package convert import ( "cmp" "fmt" "strings" "github.com/pdevine/tensor" "github.com/pdevine/tensor/native" "github.com/ollama/ollama/fs/ggml" ) type mistralModel struct { ModelParameters NumHiddenLayers uint32 `json:"num_hidden_layers"` MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` HiddenSize uint32 `json:"hidden_size"` IntermediateSize uint32 `json:"intermediate_size"` NumAttentionHeads uint32 `json:"num_attention_heads"` NumKeyValueHeads uint32 `json:"num_key_value_heads"` RopeTheta float32 `json:"rope_theta"` RMSNormEPS float32 `json:"rms_norm_eps"` HeadDim uint32 `json:"head_dim"` } func (p *mistralModel) KV(t *Tokenizer) ggml.KV { kv := p.ModelParameters.KV(t) kv["general.architecture"] = "mistral" kv["mistral.vocab_size"] = p.VocabSize kv["mistral.block_count"] = p.NumHiddenLayers kv["mistral.context_length"] = p.MaxPositionEmbeddings kv["mistral.embedding_length"] = cmp.Or(p.HiddenSize) kv["mistral.feed_forward_length"] = cmp.Or(p.IntermediateSize) kv["mistral.attention.head_count"] = cmp.Or(p.NumAttentionHeads) kv["mistral.rope.dimension_count"] = p.HiddenSize / p.NumHiddenLayers kv["mistral.rope.freq_base"] = p.RopeTheta kv["mistral.attention.head_count_kv"] = p.NumKeyValueHeads kv["mistral.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS kv["mistral.attention.key_length"] = p.HeadDim kv["mistral.attention.value_length"] = p.HeadDim return kv } func (p *mistralModel) Tensors(ts []Tensor) []ggml.Tensor { var out []ggml.Tensor for _, t := range ts { if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") { t.SetRepacker(p.repack) } if strings.HasPrefix(t.Name(), "patch_merger.") || strings.HasPrefix(t.Name(), "pre_mm_projector_output_norm.") || strings.HasPrefix(t.Name(), "vision_encoder.") || strings.HasPrefix(t.Name(), "vision_language_adapter.") { continue } out = append(out, ggml.Tensor{ Name: t.Name(), Kind: t.Kind(), Shape: t.Shape(), WriterTo: t, }) } return out } func (p *mistralModel) Replacements() []string { return []string{ "model.layers", "blk", "input_layernorm", "attn_norm", "post_attention_layernorm", "ffn_norm", "lm_head", "output", "model.embed_tokens.weight", "token_embd.weight", "model.norm.weight", "output_norm.weight", "self_attn.q_proj", "attn_q", "self_attn.k_proj", "attn_k", "self_attn.v_proj", "attn_v", "self_attn.o_proj", "attn_output", "mlp.down_proj", "ffn_down", "mlp.gate_proj", "ffn_gate", "mlp.up_proj", "ffn_up", } } func (p *mistralModel) repack(name string, data []float32, shape []uint64) ([]float32, error) { var dims []int for _, dim := range shape { dims = append(dims, int(dim)) } var heads uint32 if strings.HasSuffix(name, "attn_q.weight") { heads = p.NumAttentionHeads } else if strings.HasSuffix(name, "attn_k.weight") { heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads) } else { return nil, fmt.Errorf("unknown tensor for repack: %s", name) } n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data)) if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil { return nil, err } if err := n.T(0, 2, 1, 3); err != nil { return nil, err } if err := n.Reshape(dims...); err != nil { return nil, err } if err := n.Transpose(); err != nil { return nil, err } ts, err := native.SelectF32(n, 1) if err != nil { return nil, err } var f32s []float32 for _, t := range ts { f32s = append(f32s, t...) } return f32s, nil }