package llama import ( "fmt" "math" "strings" "github.com/ollama/ollama/kvcache" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/ml/nn" "github.com/ollama/ollama/model" "github.com/ollama/ollama/model/input" ) type Options struct { hiddenSize, numHeads, numKVHeads int eps, ropeBase, ropeScale float32 ropeDim uint32 } type Model struct { model.Base model.BytePairEncoding TokenEmbedding *nn.Embedding `gguf:"token_embd"` Layers []Layer `gguf:"blk"` OutputNorm *nn.RMSNorm `gguf:"output_norm"` Output *nn.Linear `gguf:"output,alt:token_embd"` *Options } func New(c ml.Config) (model.Model, error) { if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") { return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model")) } m := Model{ BytePairEncoding: model.NewBytePairEncoding( c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`), &model.Vocabulary{ Values: c.Strings("tokenizer.ggml.tokens"), Types: c.Uints("tokenizer.ggml.token_type"), Merges: c.Strings("tokenizer.ggml.merges"), BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")), AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true), EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")), AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false), }, ), Layers: make([]Layer, c.Uint("block_count")), Options: &Options{ hiddenSize: int(c.Uint("embedding_length")), numHeads: int(c.Uint("attention.head_count")), numKVHeads: int(c.Uint("attention.head_count_kv")), eps: c.Float("attention.layer_norm_rms_epsilon"), ropeBase: c.Float("rope.freq_base"), ropeScale: c.Float("rope.freq_scale", 1), ropeDim: c.Uint("rope.dimension_count"), }, } m.Cache = kvcache.NewCausalCache(m.Shift) return &m, nil } type SelfAttention struct { Query *nn.Linear `gguf:"attn_q"` Key *nn.Linear `gguf:"attn_k"` Value *nn.Linear `gguf:"attn_v"` Output *nn.Linear `gguf:"attn_output"` RopeFactors ml.Tensor `gguf:"rope_freqs.weight"` } func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor { batchSize := hiddenState.Dim(1) headDim := opts.hiddenSize / opts.numHeads q := sa.Query.Forward(ctx, hiddenState) q = q.Reshape(ctx, headDim, opts.numHeads, batchSize) q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale) k := sa.Key.Forward(ctx, hiddenState) k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize) k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale) v := sa.Value.Forward(ctx, hiddenState) v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize) scaleFactor := 1.0 / math.Sqrt(float64(headDim)) kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache) kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize) return sa.Output.Forward(ctx, kqv) } func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) { return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, m.ropeDim, m.ropeBase, m.ropeScale), nil } type MLP struct { Up *nn.Linear `gguf:"ffn_up"` Down *nn.Linear `gguf:"ffn_down"` Gate *nn.Linear `gguf:"ffn_gate"` } func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor { hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState)) return mlp.Down.Forward(ctx, hiddenState) } type Layer struct { AttentionNorm *nn.RMSNorm `gguf:"attn_norm"` SelfAttention *SelfAttention MLPNorm *nn.RMSNorm `gguf:"ffn_norm"` MLP *MLP } func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor { residual := hiddenState hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps) hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts) // In the final layer (outputs != nil), optimize by pruning to just the token positions // we need logits for. if outputs != nil { hiddenState = hiddenState.Rows(ctx, outputs) residual = residual.Rows(ctx, outputs) } hiddenState = hiddenState.Add(ctx, residual) residual = hiddenState hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps) hiddenState = l.MLP.Forward(ctx, hiddenState, opts) return hiddenState.Add(ctx, residual) } func (m *Model) Forward(ctx ml.Context, opts input.Options) (ml.Tensor, error) { inputs, err := ctx.Input().FromIntSlice(opts.Inputs, len(opts.Inputs)) if err != nil { return nil, err } positions, err := ctx.Input().FromIntSlice(opts.Positions, len(opts.Positions)) if err != nil { return nil, err } outputs, err := ctx.Output().FromIntSlice(opts.Outputs, len(opts.Outputs)) if err != nil { return nil, err } hiddenState := m.TokenEmbedding.Forward(ctx, inputs) for i, layer := range m.Layers { m.Cache.SetLayer(i) var lastLayerOutputs ml.Tensor if i == len(m.Layers)-1 { lastLayerOutputs = outputs } hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options) } hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps) return m.Output.Forward(ctx, hiddenState), nil } func init() { model.Register("llama", New) }