|
@@ -1040,6 +1040,7 @@ struct llama_server_context
|
|
|
img.request_encode_image = false;
|
|
|
}
|
|
|
|
|
|
+ LOG_TEE("slot has images: %d\n", slot.images.size());
|
|
|
return slot.images.size() > 0;
|
|
|
}
|
|
|
|
|
@@ -1271,6 +1272,71 @@ struct llama_server_context
|
|
|
}
|
|
|
}
|
|
|
|
|
|
+ bool process_images_paligemma(server_slot &slot, int n_batch)
|
|
|
+ {
|
|
|
+ int n_past = 0;
|
|
|
+ int image_idx = 0;
|
|
|
+ slot_image &img = slot.images[image_idx];
|
|
|
+
|
|
|
+ // rescale image embeddings
|
|
|
+ float *data = img.image_embedding;
|
|
|
+ for (int i = 0; i < 2048 * 256; i++)
|
|
|
+ {
|
|
|
+ data[i] = data[i] / sqrt(2048);
|
|
|
+ }
|
|
|
+
|
|
|
+ set_image_embeds(ctx, data);
|
|
|
+
|
|
|
+ // generate user_prompt -> this should contain image tokens prepended and a new line appended:
|
|
|
+ // batch.n_tokens += (int)slot.images.size() * llama_n_embd(model);
|
|
|
+
|
|
|
+ std::vector<llama_token> tokens;
|
|
|
+ std::string prompt = "What is in this image";
|
|
|
+ std::vector<llama_token> text = ::llama_tokenize(ctx, prompt, false, true);
|
|
|
+
|
|
|
+ for (int i = 0; i < (int)slot.images.size() * 256; i++)
|
|
|
+ {
|
|
|
+ tokens.push_back(257152);
|
|
|
+ }
|
|
|
+
|
|
|
+ tokens.push_back(2);
|
|
|
+
|
|
|
+ printf("btach.n_tokens %d\n", batch.n_tokens);
|
|
|
+
|
|
|
+ for (int i = 0; i < text.size(); i++)
|
|
|
+ {
|
|
|
+ // printf("token [%d]: %d\n", text[i]);
|
|
|
+ tokens.push_back(text[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ tokens.push_back(108);
|
|
|
+
|
|
|
+ batch.n_tokens = (int)slot.images.size() * 256 + 2 + text.size();
|
|
|
+
|
|
|
+ for (int i = 0; i < batch.n_tokens; i++)
|
|
|
+ {
|
|
|
+ printf("token %d: %d\n", i, tokens[i]);
|
|
|
+ }
|
|
|
+
|
|
|
+ for (int i = 0; i < batch.n_tokens; i += n_batch)
|
|
|
+ {
|
|
|
+ printf("calling decode\n");
|
|
|
+ int n_eval = (int)batch.n_tokens - i;
|
|
|
+ if (n_eval > n_batch)
|
|
|
+ {
|
|
|
+ n_eval = n_batch;
|
|
|
+ }
|
|
|
+ printf("n_eval: %d, n_past: %d", n_eval, n_past);
|
|
|
+ if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, 0, 0)))
|
|
|
+ {
|
|
|
+ printf("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, batch.n_tokens, n_batch, n_past);
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ n_past += n_eval;
|
|
|
+ }
|
|
|
+ return true;
|
|
|
+ }
|
|
|
+
|
|
|
// for multiple images processing
|
|
|
bool ingest_images(server_slot &slot, int n_batch)
|
|
|
{
|
|
@@ -1833,12 +1899,17 @@ struct llama_server_context
|
|
|
slot_npast++;
|
|
|
}
|
|
|
|
|
|
- if (has_images && !ingest_images(slot, n_batch))
|
|
|
+ LOG_ERROR("checking has images", {
|
|
|
+ {"has images", has_images},
|
|
|
+ {"task_id", slot.task_id},
|
|
|
+ });
|
|
|
+ // if (has_images && !ingest_images(slot, n_batch))
|
|
|
+ if (has_images && !process_images_paligemma(slot, n_batch))
|
|
|
{
|
|
|
LOG_ERROR("failed processing images", {
|
|
|
- {"slot_id", slot.id},
|
|
|
- {"task_id", slot.task_id},
|
|
|
- });
|
|
|
+ {"slot_id", slot.id},
|
|
|
+ {"task_id", slot.task_id},
|
|
|
+ });
|
|
|
// FIXME @phymbert: to be properly tested
|
|
|
// early returning without changing the slot state will block the slot for ever
|
|
|
// no one at the moment is checking the return value
|