package ggml // #cgo CPPFLAGS: -I${SRCDIR}/ggml/include // #include // #include // #include "ggml.h" // #include "ggml-cpu.h" // #include "ggml-backend.h" import "C" import ( "context" "fmt" "io" "log/slog" "maps" "os" "runtime" "slices" "strconv" "strings" "sync/atomic" "unicode" "unsafe" "github.com/ollama/ollama/format" fs "github.com/ollama/ollama/fs/ggml" "github.com/ollama/ollama/ml" ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src" "golang.org/x/sync/errgroup" ) func devices() []*C.struct_ggml_backend_device { ggml.OnceLoad() ds := make([]*C.struct_ggml_backend_device, C.ggml_backend_dev_count()) for i := range ds { ds[i] = C.ggml_backend_dev_get(C.size_t(i)) } return ds } type Backend struct { meta *fs.GGML sched *C.struct_ggml_backend_sched tensors map[string]*C.struct_ggml_tensor // input is the backend used for inputs input *C.struct_ggml_backend_buffer_type // output is the backend used for outputs output *C.struct_ggml_backend_buffer_type // layers is the backend used for repeating layers layers map[int]*C.struct_ggml_backend_buffer_type flashAttention bool // maxGraphNodes is the maximum allowed number of graph nodes in this scheduler maxGraphNodes int } func New(ctx context.Context, r *os.File, params ml.BackendParams) (ml.Backend, error) { meta, n, err := fs.Decode(r, -1) if err != nil { return nil, err } slog.Info( "", "architecture", meta.KV().Architecture(), "file_type", meta.KV().FileType(), "name", meta.KV().String("general.name"), "description", meta.KV().String("general.description"), "num_tensors", len(meta.Tensors().Items()), "num_key_values", len(meta.KV()), ) type deviceBufferType struct { d *C.struct_ggml_backend_device bts []*C.struct_ggml_backend_buffer_type } var cpus, accels, gpus []*C.struct_ggml_backend_device for _, d := range devices() { switch C.ggml_backend_dev_type(d) { case C.GGML_BACKEND_DEVICE_TYPE_CPU: if len(cpus) == 0 { // only the first cpu device should be used cpus = append(cpus, d) } case C.GGML_BACKEND_DEVICE_TYPE_ACCEL: accels = append(accels, d) case C.GGML_BACKEND_DEVICE_TYPE_GPU: gpus = append(gpus, d) } } // create list of buffer types for the cpu cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)} for _, d := range append(accels, append(gpus, cpus...)...) { switch C.ggml_backend_dev_type(d) { case C.GGML_BACKEND_DEVICE_TYPE_CPU, C.GGML_BACKEND_DEVICE_TYPE_ACCEL: cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, C.ggml_backend_dev_buffer_type(d)) } } // create list of buffer types for each gpu var gpuDeviceBufferTypes []deviceBufferType for _, d := range gpus { bt := C.ggml_backend_dev_buffer_type(d) gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{ d: d, bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuDeviceBufferType.bts...), }) } useDefaultSplit := true for _, s := range params.TensorSplit { if s != 0 { useDefaultSplit = false break } } // calculate splits splits := make([]float32, len(gpus)) if useDefaultSplit { // default: split on free memory for i := range splits { var free, total C.size_t C.ggml_backend_dev_memory(gpus[i], &free, &total) splits[i] = float32(free) } } else { splits = params.TensorSplit } var sum float32 // cumulative sum of all splits for i := range splits { sum += splits[i] splits[i] = sum } // normalize splits for i := range splits { splits[i] /= sum } // inputs always use cpu input := cpuDeviceBufferType blocks := int(meta.KV().BlockCount()) // define a range of gpu layers. anything outside of this range is assigned to the cpu gpuRangeStart := max(0, blocks-params.NumGPULayers) gpuRangeStop := min(gpuRangeStart+params.NumGPULayers, blocks+1) assignLayer := func(i int) deviceBufferType { if i < gpuRangeStart || i >= gpuRangeStop { return cpuDeviceBufferType } index := slices.IndexFunc(splits, func(f float32) bool { return float32(i-gpuRangeStart)/float32(gpuRangeStop-gpuRangeStart) < f }) if index < 0 || index >= len(gpuDeviceBufferTypes) { return cpuDeviceBufferType } return gpuDeviceBufferTypes[index] } // repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1) layers := make([]deviceBufferType, blocks) for i := range layers { layers[i] = assignLayer(i) } // outputs are assigned iff allowed by splits and configured number of gpu layers output := assignLayer(blocks) maxTensors := len(meta.Tensors().Items()) maxTensors += 1 // each layer has at most 2 extra tensors for rope operations maxTensors += blocks * 2 type tensor struct { source *fs.Tensor target string } // some tensors are mapped to different names so keep a list targets := make(map[string][]string) // contexts are shared by tensors of the same buffer type ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context) createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor { for _, bt := range bts { if _, ok := ctxs[bt]; !ok { ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{ mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors), no_alloc: true, }) } targets[t.source.Name] = append(targets[t.source.Name], t.target) name := t.source.Name if t.target != "" { name = t.target } cname := C.CString(name) defer C.free(unsafe.Pointer(cname)) if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil { return tt } tt := C.ggml_new_tensor(ctxs[bt], t.source.Kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0]))) C.ggml_set_name(tt, cname) slog.Debug("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt))) //nolint:staticcheck // TODO: check if buffer type supports this tensor return tt } return nil } contains := func(s string, parts ...string) bool { split := strings.Split(s, ".") for _, part := range parts { if slices.Contains(split, part) { return true } } return false } for _, t := range meta.Tensors().Items() { switch { case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"): createTensor(tensor{source: t}, input.bts) if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" { createTensor(tensor{source: t, target: "output.weight"}, output.bts) } case contains(t.Name, "cls", "output", "output_norm"): createTensor(tensor{source: t}, output.bts) case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."): // TODO: assign vision tensors to the gpu if possible createTensor(tensor{source: t}, output.bts) case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"): // these tensors should be repeated per layer for i, layer := range layers { createTensor(tensor{ source: t, target: "blk." + strconv.Itoa(i) + "." + t.Name, }, layer.bts) } default: layerIndex := -1 if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 { if i, err := strconv.Atoi(fields[0]); err == nil { layerIndex = i } } if layerIndex >= 0 { createTensor(tensor{source: t}, layers[layerIndex].bts) } else { // load all other tensors on the cpu createTensor(tensor{source: t}, input.bts) } } } // allocate buffers for each context bbs := make(map[*C.struct_ggml_context]*C.struct_ggml_backend_buffer, len(ctxs)) for bt, c := range ctxs { if C.ggml_get_first_tensor(c) == nil { continue } b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt) C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS) bbs[c] = b } for bs := range maps.Values(bbs) { slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs)))) } // map tensor names to tensors for easy lookup later tensors := make(map[string]*C.struct_ggml_tensor) for _, c := range ctxs { for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) { tensors[C.GoString(C.ggml_get_name(t))] = t } } var doneBytes atomic.Uint64 totalBytes := uint64(n) - meta.Tensors().Offset g, ctx := errgroup.WithContext(ctx) g.SetLimit(runtime.GOMAXPROCS(0)) for _, t := range meta.Tensors().Items() { g.Go(func() error { tts := make([]*C.struct_ggml_tensor, max(1, len(targets[t.Name]))) for i := range tts { target := targets[t.Name][i] if target == "" { target = t.Name } tt, ok := tensors[target] if !ok { return fmt.Errorf("unassigned tensor: %s", t.Name) } tts[i] = tt } sr := io.NewSectionReader(r, int64(meta.Tensors().Offset+t.Offset), int64(t.Size())) bts := make([]byte, 128*format.KibiByte) var s uint64 for s < t.Size() { n, err := io.ReadFull(sr, bts[:min(len(bts), int(t.Size()-s))]) if err != nil { return err } for _, tt := range tts { C.ggml_backend_tensor_set(tt, unsafe.Pointer(&bts[0]), C.size_t(s), C.size_t(n)) } s += uint64(n) if params.Progress != nil { done := doneBytes.Add(uint64(n)) params.Progress(float32(done) / float32(totalBytes)) } } return nil }) } // start a goroutine to cancel the errgroup if the parent context is done go func() { <-ctx.Done() g.Go(func() error { return ctx.Err() }) }() if err := g.Wait(); err != nil { return nil, err } // map devices to backend buffer types so new tensors can be assigned to the correct device deviceBufferTypes := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend_buffer_type) // create backends and buffer types used for the compute graph scheduler var schedBackends []*C.struct_ggml_backend var schedBufts []*C.struct_ggml_backend_buffer_type for _, d := range append(gpus, append(accels, cpus...)...) { b := C.ggml_backend_dev_init(d, nil) bt := C.ggml_backend_get_default_buffer_type(b) if d := C.ggml_backend_get_device(b); C.ggml_backend_dev_type(d) == C.GGML_BACKEND_DEVICE_TYPE_CPU && len(gpus) > 0 { // use the first gpu host buffer type for gpu if possible if hbt := C.ggml_backend_dev_host_buffer_type(gpus[0]); hbt != nil { bt = hbt } } deviceBufferTypes[d] = bt schedBackends = append(schedBackends, b) schedBufts = append(schedBufts, bt) slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt))) if C.ggml_backend_is_cpu(b) { // set number of threads for cpu backend C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads))) } } maxGraphNodes := max(8192, len(meta.Tensors().Items())*5) return &Backend{ flashAttention: params.FlashAttention, meta: meta, tensors: tensors, sched: C.ggml_backend_sched_new( (*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])), (*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])), C.int(len(schedBackends)), C.size_t(maxGraphNodes), C._Bool(len(gpus) > 1 && slices.Contains(gpus, output.d)), ), input: deviceBufferTypes[input.d], output: deviceBufferTypes[output.d], layers: func() map[int]*C.struct_ggml_backend_buffer_type { m := make(map[int]*C.struct_ggml_backend_buffer_type) for i, layer := range layers { m[i] = deviceBufferTypes[layer.d] } return m }(), maxGraphNodes: maxGraphNodes, }, nil } func init() { ml.RegisterBackend("ggml", New) } func (b *Backend) Config() ml.Config { return b.meta.KV() } func (b *Backend) Get(name string) ml.Tensor { if t, ok := b.tensors[name]; ok { return &Tensor{b: b, t: t} } return nil } func (b *Backend) NewContext() ml.Context { return b.NewContextSize(b.maxGraphNodes) } func (b *Backend) NewContextSize(n int) ml.Context { if n > b.maxGraphNodes { panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes)) } return &Context{ b: b, maxGraphNodes: n, ctx: C.ggml_init(C.struct_ggml_init_params{ mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false), no_alloc: true, }), } } func (b *Backend) CacheConfig() ml.CacheConfig { if b.flashAttention { return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD} } else { return ml.CacheConfig{CachePadding: 32, PermutedV: true} } } type Context struct { b *Backend ctx *C.struct_ggml_context graph *C.struct_ggml_cgraph // buft is the buffer type used for new tensors buft *C.struct_ggml_backend_buffer_type // maxGraphNodes is the maximum allowed number of graph nodes in this context maxGraphNodes int } func (c Context) Input() ml.Context { if c.b.input != nil { return &Context{ b: c.b, ctx: c.ctx, buft: c.b.input, maxGraphNodes: c.maxGraphNodes, } } return &c } func (c Context) Output() ml.Context { if c.b.output != nil { return &Context{ b: c.b, ctx: c.ctx, buft: c.b.output, maxGraphNodes: c.maxGraphNodes, } } return &c } func (c Context) Layer(i int) ml.Context { if buft, ok := c.b.layers[i]; ok { return &Context{ b: c.b, ctx: c.ctx, buft: buft, maxGraphNodes: c.maxGraphNodes, } } return &c } func (c *Context) Forward(tensors ...ml.Tensor) ml.Context { if c.graph == nil { c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false) } for _, tensor := range tensors { C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t) } return c } func (c Context) Compute(tensors ...ml.Tensor) { C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph) C.ggml_backend_sched_reset(c.b.sched) needSync := true sync := func() { if needSync { C.ggml_backend_sched_synchronize(c.b.sched) needSync = false } } for _, t := range tensors { if C.ggml_nbytes(t.(*Tensor).t) > 0 { t.(*Tensor).sync = sync } } } func (c Context) MaxGraphNodes() int { return c.maxGraphNodes } func shapeToGGML(shape []int) *C.int64_t { sh := make([]C.int64_t, len(shape)) for i, s := range shape { sh[i] = C.int64_t(s) } return &sh[0] } func pad(length, pad C.size_t) C.size_t { return ((length + pad - 1) / pad) * pad } func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor { if c.buft == nil { panic("set Input, Output, or Layer before creating tensors") } var cdtype uint32 switch dtype { case ml.DTypeF32: cdtype = C.GGML_TYPE_F32 case ml.DTypeF16: cdtype = C.GGML_TYPE_F16 case ml.DTypeQ80: cdtype = C.GGML_TYPE_Q8_0 case ml.DTypeQ40: cdtype = C.GGML_TYPE_Q4_0 case ml.DTypeI32: cdtype = C.GGML_TYPE_I32 default: panic("unsupported dtype") } if len(shape) < 1 || shape[0] == 0 { var shape C.int64_t = 0 return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)} } else if len(shape) > 4 { panic("unsupported number of dimensions") } for _, dim := range shape { if dim < 1 { panic("invalid shape") } } t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape)) size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft)) b := C.ggml_backend_buft_alloc_buffer(c.buft, size) C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b)) return &Tensor{b: c.b, t: t} } func (c Context) Empty(dtype ml.DType, shape ...int) ml.Tensor { return c.newTensor(dtype, shape) } func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor { t := c.newTensor(dtype, shape) C.ggml_set_zero(t.(*Tensor).t) return t } func checkShape[S ~[]E, E any](s S, shape ...int) error { n := len(s) if n == 0 { return nil } for _, v := range shape { n /= v } if n != 1 { return fmt.Errorf("invalid shape: %v", shape) } return nil } func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) { if err := checkShape(s, shape...); err != nil { return nil, err } t := c.newTensor(ml.DTypeF32, shape) if len(s) > 0 { C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t)) } return t, nil } func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) { if err := checkShape(s, shape...); err != nil { return nil, err } t := c.newTensor(ml.DTypeI32, shape) if len(s) > 0 { C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t)) } return t, nil } func (c *Context) Close() { if c != nil { C.ggml_free(c.ctx) } } type Tensor struct { b *Backend t *C.struct_ggml_tensor sync func() } func (t *Tensor) LogValue() slog.Value { return slog.GroupValue( slog.String("name", C.GoString(C.ggml_get_name(t.t))), slog.String("type", C.GoString(C.ggml_type_name(t.t._type))), slog.Any("shape", t.Shape()), ) } func (t *Tensor) Dim(n int) int { return int(t.t.ne[n]) } func (t *Tensor) Stride(n int) int { return int(t.t.nb[n]) } func (t *Tensor) Shape() []int { shape := make([]int, C.ggml_n_dims(t.t)) for i := range shape { shape[i] = t.Dim(i) } return shape } func (t *Tensor) Bytes() (data []byte) { if t.sync != nil { data = make([]byte, C.ggml_nbytes(t.t)) t.sync() C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t)) } return } func (t *Tensor) Floats() (data []float32) { if t.sync != nil { data = make([]float32, C.ggml_nelements(t.t)) t.sync() C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t)) } return } func (t *Tensor) DType() ml.DType { switch t.t._type { case C.GGML_TYPE_F32: return ml.DTypeF32 case C.GGML_TYPE_F16: return ml.DTypeF16 case C.GGML_TYPE_Q8_0: return ml.DTypeQ80 case C.GGML_TYPE_Q4_0: return ml.DTypeQ40 case C.GGML_TYPE_I32: return ml.DTypeI32 default: return ml.DTypeOther } } func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor { if len(s) > 0 { return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim) } return t } func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)), } } func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_cont(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor { mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t) C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32) return &Tensor{ b: t.b, t: mul, } } func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor { tt := (&Tensor{b: t.b, t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w) if b != nil { tt = tt.Add(ctx, b) } return tt } func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor { return (&Tensor{b: t.b, t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w) } func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor { if len(shape) != 4 { panic("expected 4 dimensions") } return &Tensor{ b: t.b, t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])), } } func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor { if len(shape) != 4 { panic("expected 4 dimensions") } return &Tensor{ b: t.b, t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])), } } func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t), } } func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor { switch len(shape) { case 1: return &Tensor{ b: t.b, t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])), } case 2: return &Tensor{ b: t.b, t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])), } case 3: return &Tensor{ b: t.b, t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])), } case 4: return &Tensor{ b: t.b, t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])), } default: panic("unsupported number of dimensions") } } func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)), } } func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_soft_max(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor { if len(shape) != 4 { panic("expected 4 dimensions") } return &Tensor{ b: t.b, t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])), } } func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor { switch len(shape) { case 1: return &Tensor{ b: t.b, t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)), } case 3: return &Tensor{ b: t.b, t: C.ggml_view_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[2]), C.size_t(shape[1]), C.size_t(offset)), } case 5: return &Tensor{ b: t.b, t: C.ggml_view_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(offset)), } case 7: return &Tensor{ b: t.b, t: C.ggml_view_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]), C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]), C.size_t(offset)), } default: panic("unsupported number of dimensions") } } const ( ropeTypeNorm C.int = 0 ropeTypeNeox C.int = 2 ropeTypeMrope C.int = 8 ropeTypeVision C.int = 24 ) func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim, ropeType uint32, ropeBase, ropeScale float32) ml.Tensor { if ropeFactors == nil { ropeFactors = &Tensor{b: t.b} } dequant := t.t if C.ggml_is_quantized(t.t._type) { dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32) } return &Tensor{ b: t.b, t: C.ggml_rope_ext( ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t, C.int(ropeDim), C.int(ropeType), 131072, // YaRN n_ctx_train C.float(ropeBase), C.float(ropeScale), 0., // YaRN ext_factor 1., // YaRN attn_factor 32., // YaRN beta_fast 1., // YaRN beta_slow ), } } func (t *Tensor) GELU(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t), } } func (t *Tensor) SILU(ctx ml.Context) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t), } } func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)), } } func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor { return &Tensor{ b: t.b, t: C.ggml_pool_2d(ctx.(*Context).ctx, t.t, C.GGML_OP_POOL_AVG, C.int(k), C.int(k), C.int(s), C.int(s), C.float(p), C.float(p)), } } func (t *Tensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor { var tt *C.struct_ggml_tensor switch len(strides) { case 0: tt = C.ggml_set_1d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset)) case 1: tt = C.ggml_set_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset), C.size_t(strides[0])) default: panic("unsupported number of dimensions") } return &Tensor{b: t.b, t: tt} } func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.Tensor, scale float64) ml.Tensor { var kqMask *C.struct_ggml_tensor if mask != nil { kqMask = mask.(*Tensor).t } query := t.Permute(ctx, 0, 2, 1, 3) key = key.Permute(ctx, 0, 2, 1, 3) if t.b.flashAttention { value = value.Permute(ctx, 0, 2, 1, 3) kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0) C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32) return &Tensor{b: t.b, t: kqv} } else { kq := key.MulmatFullPrec(ctx, query) kq = &Tensor{ b: t.b, t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0), } kqv := value.Mulmat(ctx, kq) return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx) } }