package qwen2 import ( "fmt" "log/slog" "math" "github.com/ollama/ollama/cache" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/ml/nn" "github.com/ollama/ollama/model" ) type Options struct { hiddenSize, numHeads, numKVHeads int64 eps, ropeBase, ropeScale float32 ropeDim uint32 } type Model struct { model.Base model.BytePairEncoding TokenEmbedding *nn.Embedding `gguf:"token_embd"` Layers []Layer `gguf:"blk"` OutputNorm *nn.RMSNorm `gguf:"output_norm"` Output *nn.Linear `gguf:"output,alt:token_embd"` *Options } func New(c ml.Config) (model.Model, error) { m := &Model{ BytePairEncoding: model.BytePairEncoding{ Pretokenizer: c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`), Vocabulary: &model.Vocabulary{ Values: c.Strings("tokenizer.ggml.tokens"), Types: c.Uints("tokenizer.ggml.token_type"), Merges: c.Strings("tokenizer.ggml.merges"), BOS: c.Uint("tokenizer.ggml.bos_token_id"), EOS: c.Uint("tokenizer.ggml.eos_token_id"), }, }, Layers: make([]Layer, c.Uint("block_count")), Options: &Options{ hiddenSize: int64(c.Uint("embedding_length")), numHeads: int64(c.Uint("attention.head_count")), numKVHeads: int64(c.Uint("attention.head_count_kv")), eps: c.Float("attention.layer_norm_rms_epsilon"), ropeBase: c.Float("rope.freq_base"), ropeScale: c.Float("rope.freq_scale", 1), ropeDim: c.Uint("rope.dimension_count", 64), }, } slog.Debug("model configuration", "arch", "qwen2", "vocab_size", len(c.Strings("tokenizer.ggml.tokens")), "n_merges", len(c.Strings("tokenizer.ggml.merges")), "n_ctx_train", c.Uint("context_length"), "n_embd", m.hiddenSize, "n_layer", len(m.Layers), "n_head", m.numHeads, "n_head_kv", m.numKVHeads, "n_rot", m.ropeDim, "f_norm_rms_eps", m.eps, "rope_freq_base", m.ropeBase, "rope_freq_scale", m.ropeScale, "bos_token_id", c.Uint("tokenizer.ggml.bos_token_id"), "eos_token_id", c.Uint("tokenizer.ggml.eos_token_id"), ) return m, nil } type SelfAttention struct { Query *nn.Linear `gguf:"attn_q"` Key *nn.Linear `gguf:"attn_k"` Value *nn.Linear `gguf:"attn_v"` Output *nn.Linear `gguf:"attn_output"` } func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, inputPositions ml.Tensor, layerIdx int, cache cache.Cache, opts *Options) ml.Tensor { batchSize := hiddenState.Dim(1) headDim := opts.hiddenSize / opts.numHeads q := sa.Query.Forward(ctx, hiddenState) ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.q_proj", layerIdx), q) q = q.Reshape(ctx, headDim, opts.numHeads, batchSize) q = q.RoPE(ctx, inputPositions, nil, opts.ropeDim, opts.ropeBase, opts.ropeScale) ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.q_proj.rope", layerIdx), q) k := sa.Key.Forward(ctx, hiddenState) k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize) k = k.RoPE(ctx, inputPositions, nil, opts.ropeDim, opts.ropeBase, opts.ropeScale) ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.k_proj.rope", layerIdx), k) v := sa.Value.Forward(ctx, hiddenState) v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize) ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.v_proj", layerIdx), v) k, v, mask := cache.Put(ctx, k, v) q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx) k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx) v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx) kq := k.Mulmat(ctx, q) kq = kq.Scale(ctx, 1.0/math.Sqrt(float64(headDim))) kq = kq.Add(ctx, mask) kq = kq.Softmax(ctx) kqv := v.Mulmat(ctx, kq) kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx) kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize) output := sa.Output.Forward(ctx, kqv) return output } type MLP struct { Up *nn.Linear `gguf:"ffn_up"` Down *nn.Linear `gguf:"ffn_down"` Gate *nn.Linear `gguf:"ffn_gate"` } func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor { hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState)) return mlp.Down.Forward(ctx, hiddenState) } type Layer struct { AttentionNorm *nn.RMSNorm `gguf:"attn_norm"` SelfAttention *SelfAttention MLPNorm *nn.RMSNorm `gguf:"ffn_norm"` MLP *MLP } func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, layerIdx int, cache cache.Cache, opts *Options) ml.Tensor { ctx.Trace(fmt.Sprintf("model.layers.%d.input", layerIdx), hiddenState) residual := hiddenState hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps) ctx.Trace(fmt.Sprintf("model.layers.%d.input_layernorm", layerIdx), hiddenState) hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, layerIdx, cache, opts) ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.output", layerIdx), hiddenState) hiddenState = hiddenState.Add(ctx, residual) residual = hiddenState ctx.Trace(fmt.Sprintf("model.layers.%d.self_attn.residual", layerIdx), hiddenState) hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps) ctx.Trace(fmt.Sprintf("model.layers.%d.post_attention_layernorm", layerIdx), hiddenState) hiddenState = l.MLP.Forward(ctx, hiddenState, opts) ctx.Trace(fmt.Sprintf("model.layers.%d.mlp", layerIdx), hiddenState) output := hiddenState.Add(ctx, residual) ctx.Trace(fmt.Sprintf("model.layers.%d.output", layerIdx), output) return output } func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) { slog.Debug("input tokens", "input_ids", opts.Inputs()) inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs())) if err != nil { return nil, err } positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions())) if err != nil { return nil, err } hiddenState := m.TokenEmbedding.Forward(ctx, inputs) ctx.Trace("model.embed_tokens", hiddenState) for i, layer := range m.Layers { hiddenState = layer.Forward(ctx, hiddenState, positions, i, opts.Cache.Sub(i), m.Options) } hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps) ctx.Trace("model.norm", hiddenState) hiddenState = m.Output.Forward(ctx, hiddenState) ctx.Trace("model.output", hiddenState) outputs, err := ctx.FromIntSlice(opts.Outputs(), len(opts.Outputs())) if err != nil { return nil, err } return hiddenState.Rows(ctx, outputs), nil } func init() { model.Register("qwen2", New) }