浏览代码

Update 'llama2' -> 'llama3' in most places (#4116)

* Update 'llama2' -> 'llama3' in most places

---------

Co-authored-by: Patrick Devine <patrick@infrahq.com>
Dr Nic Williams 1 年之前
父节点
当前提交
e8aaea030e

+ 29 - 29
docs/api.md

@@ -17,7 +17,7 @@
 
 ### Model names
 
-Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama2:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
+Model names follow a `model:tag` format, where `model` can have an optional namespace such as `example/model`. Some examples are `orca-mini:3b-q4_1` and `llama3:70b`. The tag is optional and, if not provided, will default to `latest`. The tag is used to identify a specific version.
 
 ### Durations
 
@@ -66,7 +66,7 @@ Enable JSON mode by setting the `format` parameter to `json`. This will structur
 
 ```shell
 curl http://localhost:11434/api/generate -d '{
-  "model": "llama2",
+  "model": "llama3",
   "prompt": "Why is the sky blue?"
 }'
 ```
@@ -77,7 +77,7 @@ A stream of JSON objects is returned:
 
 ```json
 {
-  "model": "llama2",
+  "model": "llama3",
   "created_at": "2023-08-04T08:52:19.385406455-07:00",
   "response": "The",
   "done": false
@@ -99,7 +99,7 @@ To calculate how fast the response is generated in tokens per second (token/s),
 
 ```json
 {
-  "model": "llama2",
+  "model": "llama3",
   "created_at": "2023-08-04T19:22:45.499127Z",
   "response": "",
   "done": true,
@@ -121,7 +121,7 @@ A response can be received in one reply when streaming is off.
 
 ```shell
 curl http://localhost:11434/api/generate -d '{
-  "model": "llama2",
+  "model": "llama3",
   "prompt": "Why is the sky blue?",
   "stream": false
 }'
@@ -133,7 +133,7 @@ If `stream` is set to `false`, the response will be a single JSON object:
 
 ```json
 {
-  "model": "llama2",
+  "model": "llama3",
   "created_at": "2023-08-04T19:22:45.499127Z",
   "response": "The sky is blue because it is the color of the sky.",
   "done": true,
@@ -155,7 +155,7 @@ If `stream` is set to `false`, the response will be a single JSON object:
 
 ```shell
 curl http://localhost:11434/api/generate -d '{
-  "model": "llama2",
+  "model": "llama3",
   "prompt": "What color is the sky at different times of the day? Respond using JSON",
   "format": "json",
   "stream": false
@@ -166,7 +166,7 @@ curl http://localhost:11434/api/generate -d '{
 
 ```json
 {
-  "model": "llama2",
+  "model": "llama3",
   "created_at": "2023-11-09T21:07:55.186497Z",
   "response": "{\n\"morning\": {\n\"color\": \"blue\"\n},\n\"noon\": {\n\"color\": \"blue-gray\"\n},\n\"afternoon\": {\n\"color\": \"warm gray\"\n},\n\"evening\": {\n\"color\": \"orange\"\n}\n}\n",
   "done": true,
@@ -289,7 +289,7 @@ If you want to set custom options for the model at runtime rather than in the Mo
 
 ```shell
 curl http://localhost:11434/api/generate -d '{
-  "model": "llama2",
+  "model": "llama3",
   "prompt": "Why is the sky blue?",
   "stream": false,
   "options": {
@@ -332,7 +332,7 @@ curl http://localhost:11434/api/generate -d '{
 
 ```json
 {
-  "model": "llama2",
+  "model": "llama3",
   "created_at": "2023-08-04T19:22:45.499127Z",
   "response": "The sky is blue because it is the color of the sky.",
   "done": true,
@@ -354,7 +354,7 @@ If an empty prompt is provided, the model will be loaded into memory.
 
 ```shell
 curl http://localhost:11434/api/generate -d '{
-  "model": "llama2"
+  "model": "llama3"
 }'
 ```
 
@@ -364,7 +364,7 @@ A single JSON object is returned:
 
 ```json
 {
-  "model": "llama2",
+  "model": "llama3",
   "created_at": "2023-12-18T19:52:07.071755Z",
   "response": "",
   "done": true
@@ -407,7 +407,7 @@ Send a chat message with a streaming response.
 
 ```shell
 curl http://localhost:11434/api/chat -d '{
-  "model": "llama2",
+  "model": "llama3",
   "messages": [
     {
       "role": "user",
@@ -423,7 +423,7 @@ A stream of JSON objects is returned:
 
 ```json
 {
-  "model": "llama2",
+  "model": "llama3",
   "created_at": "2023-08-04T08:52:19.385406455-07:00",
   "message": {
     "role": "assistant",
@@ -438,7 +438,7 @@ Final response:
 
 ```json
 {
-  "model": "llama2",
+  "model": "llama3",
   "created_at": "2023-08-04T19:22:45.499127Z",
   "done": true,
   "total_duration": 4883583458,
@@ -456,7 +456,7 @@ Final response:
 
 ```shell
 curl http://localhost:11434/api/chat -d '{
-  "model": "llama2",
+  "model": "llama3",
   "messages": [
     {
       "role": "user",
@@ -471,7 +471,7 @@ curl http://localhost:11434/api/chat -d '{
 
 ```json
 {
-  "model": "registry.ollama.ai/library/llama2:latest",
+  "model": "registry.ollama.ai/library/llama3:latest",
   "created_at": "2023-12-12T14:13:43.416799Z",
   "message": {
     "role": "assistant",
@@ -495,7 +495,7 @@ Send a chat message with a conversation history. You can use this same approach
 
 ```shell
 curl http://localhost:11434/api/chat -d '{
-  "model": "llama2",
+  "model": "llama3",
   "messages": [
     {
       "role": "user",
@@ -519,7 +519,7 @@ A stream of JSON objects is returned:
 
 ```json
 {
-  "model": "llama2",
+  "model": "llama3",
   "created_at": "2023-08-04T08:52:19.385406455-07:00",
   "message": {
     "role": "assistant",
@@ -533,7 +533,7 @@ Final response:
 
 ```json
 {
-  "model": "llama2",
+  "model": "llama3",
   "created_at": "2023-08-04T19:22:45.499127Z",
   "done": true,
   "total_duration": 8113331500,
@@ -591,7 +591,7 @@ curl http://localhost:11434/api/chat -d '{
 
 ```shell
 curl http://localhost:11434/api/chat -d '{
-  "model": "llama2",
+  "model": "llama3",
   "messages": [
     {
       "role": "user",
@@ -609,7 +609,7 @@ curl http://localhost:11434/api/chat -d '{
 
 ```json
 {
-  "model": "registry.ollama.ai/library/llama2:latest",
+  "model": "registry.ollama.ai/library/llama3:latest",
   "created_at": "2023-12-12T14:13:43.416799Z",
   "message": {
     "role": "assistant",
@@ -651,7 +651,7 @@ Create a new model from a `Modelfile`.
 ```shell
 curl http://localhost:11434/api/create -d '{
   "name": "mario",
-  "modelfile": "FROM llama2\nSYSTEM You are mario from Super Mario Bros."
+  "modelfile": "FROM llama3\nSYSTEM You are mario from Super Mario Bros."
 }'
 ```
 
@@ -758,7 +758,7 @@ A single JSON object will be returned.
       }
     },
     {
-      "name": "llama2:latest",
+      "name": "llama3:latest",
       "modified_at": "2023-12-07T09:32:18.757212583-08:00",
       "size": 3825819519,
       "digest": "fe938a131f40e6f6d40083c9f0f430a515233eb2edaa6d72eb85c50d64f2300e",
@@ -792,7 +792,7 @@ Show information about a model including details, modelfile, template, parameter
 
 ```shell
 curl http://localhost:11434/api/show -d '{
-  "name": "llama2"
+  "name": "llama3"
 }'
 ```
 
@@ -827,8 +827,8 @@ Copy a model. Creates a model with another name from an existing model.
 
 ```shell
 curl http://localhost:11434/api/copy -d '{
-  "source": "llama2",
-  "destination": "llama2-backup"
+  "source": "llama3",
+  "destination": "llama3-backup"
 }'
 ```
 
@@ -854,7 +854,7 @@ Delete a model and its data.
 
 ```shell
 curl -X DELETE http://localhost:11434/api/delete -d '{
-  "name": "llama2:13b"
+  "name": "llama3:13b"
 }'
 ```
 
@@ -882,7 +882,7 @@ Download a model from the ollama library. Cancelled pulls are resumed from where
 
 ```shell
 curl http://localhost:11434/api/pull -d '{
-  "name": "llama2"
+  "name": "llama3"
 }'
 ```
 

+ 5 - 5
docs/faq.md

@@ -32,7 +32,7 @@ When using the API, specify the `num_ctx` parameter:
 
 ```
 curl http://localhost:11434/api/generate -d '{
-  "model": "llama2",
+  "model": "llama3",
   "prompt": "Why is the sky blue?",
   "options": {
     "num_ctx": 4096
@@ -88,9 +88,9 @@ On windows, Ollama inherits your user and system environment variables.
 
 3. Edit or create New variable(s) for your user account for `OLLAMA_HOST`, `OLLAMA_MODELS`, etc.
 
-4. Click OK/Apply to save 
+4. Click OK/Apply to save
 
-5. Run `ollama` from a new terminal window 
+5. Run `ollama` from a new terminal window
 
 
 ## How can I expose Ollama on my network?
@@ -221,12 +221,12 @@ The `keep_alive` parameter can be set to:
 
 For example, to preload a model and leave it in memory use:
 ```shell
-curl http://localhost:11434/api/generate -d '{"model": "llama2", "keep_alive": -1}'
+curl http://localhost:11434/api/generate -d '{"model": "llama3", "keep_alive": -1}'
 ```
 
 To unload the model and free up memory use:
 ```shell
-curl http://localhost:11434/api/generate -d '{"model": "llama2", "keep_alive": 0}'
+curl http://localhost:11434/api/generate -d '{"model": "llama3", "keep_alive": 0}'
 ```
 
 Alternatively, you can change the amount of time all models are loaded into memory by setting the `OLLAMA_KEEP_ALIVE` environment variable when starting the Ollama server. The `OLLAMA_KEEP_ALIVE` variable uses the same parameter types as the `keep_alive` parameter types mentioned above. Refer to section explaining [how to configure the Ollama server](#how-do-i-configure-ollama-server) to correctly set the environment variable.

+ 17 - 25
docs/modelfile.md

@@ -10,7 +10,7 @@ A model file is the blueprint to create and share models with Ollama.
 - [Examples](#examples)
 - [Instructions](#instructions)
   - [FROM (Required)](#from-required)
-    - [Build from llama2](#build-from-llama2)
+    - [Build from llama3](#build-from-llama3)
     - [Build from a bin file](#build-from-a-bin-file)
   - [PARAMETER](#parameter)
     - [Valid Parameters and Values](#valid-parameters-and-values)
@@ -48,7 +48,7 @@ INSTRUCTION arguments
 An example of a `Modelfile` creating a mario blueprint:
 
 ```modelfile
-FROM llama2
+FROM llama3
 # sets the temperature to 1 [higher is more creative, lower is more coherent]
 PARAMETER temperature 1
 # sets the context window size to 4096, this controls how many tokens the LLM can use as context to generate the next token
@@ -67,33 +67,25 @@ To use this:
 
 More examples are available in the [examples directory](../examples).
 
-### `Modelfile`s in [ollama.com/library][1]
-
-There are two ways to view `Modelfile`s underlying the models in [ollama.com/library][1]:
-
-- Option 1: view a details page from a model's tags page:
-  1.  Go to a particular model's tags (e.g. https://ollama.com/library/llama2/tags)
-  2.  Click on a tag (e.g. https://ollama.com/library/llama2:13b)
-  3.  Scroll down to "Layers"
-      - Note: if the [`FROM` instruction](#from-required) is not present,
-        it means the model was created from a local file
-- Option 2: use `ollama show` to print the `Modelfile` for any local models like so:
+To view the Modelfile of a given model, use the `ollama show --modelfile` command.
 
   ```bash
-  > ollama show --modelfile llama2:13b
+  > ollama show --modelfile llama3
   # Modelfile generated by "ollama show"
   # To build a new Modelfile based on this one, replace the FROM line with:
-  # FROM llama2:13b
+  # FROM llama3:latest
+  FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
+  TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
+
+  {{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|>
 
-  FROM /root/.ollama/models/blobs/sha256:123abc
-  TEMPLATE """[INST] {{ if .System }}<<SYS>>{{ .System }}<</SYS>>
+  {{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|>
 
-  {{ end }}{{ .Prompt }} [/INST] """
-  SYSTEM """"""
-  PARAMETER stop [INST]
-  PARAMETER stop [/INST]
-  PARAMETER stop <<SYS>>
-  PARAMETER stop <</SYS>>
+  {{ .Response }}<|eot_id|>"""
+  PARAMETER stop "<|start_header_id|>"
+  PARAMETER stop "<|end_header_id|>"
+  PARAMETER stop "<|eot_id|>"
+  PARAMETER stop "<|reserved_special_token"
   ```
 
 ## Instructions
@@ -106,10 +98,10 @@ The `FROM` instruction defines the base model to use when creating a model.
 FROM <model name>:<tag>
 ```
 
-#### Build from llama2
+#### Build from llama3
 
 ```modelfile
-FROM llama2
+FROM llama3
 ```
 
 A list of available base models:

+ 5 - 5
docs/openai.md

@@ -25,7 +25,7 @@ chat_completion = client.chat.completions.create(
             'content': 'Say this is a test',
         }
     ],
-    model='llama2',
+    model='llama3',
 )
 ```
 
@@ -43,7 +43,7 @@ const openai = new OpenAI({
 
 const chatCompletion = await openai.chat.completions.create({
   messages: [{ role: 'user', content: 'Say this is a test' }],
-  model: 'llama2',
+  model: 'llama3',
 })
 ```
 
@@ -53,7 +53,7 @@ const chatCompletion = await openai.chat.completions.create({
 curl http://localhost:11434/v1/chat/completions \
     -H "Content-Type: application/json" \
     -d '{
-        "model": "llama2",
+        "model": "llama3",
         "messages": [
             {
                 "role": "system",
@@ -113,7 +113,7 @@ curl http://localhost:11434/v1/chat/completions \
 Before using a model, pull it locally `ollama pull`:
 
 ```shell
-ollama pull llama2
+ollama pull llama3
 ```
 
 ### Default model names
@@ -121,7 +121,7 @@ ollama pull llama2
 For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
 
 ```
-ollama cp llama2 gpt-3.5-turbo
+ollama cp llama3 gpt-3.5-turbo
 ```
 
 Afterwards, this new model name can be specified the `model` field:

+ 3 - 3
docs/tutorials/langchainjs.md

@@ -15,7 +15,7 @@ import { Ollama } from "langchain/llms/ollama";
 
 const ollama = new Ollama({
   baseUrl: "http://localhost:11434",
-  model: "llama2",
+  model: "llama3",
 });
 
 const answer = await ollama.invoke(`why is the sky blue?`);
@@ -23,10 +23,10 @@ const answer = await ollama.invoke(`why is the sky blue?`);
 console.log(answer);
 ```
 
-That will get us the same thing as if we ran `ollama run llama2 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
+That will get us the same thing as if we ran `ollama run llama3 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
 
 ```bash
-npm install cheerio 
+npm install cheerio
 ```
 
 ```javascript

+ 2 - 1
docs/windows.md

@@ -1,3 +1,4 @@
+<<<<<<< HEAD
 # Ollama Windows Preview
 
 Welcome to the Ollama Windows preview.
@@ -27,7 +28,7 @@ Logs will often be helpful in diagnosing the problem (see
 
 Here's a quick example showing API access from `powershell`
 ```powershell
-(Invoke-WebRequest -method POST -Body '{"model":"llama2", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
+(Invoke-WebRequest -method POST -Body '{"model":"llama3", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
 ```
 
 ## Troubleshooting

+ 1 - 1
examples/bash-comparemodels/README.md

@@ -2,7 +2,7 @@
 
 When calling `ollama`, you can pass it a file to run all the prompts in the file, one after the other:
 
-`ollama run llama2 < sourcequestions.txt`
+`ollama run llama3 < sourcequestions.txt`
 
 This concept is used in the following example.
 

+ 1 - 1
examples/go-chat/main.go

@@ -35,7 +35,7 @@ func main() {
 
 	ctx := context.Background()
 	req := &api.ChatRequest{
-		Model:    "llama2",
+		Model:    "llama3",
 		Messages: messages,
 	}
 

+ 5 - 5
examples/langchain-python-rag-document/main.py

@@ -40,9 +40,9 @@ while True:
         continue
 
     # Prompt
-    template = """Use the following pieces of context to answer the question at the end. 
-    If you don't know the answer, just say that you don't know, don't try to make up an answer. 
-    Use three sentences maximum and keep the answer as concise as possible. 
+    template = """Use the following pieces of context to answer the question at the end.
+    If you don't know the answer, just say that you don't know, don't try to make up an answer.
+    Use three sentences maximum and keep the answer as concise as possible.
     {context}
     Question: {question}
     Helpful Answer:"""
@@ -51,11 +51,11 @@ while True:
         template=template,
     )
 
-    llm = Ollama(model="llama2:13b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
+    llm = Ollama(model="llama3:8b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
     qa_chain = RetrievalQA.from_chain_type(
         llm,
         retriever=vectorstore.as_retriever(),
         chain_type_kwargs={"prompt": QA_CHAIN_PROMPT},
     )
 
-    result = qa_chain({"query": query})
+    result = qa_chain({"query": query})

+ 2 - 3
examples/langchain-python-simple/README.md

@@ -4,10 +4,10 @@ This example is a basic "hello world" of using LangChain with Ollama.
 
 ## Running the Example
 
-1. Ensure you have the `llama2` model installed:
+1. Ensure you have the `llama3` model installed:
 
    ```bash
-   ollama pull llama2
+   ollama pull llama3
    ```
 
 2. Install the Python Requirements.
@@ -21,4 +21,3 @@ This example is a basic "hello world" of using LangChain with Ollama.
    ```bash
    python main.py
    ```
-  

+ 1 - 1
examples/langchain-python-simple/main.py

@@ -1,6 +1,6 @@
 from langchain.llms import Ollama
 
 input = input("What is your question?")
-llm = Ollama(model="llama2")
+llm = Ollama(model="llama3")
 res = llm.predict(input)
 print (res)

+ 1 - 1
examples/modelfile-mario/Modelfile

@@ -1,4 +1,4 @@
-FROM llama2
+FROM llama3
 PARAMETER temperature 1
 SYSTEM """
 You are Mario from super mario bros, acting as an assistant.

+ 3 - 3
examples/modelfile-mario/readme.md

@@ -2,12 +2,12 @@
 
 # Example character: Mario
 
-This example shows how to create a basic character using Llama2 as the base model.
+This example shows how to create a basic character using Llama3 as the base model.
 
 To run this example:
 
 1. Download the Modelfile
-2. `ollama pull llama2` to get the base model used in the model file.
+2. `ollama pull llama3` to get the base model used in the model file.
 3. `ollama create NAME -f ./Modelfile`
 4. `ollama run NAME`
 
@@ -18,7 +18,7 @@ Ask it some questions like "Who are you?" or "Is Peach in trouble again?"
 What the model file looks like:
 
 ```
-FROM llama2
+FROM llama3
 PARAMETER temperature 1
 SYSTEM """
 You are Mario from Super Mario Bros, acting as an assistant.

+ 7 - 7
examples/python-json-datagenerator/predefinedschema.py

@@ -2,16 +2,16 @@ import requests
 import json
 import random
 
-model = "llama2"
+model = "llama3"
 template = {
-  "firstName": "", 
-  "lastName": "", 
+  "firstName": "",
+  "lastName": "",
   "address": {
-    "street": "", 
-    "city": "", 
-    "state": "", 
+    "street": "",
+    "city": "",
+    "state": "",
     "zipCode": ""
-  }, 
+  },
   "phoneNumber": ""
 }
 

+ 1 - 1
examples/python-json-datagenerator/randomaddresses.py

@@ -12,7 +12,7 @@ countries = [
     "France",
 ]
 country = random.choice(countries)
-model = "llama2"
+model = "llama3"
 
 prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."
 

+ 2 - 2
examples/python-json-datagenerator/readme.md

@@ -6,10 +6,10 @@ There are two python scripts in this example. `randomaddresses.py` generates ran
 
 ## Running the Example
 
-1. Ensure you have the `llama2` model installed:
+1. Ensure you have the `llama3` model installed:
 
    ```bash
-   ollama pull llama2
+   ollama pull llama3
    ```
 
 2. Install the Python Requirements.

+ 1 - 1
examples/python-simplechat/client.py

@@ -2,7 +2,7 @@ import json
 import requests
 
 # NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
-model = "llama2"  # TODO: update this for whatever model you wish to use
+model = "llama3"  # TODO: update this for whatever model you wish to use
 
 
 def chat(messages):

+ 2 - 2
examples/python-simplechat/readme.md

@@ -4,10 +4,10 @@ The **chat** endpoint is one of two ways to generate text from an LLM with Ollam
 
 ## Running the Example
 
-1. Ensure you have the `llama2` model installed:
+1. Ensure you have the `llama3` model installed:
 
    ```bash
-   ollama pull llama2
+   ollama pull llama3
    ```
 
 2. Install the Python Requirements.

+ 2 - 2
examples/typescript-mentors/README.md

@@ -4,10 +4,10 @@ This example demonstrates how one would create a set of 'mentors' you can have a
 
 ## Usage
 
-1. Add llama2 to have the mentors ask your questions:
+1. Add llama3 to have the mentors ask your questions:
 
    ```bash
-   ollama pull llama2
+   ollama pull llama3
    ```
 
 2. Install prerequisites:

+ 2 - 2
examples/typescript-mentors/character-generator.ts

@@ -15,7 +15,7 @@ async function characterGenerator() {
   ollama.setModel("stablebeluga2:70b-q4_K_M");
   const bio = await ollama.generate(`create a bio of ${character} in a single long paragraph. Instead of saying '${character} is...' or '${character} was...' use language like 'You are...' or 'You were...'. Then create a paragraph describing the speaking mannerisms and style of ${character}. Don't include anything about how ${character} looked or what they sounded like, just focus on the words they said. Instead of saying '${character} would say...' use language like 'You should say...'. If you use quotes, always use single quotes instead of double quotes. If there are any specific words or phrases you used a lot, show how you used them. `);
 
-  const thecontents = `FROM llama2\nSYSTEM """\n${bio.response.replace(/(\r\n|\n|\r)/gm, " ").replace('would', 'should')} All answers to questions should be related back to what you are most known for.\n"""`;
+  const thecontents = `FROM llama3\nSYSTEM """\n${bio.response.replace(/(\r\n|\n|\r)/gm, " ").replace('would', 'should')} All answers to questions should be related back to what you are most known for.\n"""`;
 
   fs.writeFile(path.join(directory, 'Modelfile'), thecontents, (err: any) => {
     if (err) throw err;
@@ -23,4 +23,4 @@ async function characterGenerator() {
   });
 }
 
-characterGenerator();
+characterGenerator();

+ 2 - 2
examples/typescript-simplechat/client.ts

@@ -1,6 +1,6 @@
 import * as readline from "readline";
 
-const model = "llama2";
+const model = "llama3";
 type Message = {
   role: "assistant" | "user" | "system";
   content: string;
@@ -74,4 +74,4 @@ async function main() {
 
 }
 
-main();
+main();