Browse Source

gemma3 quantization (#9776)

Patrick Devine 1 month ago
parent
commit
ef378ad673

+ 19 - 0
llama/llama.cpp/src/llama-arch.cpp

@@ -37,6 +37,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_MINICPM3,         "minicpm3"         },
     { LLM_ARCH_GEMMA,            "gemma"            },
     { LLM_ARCH_GEMMA2,           "gemma2"           },
+    { LLM_ARCH_GEMMA3,           "gemma3"           },
     { LLM_ARCH_STARCODER2,       "starcoder2"       },
     { LLM_ARCH_MAMBA,            "mamba"            },
     { LLM_ARCH_XVERSE,           "xverse"           },
@@ -804,6 +805,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_POST_NORM,   "blk.%d.post_ffw_norm" },
         },
     },
+    {
+        LLM_ARCH_GEMMA3,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_ATTN_POST_NORM,  "blk.%d.post_attention_norm" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+            { LLM_TENSOR_FFN_POST_NORM,   "blk.%d.post_ffw_norm" },
+        },
+    },
     {
         LLM_ARCH_STARCODER2,
         {

+ 1 - 0
llama/llama.cpp/src/llama-arch.h

@@ -41,6 +41,7 @@ enum llm_arch {
     LLM_ARCH_MINICPM3,
     LLM_ARCH_GEMMA,
     LLM_ARCH_GEMMA2,
+    LLM_ARCH_GEMMA3,
     LLM_ARCH_STARCODER2,
     LLM_ARCH_MAMBA,
     LLM_ARCH_XVERSE,

+ 7 - 0
llama/llama.cpp/src/llama-model.cpp

@@ -878,6 +878,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                     default: type = LLM_TYPE_UNKNOWN;
                }
             } break;
+        case LLM_ARCH_GEMMA3:
+            {
+            } break;
         case LLM_ARCH_STARCODER2:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -2537,6 +2540,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                         layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
                     }
                 } break;
+            case LLM_ARCH_GEMMA3:
+                {
+                } break;
             case LLM_ARCH_STARCODER2:
                 {
                     tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -4029,6 +4035,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
         case LLM_ARCH_PHIMOE:
         case LLM_ARCH_GEMMA:
         case LLM_ARCH_GEMMA2:
+        case LLM_ARCH_GEMMA3:
         case LLM_ARCH_STARCODER2:
         case LLM_ARCH_OPENELM:
         case LLM_ARCH_GPTNEOX:

+ 9 - 0
llama/llama.cpp/src/llama-quant.cpp

@@ -737,6 +737,15 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
         // This used to be a regex, but <regex> has an extreme cost to compile times.
         bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
 
+        // don't quantize vision stuff
+        quantize &= name.find("v.blk.") == std::string::npos;
+
+        quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
+        quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
+        quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
+        quantize &= name.find("v.position_embedding.weight") == std::string::npos;
+        quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
+
         // quantize only 2D and 3D tensors (experts)
         quantize &= (ggml_n_dims(tensor) >= 2);
 

+ 113 - 0
llama/patches/0021-gemma3-quantization.patch

@@ -0,0 +1,113 @@
+From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
+From: Patrick Devine <patrick@infrahq.com>
+Date: Fri, 14 Mar 2025 16:33:23 -0700
+Subject: [PATCH] gemma3 quantization
+
+---
+ src/llama-arch.cpp  | 19 +++++++++++++++++++
+ src/llama-arch.h    |  1 +
+ src/llama-model.cpp |  7 +++++++
+ src/llama-quant.cpp |  9 +++++++++
+ 4 files changed, 36 insertions(+)
+
+diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
+index b6f20286..b443fcd3 100644
+--- a/src/llama-arch.cpp
++++ b/src/llama-arch.cpp
+@@ -37,6 +37,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
+     { LLM_ARCH_MINICPM3,         "minicpm3"         },
+     { LLM_ARCH_GEMMA,            "gemma"            },
+     { LLM_ARCH_GEMMA2,           "gemma2"           },
++    { LLM_ARCH_GEMMA3,           "gemma3"           },
+     { LLM_ARCH_STARCODER2,       "starcoder2"       },
+     { LLM_ARCH_MAMBA,            "mamba"            },
+     { LLM_ARCH_XVERSE,           "xverse"           },
+@@ -804,6 +805,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
+             { LLM_TENSOR_FFN_POST_NORM,   "blk.%d.post_ffw_norm" },
+         },
+     },
++    {
++        LLM_ARCH_GEMMA3,
++        {
++            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
++            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
++            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
++            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
++            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
++            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
++            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
++            { LLM_TENSOR_ATTN_POST_NORM,  "blk.%d.post_attention_norm" },
++            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
++            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
++            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
++            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
++            { LLM_TENSOR_FFN_POST_NORM,   "blk.%d.post_ffw_norm" },
++        },
++    },
+     {
+         LLM_ARCH_STARCODER2,
+         {
+diff --git a/src/llama-arch.h b/src/llama-arch.h
+index ec742224..aad92a5d 100644
+--- a/src/llama-arch.h
++++ b/src/llama-arch.h
+@@ -41,6 +41,7 @@ enum llm_arch {
+     LLM_ARCH_MINICPM3,
+     LLM_ARCH_GEMMA,
+     LLM_ARCH_GEMMA2,
++    LLM_ARCH_GEMMA3,
+     LLM_ARCH_STARCODER2,
+     LLM_ARCH_MAMBA,
+     LLM_ARCH_XVERSE,
+diff --git a/src/llama-model.cpp b/src/llama-model.cpp
+index ab1a07d1..70183041 100644
+--- a/src/llama-model.cpp
++++ b/src/llama-model.cpp
+@@ -878,6 +878,9 @@ void llama_model::load_hparams(llama_model_loader & ml) {
+                     default: type = LLM_TYPE_UNKNOWN;
+                }
+             } break;
++        case LLM_ARCH_GEMMA3:
++            {
++            } break;
+         case LLM_ARCH_STARCODER2:
+             {
+                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
+@@ -2537,6 +2540,9 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
+                         layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
+                     }
+                 } break;
++            case LLM_ARCH_GEMMA3:
++                {
++                } break;
+             case LLM_ARCH_STARCODER2:
+                 {
+                     tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+@@ -4029,6 +4035,7 @@ enum llama_rope_type llama_model_rope_type(const struct llama_model * model) {
+         case LLM_ARCH_PHIMOE:
+         case LLM_ARCH_GEMMA:
+         case LLM_ARCH_GEMMA2:
++        case LLM_ARCH_GEMMA3:
+         case LLM_ARCH_STARCODER2:
+         case LLM_ARCH_OPENELM:
+         case LLM_ARCH_GPTNEOX:
+diff --git a/src/llama-quant.cpp b/src/llama-quant.cpp
+index 6eb1da08..d2f3a510 100644
+--- a/src/llama-quant.cpp
++++ b/src/llama-quant.cpp
+@@ -737,6 +737,15 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
+         // This used to be a regex, but <regex> has an extreme cost to compile times.
+         bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
+ 
++        // don't quantize vision stuff
++        quantize &= name.find("v.blk.") == std::string::npos;
++
++        quantize &= name.find("mm.mm_input_projection.weight") == std::string::npos;
++        quantize &= name.find("mm.mm_soft_emb_norm.weight") == std::string::npos;
++        quantize &= name.find("v.patch_embedding.weight") == std::string::npos;
++        quantize &= name.find("v.position_embedding.weight") == std::string::npos;
++        quantize &= name.find("v.post_layernorm.weight") == std::string::npos;
++
+         // quantize only 2D and 3D tensors (experts)
+         quantize &= (ggml_n_dims(tensor) >= 2);
+