|
@@ -1,157 +1,68 @@
|
|
|
package mistral3
|
|
|
|
|
|
import (
|
|
|
- "fmt"
|
|
|
- "math"
|
|
|
- "strings"
|
|
|
-
|
|
|
"github.com/ollama/ollama/kvcache"
|
|
|
"github.com/ollama/ollama/ml"
|
|
|
- "github.com/ollama/ollama/ml/nn"
|
|
|
"github.com/ollama/ollama/model"
|
|
|
"github.com/ollama/ollama/model/input"
|
|
|
)
|
|
|
|
|
|
-type TextOptions struct {
|
|
|
- hiddenSize, numHeads, numKVHeads, headDim int
|
|
|
- eps, ropeBase, ropeScale float32
|
|
|
- ropeDim uint32
|
|
|
-}
|
|
|
-
|
|
|
type Model struct {
|
|
|
model.Base
|
|
|
- model.BytePairEncoding
|
|
|
+ *TextModel
|
|
|
|
|
|
- TokenEmbedding *nn.Embedding `gguf:"token_embd"`
|
|
|
- Layers []Layer `gguf:"blk"`
|
|
|
- OutputNorm *nn.RMSNorm `gguf:"output_norm"`
|
|
|
- Output *nn.Linear `gguf:"output,alt:token_embd"`
|
|
|
-
|
|
|
- *TextOptions
|
|
|
-}
|
|
|
+ // TODO: Add VisionModel field
|
|
|
+ // *VisionModel `gguf:"v,vision"`
|
|
|
|
|
|
-func New(c ml.Config) (model.Model, error) {
|
|
|
- if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
|
|
|
- return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
|
|
|
- }
|
|
|
-
|
|
|
- m := Model{
|
|
|
- BytePairEncoding: model.NewBytePairEncoding(
|
|
|
- c.String("tokenizer.ggml.pretokenizer", `[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]*[\p{Ll}\p{Lm}\p{Lo}\p{M}]+|[^\r\n\p{L}\p{N}]?[\p{Lu}\p{Lt}\p{Lm}\p{Lo}\p{M}]+[\p{Ll}\p{Lm}\p{Lo}\p{M}]*|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n/]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
|
|
|
- &model.Vocabulary{
|
|
|
- Values: c.Strings("tokenizer.ggml.tokens"),
|
|
|
- Types: c.Uints("tokenizer.ggml.token_type"),
|
|
|
- Merges: c.Strings("tokenizer.ggml.merges"),
|
|
|
- BOS: int32(c.Uint("tokenizer.ggml.bos_token_id", 1)),
|
|
|
- AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
|
|
|
- EOS: int32(c.Uint("tokenizer.ggml.eos_token_id", 2)),
|
|
|
- AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
|
|
|
- },
|
|
|
- ),
|
|
|
- Layers: make([]Layer, c.Uint("block_count")),
|
|
|
- TextOptions: &TextOptions{
|
|
|
- hiddenSize: int(c.Uint("embedding_length")),
|
|
|
- numHeads: int(c.Uint("attention.head_count")),
|
|
|
- numKVHeads: int(c.Uint("attention.head_count_kv")),
|
|
|
- headDim: int(c.Uint("attention.key_length")),
|
|
|
- eps: c.Float("attention.layer_norm_rms_epsilon"),
|
|
|
- ropeBase: c.Float("rope.freq_base"),
|
|
|
- ropeScale: c.Float("rope.freq_scale", 1),
|
|
|
- ropeDim: c.Uint("rope.dimension_count"),
|
|
|
- },
|
|
|
- }
|
|
|
+ // TODO: Add MultiModalProjector field for combining vision and text features
|
|
|
+ // *MultiModalProjector `gguf:"mm"`
|
|
|
|
|
|
- m.Cache = kvcache.NewCausalCache(m.Shift)
|
|
|
-
|
|
|
- return &m, nil
|
|
|
+ // TODO: Add ImageProcessor field
|
|
|
+ // ImageProcessor
|
|
|
}
|
|
|
|
|
|
-type SelfAttention struct {
|
|
|
- Query *nn.Linear `gguf:"attn_q"`
|
|
|
- Key *nn.Linear `gguf:"attn_k"`
|
|
|
- Value *nn.Linear `gguf:"attn_v"`
|
|
|
- Output *nn.Linear `gguf:"attn_output"`
|
|
|
- RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
|
|
|
-}
|
|
|
+// TODO: Implement MultimodalProcessor interface
|
|
|
+// var _ model.MultimodalProcessor = (*Model)(nil)
|
|
|
|
|
|
-func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
|
|
- batchSize := hiddenState.Dim(1)
|
|
|
- ropeType := uint32(0)
|
|
|
- // Get head dimension - use explicit value if available, otherwise calculate
|
|
|
- headDim := opts.headDim
|
|
|
- if headDim == 0 {
|
|
|
- headDim = opts.hiddenSize / opts.numHeads
|
|
|
+func New(c ml.Config) (model.Model, error) {
|
|
|
+ textModel, err := NewTextModel(c)
|
|
|
+ if err != nil {
|
|
|
+ return nil, err
|
|
|
}
|
|
|
|
|
|
- // Query projection and reshape
|
|
|
- q := sa.Query.Forward(ctx, hiddenState)
|
|
|
- q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
|
|
|
- q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
|
|
-
|
|
|
- // Key projection and reshape
|
|
|
- k := sa.Key.Forward(ctx, hiddenState)
|
|
|
- k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
|
|
- k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
|
|
|
-
|
|
|
- // Value projection and reshape
|
|
|
- v := sa.Value.Forward(ctx, hiddenState)
|
|
|
- v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
|
|
|
-
|
|
|
- // Attention computation
|
|
|
- scaleFactor := 1.0 / math.Sqrt(float64(headDim))
|
|
|
- kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
|
|
|
+ m := &Model{
|
|
|
+ TextModel: textModel,
|
|
|
+ // TODO: Initialize VisionModel if present
|
|
|
+ // VisionModel: newVisionModel(c),
|
|
|
|
|
|
- // Reshape attention output for final projection
|
|
|
- outputDim := headDim * opts.numHeads
|
|
|
- kqv = kqv.Reshape(ctx, outputDim, batchSize)
|
|
|
+ // TODO: Initialize ImageProcessor
|
|
|
+ // ImageProcessor: newImageProcessor(c),
|
|
|
|
|
|
- // Apply output projection
|
|
|
- return sa.Output.Forward(ctx, kqv)
|
|
|
-}
|
|
|
-
|
|
|
-func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
|
|
|
- return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
|
|
|
-}
|
|
|
-
|
|
|
-type MLP struct {
|
|
|
- Up *nn.Linear `gguf:"ffn_up"`
|
|
|
- Down *nn.Linear `gguf:"ffn_down"`
|
|
|
- Gate *nn.Linear `gguf:"ffn_gate"`
|
|
|
-}
|
|
|
-
|
|
|
-func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextOptions) ml.Tensor {
|
|
|
- hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
|
|
|
- return mlp.Down.Forward(ctx, hiddenState)
|
|
|
-}
|
|
|
-
|
|
|
-type Layer struct {
|
|
|
- AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
|
|
|
- SelfAttention *SelfAttention
|
|
|
- MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
|
|
|
- MLP *MLP
|
|
|
-}
|
|
|
-
|
|
|
-func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *TextOptions) ml.Tensor {
|
|
|
- residual := hiddenState
|
|
|
-
|
|
|
- hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
- hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
|
|
|
-
|
|
|
- // In the final layer (outputs != nil), optimize by pruning to just the token positions
|
|
|
- // we need logits for.
|
|
|
- if outputs != nil {
|
|
|
- hiddenState = hiddenState.Rows(ctx, outputs)
|
|
|
- residual = residual.Rows(ctx, outputs)
|
|
|
+ // TODO: Initialize MultiModalProjector
|
|
|
+ // MultiModalProjector: &MultiModalProjector{...},
|
|
|
}
|
|
|
|
|
|
- hiddenState = hiddenState.Add(ctx, residual)
|
|
|
- residual = hiddenState
|
|
|
+ m.Cache = kvcache.NewCausalCache(m.TextModel.Shift)
|
|
|
|
|
|
- hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
|
|
|
- hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
|
|
|
- return hiddenState.Add(ctx, residual)
|
|
|
+ return m, nil
|
|
|
}
|
|
|
|
|
|
+// TODO: Implement EncodeMultimodal method for processing images
|
|
|
+// func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
|
|
|
+// // Check if vision model is available
|
|
|
+// // Decode image
|
|
|
+// // Process the image
|
|
|
+// // Pass through vision model
|
|
|
+// // Project vision outputs to text embedding space
|
|
|
+// // Return vision embeddings
|
|
|
+// }
|
|
|
+
|
|
|
+// TODO: Implement PostTokenize method to handle vision tokens
|
|
|
+// func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
|
|
|
+// // Add special tokens around image data
|
|
|
+// // Insert placeholders for image tokens
|
|
|
+// }
|
|
|
+
|
|
|
func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
|
|
|
inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs))
|
|
|
if err != nil {
|
|
@@ -168,23 +79,10 @@ func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) {
|
|
|
return nil, err
|
|
|
}
|
|
|
|
|
|
- // Process text inputs
|
|
|
- hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
|
|
|
-
|
|
|
- // Process through text transformer layers
|
|
|
- for i, layer := range m.Layers {
|
|
|
- m.Cache.SetLayer(i)
|
|
|
-
|
|
|
- var lastLayerOutputs ml.Tensor
|
|
|
- if i == len(m.Layers)-1 {
|
|
|
- lastLayerOutputs = outputs
|
|
|
- }
|
|
|
-
|
|
|
- hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.TextOptions)
|
|
|
- }
|
|
|
+ // TODO: Add handling of multimodal inputs
|
|
|
+ // Set image embeddings into hidden state if present in opts.Multimodal
|
|
|
|
|
|
- hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
|
|
|
- return m.Output.Forward(ctx, hiddenState), nil
|
|
|
+ return m.TextModel.Forward(ctx, inputs, positions, outputs, opts, m.Cache), nil
|
|
|
}
|
|
|
|
|
|
func init() {
|