|
@@ -100,10 +100,8 @@ func New(workDir, model string, adapters, projectors []string, opts api.Options)
|
|
break
|
|
break
|
|
}
|
|
}
|
|
|
|
|
|
- // This handles two cases:
|
|
|
|
- // 1. overhead + tensors are always loaded into scratch memory even with num_gpu 0
|
|
|
|
- // 2. it seems llama.cpp always tries to allocate the entire kv cache (even if later split into layers) into vram or crashes
|
|
|
|
- if requiredAlloc > available || requiredKv > available {
|
|
|
|
|
|
+ // requiredAlloc is always loaded for the CUDA runner, so don't load it if it won't fit
|
|
|
|
+ if requiredAlloc > available {
|
|
log.Printf("not enough vram available, falling back to CPU only")
|
|
log.Printf("not enough vram available, falling back to CPU only")
|
|
library = "cpu"
|
|
library = "cpu"
|
|
opts.NumGPU = 0
|
|
opts.NumGPU = 0
|
|
@@ -127,8 +125,7 @@ func New(workDir, model string, adapters, projectors []string, opts api.Options)
|
|
opts.NumGQA = 0
|
|
opts.NumGQA = 0
|
|
opts.RopeFrequencyBase = 0.0
|
|
opts.RopeFrequencyBase = 0.0
|
|
opts.RopeFrequencyScale = 0.0
|
|
opts.RopeFrequencyScale = 0.0
|
|
- gpuInfo := gpu.GetGPUInfo()
|
|
|
|
- return newLlmServer(gpuInfo.Library, model, adapters, projectors, opts)
|
|
|
|
|
|
+ return newLlmServer(library, model, adapters, projectors, opts)
|
|
}
|
|
}
|
|
|
|
|
|
// Give any native cgo implementations an opportunity to initialize
|
|
// Give any native cgo implementations an opportunity to initialize
|