda5f10..50fbcf08 100644
|
|
|
+index 7cda5f10..671806fd 100644
|
|
|
--- a/examples/llava/clip.cpp
|
|
|
+++ b/examples/llava/clip.cpp
|
|
|
-@@ -709,9 +709,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|
|
+@@ -708,11 +708,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|
|
+ if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
|
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
|
|
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
|
|
|
-
|
|
|
+-
|
|
|
- embeddings = ggml_gelu(ctx0, embeddings);
|
|
|
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
|
|
|
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
|
|
|
-+ // paligemma missing second linear layer
|
|
|
-+ if (model.mm_2_w) {
|
|
|
+-
|
|
|
++ if (model.mm_2_w)
|
|
|
++ {
|
|
|
+ embeddings = ggml_gelu(ctx0, embeddings);
|
|
|
+ embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
|
|
|
+ embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
|
|
|
+ }
|
|
|
-
|
|
|
} else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
|
|
-@@ -2076,7 +2079,10 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
|
|
+ embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
|
|
|
+@@ -2076,6 +2077,10 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
|
|
return ctx->vision_model.mm_model_peg_0_b->ne[0];
|
|
|
}
|
|
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
|
|
|
-- return ctx->vision_model.mm_2_b->ne[0];
|
|
|
-+ // paligemma missing second linear layer
|
|
|
-+ if (ctx->vision_model.mm_2_b == nullptr) {
|
|
|
++ if (ctx->vision_model.mm_2_b == nullptr)
|
|
|
++ {
|
|
|
+ return ctx->vision_model.mm_0_b->ne[0];
|
|
|
+ }
|
|
|
+ return ctx->vision_model.mm_2_b->ne[0];
|
|
|
}
|
|
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
|
|
- return ctx->vision_model.mm_3_b->ne[0];
|
|
|
diff --git a/include/llama.h b/include/llama.h
|
|
|
-index f23355a6..7c6301bf 100644
|
|
|
+index f23355a6..e48da401 100644
|
|
|
--- a/include/llama.h
|
|
|
+++ b/include/llama.h
|
|
|
-@@ -444,6 +444,9 @@ extern "C" {
|
|
|
+@@ -444,6 +444,12 @@ extern "C" {
|
|
|
// Frees all allocated memory
|
|
|
LLAMA_API void llama_free(struct llama_context * ctx);
|
|
|
|
|
|
-+ // save image embeddings
|
|
|
++ // Sets image embeddings
|
|
|
+ LLAMA_API void set_image_embeds(struct llama_context *ctx, float *data);
|
|
|
++
|
|
|
++ // Gets architecture
|
|
|
++ LLAMA_API int llama_get_architecture(struct llama_model *model);
|
|
|
+
|
|
|
LLAMA_API int64_t llama_time_us(void);
|
|
|
|
|
|
LLAMA_API size_t llama_max_devices(void);
|
|
|
diff --git a/src/llama.cpp b/src/llama.cpp
|
|
|
-index a7b1c9eb..b0a6bc27 100644
|
|
|
+index a7b1c9eb..ee067919 100644
|
|
|
--- a/src/llama.cpp
|
|
|
+++ b/src/llama.cpp
|
|
|
-@@ -2668,6 +2668,7 @@ struct llama_context {
|
|
|
+@@ -2710,6 +2710,8 @@ struct llama_context {
|
|
|
|
|
|
- const struct llama_model & model;
|
|
|
+ bool logits_all = false;
|
|
|
|
|
|
+ float *image_embeds = nullptr;
|
|
|
- struct llama_cparams cparams;
|
|
|
- struct llama_sampling sampling;
|
|
|
- struct llama_kv_cache kv_self;
|
|
|
-@@ -2751,6 +2752,10 @@ struct llama_context {
|
|
|
- struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
|
|
- };
|
|
|
-
|
|
|
-+void set_image_embeds(llama_context *ctx, float *data) {
|
|
|
-+ ctx->image_embeds = data;
|
|
|
-+}
|
|
|
+
|
|
|
- struct llama_lora_weight {
|
|
|
- struct ggml_tensor * a = nullptr;
|
|
|
- struct ggml_tensor * b = nullptr;
|
|
|
-@@ -11599,6 +11604,15 @@ struct llm_build_context {
|
|
|
+ // embeddings output (2-dimensional array: [n_outputs][n_embd])
|
|
|
+ // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
|
|
|
+ size_t embd_size = 0; // capacity (of floats) for embeddings
|
|
|
+@@ -11599,6 +11601,15 @@ struct llm_build_context {
|
|
|
|
|
|
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
|
|
|
|
|
-+ // set the image embeddings in the input tensor
|
|
|
-+ if (lctx.image_embeds) {
|
|
|
++ if (lctx.image_embeds)
|
|
|
++ {
|
|
|
+ struct ggml_tensor *image_embeds = ggml_dup_tensor(ctx0, inpL);
|
|
|
+ image_embeds->data = lctx.image_embeds;
|
|
|
+ image_embeds->ne[1] = 256;
|
|
@@ -83,12 +77,30 @@ index a7b1c9eb..b0a6bc27 100644
|
|
|
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
|
|
cb(inpL, "inp_scaled", -1);
|
|
|
|
|
|
-@@ -14589,7 +14603,7 @@ static int llama_decode_internal(
|
|
|
+@@ -14589,7 +14600,8 @@ static int llama_decode_internal(
|
|
|
}
|
|
|
|
|
|
// non-causal masks do not use the KV cache
|
|
|
- if (hparams.causal_attn) {
|
|
|
-+ if (hparams.causal_attn || lctx.image_embeds) {
|
|
|
++ if (hparams.causal_attn || lctx.image_embeds)
|
|
|
++ {
|
|
|
llama_kv_cache_update(&lctx);
|
|
|
|
|
|
// if we have enough unused cells before the current head ->
|
|
|
+@@ -16448,6 +16460,16 @@ void llama_free_model(struct llama_model * model) {
|
|
|
+ delete model;
|
|
|
+ }
|
|
|
+
|
|
|
++void set_image_embeds(llama_context *ctx, float *data)
|
|
|
++{
|
|
|
++ ctx->image_embeds = data;
|
|
|
++}
|
|
|
++
|
|
|
++int llama_get_architecture(llama_model *model)
|
|
|
++{
|
|
|
++ return model->arch;
|
|
|
++}
|
|
|
++
|
|
|
+ struct llama_context * llama_new_context_with_model(
|
|
|
+ struct llama_model * model,
|
|
|
+ struct llama_context_params params) {
|