package gemma2 import ( "math" "github.com/ollama/ollama/kvcache" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/ml/nn" "github.com/ollama/ollama/model" "github.com/ollama/ollama/model/input" ) type Options struct { hiddenSize, numHeads, numKVHeads int attnKeyLen, attnValLen int eps, ropeBase, ropeScale float32 attnLogitSoftcap float32 finalLogitSoftcap float32 largeModelScaling bool } type Model struct { model.Base model.SentencePieceModel TokenEmbedding *nn.Embedding `gguf:"token_embd"` Layers []Layer `gguf:"blk"` OutputNorm *nn.RMSNorm `gguf:"output_norm"` Output *nn.Linear `gguf:"output,alt:token_embd"` // just set to token_embd? *Options } const ( gemma27BLayerCount = 46 ) func New(c ml.Config) (model.Model, error) { m := Model{ SentencePieceModel: model.NewSentencePieceModel( c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`), &model.Vocabulary{ Values: c.Strings("tokenizer.ggml.tokens"), Scores: c.Floats("tokenizer.ggml.scores"), Types: c.Uints("tokenizer.ggml.token_type"), BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")), EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")), }, ), Layers: make([]Layer, c.Uint("block_count")), Options: &Options{ hiddenSize: int(c.Uint("embedding_length")), numHeads: int(c.Uint("attention.head_count")), numKVHeads: int(c.Uint("attention.head_count_kv")), attnKeyLen: int(c.Uint("attention.key_length")), attnValLen: int(c.Uint("attention.value_length")), eps: c.Float("attention.layer_norm_rms_epsilon"), ropeBase: c.Float("rope.freq_base", 10000.0), ropeScale: c.Float("rope.freq_scale", 1.0), attnLogitSoftcap: c.Float("attn_logit_softcapping"), finalLogitSoftcap: c.Float("final_logit_softcapping"), }, } slidingWindowLen := int32(c.Uint("attention.sliding_window")) m.Cache = kvcache.NewWrapperCache(kvcache.NewSWACache(slidingWindowLen, m.Shift), kvcache.NewCausalCache(m.Shift)) m.Cache.SetConfig(ml.CacheConfig{}) return &m, nil } type SelfAttention struct { Query *nn.Linear `gguf:"attn_q"` Key *nn.Linear `gguf:"attn_k"` Value *nn.Linear `gguf:"attn_v"` Output *nn.Linear `gguf:"attn_output"` } func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor { batchSize := hiddenState.Dim(1) ropeType := uint32(2) q := sa.Query.Forward(ctx, hiddenState) q = q.Reshape(ctx, opts.attnKeyLen, opts.numHeads, batchSize) q = q.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale) if opts.largeModelScaling { q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.hiddenSize/opts.numHeads))) } else { q = q.Scale(ctx, 1.0/math.Sqrt(float64(opts.attnKeyLen))) } k := sa.Key.Forward(ctx, hiddenState) k = k.Reshape(ctx, opts.attnKeyLen, opts.numKVHeads, batchSize) k = k.RoPE(ctx, positionIDs, nil, uint32(opts.attnKeyLen), ropeType, opts.ropeBase, opts.ropeScale) v := sa.Value.Forward(ctx, hiddenState) v = v.Reshape(ctx, opts.attnValLen, opts.numKVHeads, batchSize) cache.Put(ctx, k, v) k, v, mask := cache.Get(ctx) q = q.Permute(ctx, 0, 2, 1, 3) k = k.Permute(ctx, 0, 2, 1, 3) v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx) kq := k.Mulmat(ctx, q) // logit softcap kq = kq.Scale(ctx, 1.0/float64(opts.attnLogitSoftcap)) kq = kq.Tanh(ctx) kq = kq.Scale(ctx, float64(opts.attnLogitSoftcap)) kq = kq.Add(ctx, mask) kq = kq.Softmax(ctx) kqv := v.Mulmat(ctx, kq) kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx) kqv = kqv.Reshape(ctx, opts.attnValLen*opts.numHeads, batchSize) return sa.Output.Forward(ctx, kqv) } func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key.RoPE(ctx, shift, nil, uint32(m.Options.attnKeyLen), uint32(2), m.Options.ropeBase, m.Options.ropeScale), nil } type MLP struct { Up *nn.Linear `gguf:"ffn_up"` Down *nn.Linear `gguf:"ffn_down"` Gate *nn.Linear `gguf:"ffn_gate"` } func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor { hiddenState = mlp.Gate.Forward(ctx, hiddenState).GELU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState)) return mlp.Down.Forward(ctx, hiddenState) } type Layer struct { AttentionNorm *nn.RMSNorm `gguf:"attn_norm"` SelfAttention *SelfAttention PostAttentionNorm *nn.RMSNorm `gguf:"post_attention_norm"` MLPNorm *nn.RMSNorm `gguf:"ffn_norm"` MLP *MLP PostMLPNorm *nn.RMSNorm `gguf:"post_ffw_norm"` } func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor { residual := hiddenState hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps) hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts) hiddenState = l.PostAttentionNorm.Forward(ctx, hiddenState, opts.eps) // In the final layer (outputs != nil), optimize by pruning to just the token positions // we need logits for. if outputs != nil { hiddenState = hiddenState.Rows(ctx, outputs) residual = residual.Rows(ctx, outputs) } hiddenState = hiddenState.Add(ctx, residual) residual = hiddenState hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps) hiddenState = l.MLP.Forward(ctx, hiddenState, opts) hiddenState = l.PostMLPNorm.Forward(ctx, hiddenState, opts.eps) return hiddenState.Add(ctx, residual) } func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) { positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions)) if err != nil { return nil, err } outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs)) if err != nil { return nil, err } hiddenState := m.TokenEmbedding.Forward(ctx, batch.Inputs) hiddenState = hiddenState.Scale(ctx, math.Sqrt(float64(m.Options.hiddenSize))) if len(m.Layers) == gemma27BLayerCount { m.Options.largeModelScaling = true } for i, layer := range m.Layers { cacheType := i % 2 m.Cache.SetLayer(i) wc := m.Cache.(*kvcache.WrapperCache) wc.SetLayerType(cacheType) var lastLayerOutputs ml.Tensor if i == len(m.Layers)-1 { lastLayerOutputs = outputs } hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options) } hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps) hiddenState = m.Output.Forward(ctx, hiddenState) // final logit softcap hiddenState = hiddenState.Scale(ctx, 1.0/float64(m.Options.finalLogitSoftcap)) hiddenState = hiddenState.Tanh(ctx) return hiddenState.Scale(ctx, float64(m.Options.finalLogitSoftcap)), nil } func init() { model.Register("gemma2", New) }