package cache import ( "errors" "fmt" "log/slog" "math" "slices" "github.com/ollama/ollama/ml" ) var ErrNotSupported = errors.New("model does not support operation") type Cache interface { // ** used by model implementations ** // Returns an instance of the cache for layer 'i' Sub(i int) Cache // Returns the history of key and value tensors plus a mask // // The tensors are of shape embed dim, kv heads, batch size // The mask is of shape history size, batch size Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) // Stores a batch of key and value in the cache // // The tensors must be of shape embed dim, kv heads, batch size Put(ctx ml.Context, key, value ml.Tensor) // ** cache management ** // Closes the cache and frees resources associated with it Close() // Called before the start of the model's forward pass. For each // token in the coming batch, there must be a corresponding entry // in positions and seqs. StartForward(ctx ml.Context, positions []int32, seqs []int) error // Copies tokens in the range [0, len) from srcSeq to dstSeq CopyPrefix(srcSeq, dstSeq int, len int32) // Removes tokens in the range [beginIndex, endIndex) from seq. Set // endIndex to math.MaxInt32 to remove everything starting at beginIndex Remove(seq int, beginIndex, endIndex int32) error } type Causal struct { DType ml.DType Capacity int32 // current forward pass curLayer int curLoc int curBatchSize int curMask ml.Tensor curCellRange cellRange // metadata cells []cacheCell cellRanges map[int]cellRange // cache data storage backend ml.Backend cacheCtx ml.Context keys, values []ml.Tensor } type seqCell struct { seq int pos int32 } type cacheCell struct { sequences []seqCell } type cellRange struct { min int max int } func (cell cacheCell) findSeq(seq int) *seqCell { for i := range cell.sequences { if cell.sequences[i].seq == seq { return &cell.sequences[i] } } return nil } func NewCausalCache(backend ml.Backend, dtype ml.DType, capacity int32) Cache { return &Causal{ Capacity: capacity, DType: dtype, cells: make([]cacheCell, capacity), cellRanges: make(map[int]cellRange), backend: backend, cacheCtx: backend.NewContext(), } } func (c *Causal) Close() { c.cacheCtx.Close() } var ErrKvCacheFull = errors.New("could not find a kv cache slot") func (c *Causal) StartForward(ctx ml.Context, positions []int32, seqs []int) error { if len(positions) != len(seqs) { return fmt.Errorf("length of positions (%v) must match length of seqs (%v)", len(positions), len(seqs)) } c.curBatchSize = len(positions) if c.curBatchSize < 1 { return errors.New("batch size cannot be less than 1") } var err error c.curLoc, err = c.findStartLoc() if errors.Is(err, ErrKvCacheFull) { c.defrag() c.curLoc, err = c.findStartLoc() } if err != nil { return err } c.curCellRange = newRange() for i, pos := range positions { seq := seqs[i] c.cells[c.curLoc+i] = cacheCell{sequences: []seqCell{{seq: seq, pos: pos}}} ranges, ok := c.cellRanges[seq] if !ok { ranges = newRange() } if c.curLoc+i > ranges.max { ranges.max = c.curLoc + i } if ranges.max > c.curCellRange.max { c.curCellRange.max = ranges.max } if c.curLoc+i < ranges.min { ranges.min = c.curLoc + i } if ranges.min < c.curCellRange.min { c.curCellRange.min = ranges.min } c.cellRanges[seq] = ranges } c.curMask, err = c.buildMask(ctx, positions, seqs) return err } func newRange() cellRange { return cellRange{ min: math.MaxInt, max: 0, } } func (c *Causal) findStartLoc() (int, error) { var start, count int for i := range c.cells { if len(c.cells[i].sequences) == 0 { count++ if count >= c.curBatchSize { return start, nil } } else { start = i + 1 count = 0 } } return 0, fmt.Errorf("%w (length: %v)", ErrKvCacheFull, c.Capacity) } func (c *Causal) buildMask(ctx ml.Context, positions []int32, seqs []int) (ml.Tensor, error) { // TODO(jessegross): This makes a number of simplifications such as no padding, // which could be an issue for CUDA graphs and/or flash attention len := c.curCellRange.max - c.curCellRange.min + 1 mask := make([]float32, c.curBatchSize*len) for i := range c.curBatchSize { for j := c.curCellRange.min; j <= c.curCellRange.max; j++ { cellSeq := c.cells[j].findSeq(seqs[i]) if cellSeq == nil || cellSeq.pos > positions[i] { mask[i*len+(j-c.curCellRange.min)] = float32(math.Inf(-1)) } } } return ctx.FromFloatSlice(mask, len, c.curBatchSize) } func moveCell(ctx ml.Context, objs []ml.Tensor, src, dst, len int) { for _, obj := range objs { srcView := obj.View(ctx, int(obj.Stride(2))*src, int(obj.Dim(0)*obj.Dim(1))*len) dstView := obj.View(ctx, int(obj.Stride(2))*dst, int(obj.Dim(0)*obj.Dim(1))*len) ctx.Forward(srcView.Copy(ctx, dstView)) } } func (c *Causal) defrag() { slog.Debug("defragmenting kv cache") // Defrag strategy: // - Search for empty holes at the beginning of the cache, // filling them with active data starting at the end // - If there are contiguous elements that need to be moved, // combine them into a single operation by holding new moves // until we see the next one is non-contiguous // - Fill up the context with the maximum number of operations it // can hold then compute that and continue with a new context // // We could try to optimize placement by grouping blocks from // the same sequences together but most likely the next forward // pass will disrupt this anyways, so the real world benefit // seems limited as this time. ctx := c.backend.NewContext() // For every move, 6 tensors are required per layer (2 views and a // copy for each of k and v). For efficiency, we try to group // multiple contiguous blocks into a single move. However, if we // exceed the maximum number of tensors then we need to compute // what we have and start a new batch. maxMoves := ctx.MaxTensors() / (6 * len(c.keys)) moves := 0 var pendingSrc, pendingDst, pendingLen int for dst := range c.cells { if len(c.cells[dst].sequences) == 0 { for src := len(c.cells) - 1; src > dst; src-- { if len(c.cells[src].sequences) != 0 { c.cells[dst] = c.cells[src] c.cells[src] = cacheCell{} if pendingLen > 0 { if src == pendingSrc-pendingLen && dst == pendingDst+pendingLen { pendingSrc = src pendingLen++ break } else { moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen) moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen) moves++ } } pendingSrc = src pendingDst = dst pendingLen = 1 break } } } if moves >= maxMoves { ctx.Compute(nil) ctx.Close() ctx = c.backend.NewContext() moves = 0 } } if pendingLen > 0 { moveCell(ctx, c.keys, pendingSrc, pendingDst, pendingLen) moveCell(ctx, c.values, pendingSrc, pendingDst, pendingLen) moves++ } if moves > 0 { ctx.Compute(nil) } ctx.Close() for seq := range c.cellRanges { seqRange := newRange() for i, cell := range c.cells { if cell.findSeq(seq) != nil { if i < seqRange.min { seqRange.min = i } if i > seqRange.max { seqRange.max = i } } } c.cellRanges[seq] = seqRange } } func (c *Causal) Sub(i int) Cache { if i >= len(c.keys) { c.keys = append(c.keys, make([]ml.Tensor, i-len(c.keys)+1)...) c.values = append(c.values, make([]ml.Tensor, i-len(c.values)+1)...) } c.curLayer = i return c } func (c *Causal) Get(ctx ml.Context) (ml.Tensor, ml.Tensor, ml.Tensor) { key := c.keys[c.curLayer] value := c.values[c.curLayer] key = key.View(ctx, int(key.Stride(2))*c.curCellRange.min, int(key.Dim(0)), int(key.Stride(1)), int(key.Dim(1)), int(key.Stride(2)), int(c.curMask.Dim(0)), ) value = value.View(ctx, int(key.Stride(2))*c.curCellRange.min, int(value.Dim(0)), int(value.Stride(1)), int(value.Dim(1)), int(value.Stride(2)), int(c.curMask.Dim(0)), ) return key, value, c.curMask } func (c *Causal) Put(ctx ml.Context, key, value ml.Tensor) { if c.curBatchSize != int(key.Dim(2)) { panic(fmt.Errorf("inconsistent batch sizes (layer: %v, batch size: %v layer batch size: %v)", c.curLayer, c.curBatchSize, int(key.Dim(2)))) } if c.keys[c.curLayer] == nil || c.values[c.curLayer] == nil { c.keys[c.curLayer] = c.cacheCtx.Zeros(c.DType, key.Dim(0), key.Dim(1), int64(c.Capacity)) c.values[c.curLayer] = c.cacheCtx.Zeros(c.DType, value.Dim(0), value.Dim(1), int64(c.Capacity)) } ctx.Forward(key.Copy(ctx, c.keys[c.curLayer].View(ctx, int(key.Stride(2))*c.curLoc, int(key.Dim(0)*key.Dim(1)*key.Dim(2))))) ctx.Forward(value.Copy(ctx, c.values[c.curLayer].View(ctx, int(value.Stride(2))*c.curLoc, int(value.Dim(0)*value.Dim(1)*value.Dim(2))))) } func (c *Causal) CopyPrefix(srcSeq, dstSeq int, len int32) { seqRange := newRange() for i := range c.cells { srcCellSeq := c.cells[i].findSeq(srcSeq) dstCellSeq := c.cells[i].findSeq(dstSeq) if dstCellSeq != nil { c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s seqCell) bool { return s.seq == dstSeq }) } if srcCellSeq != nil && srcCellSeq.pos < len { c.cells[i].sequences = append(c.cells[i].sequences, seqCell{seq: dstSeq, pos: srcCellSeq.pos}) if i < seqRange.min { seqRange.min = i } if i > seqRange.max { seqRange.max = i } } } c.cellRanges[dstSeq] = seqRange } func (c *Causal) shift(seq int, beginIndex, offset int32) error { panic("Shift not yet implemented") } func (c *Causal) Remove(seq int, beginIndex, endIndex int32) error { var offset int32 if endIndex != math.MaxInt32 { offset = beginIndex - endIndex } seqRange := newRange() for i := range c.cells { cellSeq := c.cells[i].findSeq(seq) if cellSeq != nil { if cellSeq.pos >= beginIndex && cellSeq.pos < endIndex { c.cells[i].sequences = slices.DeleteFunc(c.cells[i].sequences, func(s seqCell) bool { return s.seq == seq }) } else { if cellSeq.pos >= endIndex { cellSeq.pos += offset } if i < seqRange.min { seqRange.min = i } if i > seqRange.max { seqRange.max = i } } } } if endIndex != math.MaxInt32 { err := c.shift(seq, endIndex, offset) if err != nil { return err } } c.cellRanges[seq] = seqRange return nil }