diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index 7cda5f10..50fbcf08 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -709,9 +709,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); - embeddings = ggml_gelu(ctx0, embeddings); - embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); - embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); + // paligemma missing second linear layer + if (model.mm_2_w) { + embeddings = ggml_gelu(ctx0, embeddings); + embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); + embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); + } } else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); @@ -2076,7 +2079,10 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) { return ctx->vision_model.mm_model_peg_0_b->ne[0]; } if (ctx->proj_type == PROJECTOR_TYPE_MLP) { - return ctx->vision_model.mm_2_b->ne[0]; + // paligemma missing second linear layer + if (ctx->vision_model.mm_2_b == nullptr) { + return ctx->vision_model.mm_0_b->ne[0]; + } } if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { return ctx->vision_model.mm_3_b->ne[0]; diff --git a/include/llama.h b/include/llama.h index f23355a6..7c6301bf 100644 --- a/include/llama.h +++ b/include/llama.h @@ -444,6 +444,9 @@ extern "C" { // Frees all allocated memory LLAMA_API void llama_free(struct llama_context * ctx); + // save image embeddings + LLAMA_API void set_image_embeds(struct llama_context *ctx, float *data); + LLAMA_API int64_t llama_time_us(void); LLAMA_API size_t llama_max_devices(void); diff --git a/src/llama.cpp b/src/llama.cpp index a7b1c9eb..b0a6bc27 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -2668,6 +2668,7 @@ struct llama_context { const struct llama_model & model; + float *image_embeds; struct llama_cparams cparams; struct llama_sampling sampling; struct llama_kv_cache kv_self; @@ -2751,6 +2752,10 @@ struct llama_context { struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch] }; +void set_image_embeds(llama_context *ctx, float *data) { + ctx->image_embeds = data; +} + struct llama_lora_weight { struct ggml_tensor * a = nullptr; struct ggml_tensor * b = nullptr; @@ -11599,6 +11604,15 @@ struct llm_build_context { inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + // set the image embeddings in the input tensor + if (lctx.image_embeds) { + struct ggml_tensor *image_embeds = ggml_dup_tensor(ctx0, inpL); + image_embeds->data = lctx.image_embeds; + image_embeds->ne[1] = 256; + inpL = ggml_set_2d_inplace(ctx0, inpL, image_embeds, inpL->nb[1], 0); + lctx.image_embeds = NULL; + } + inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); cb(inpL, "inp_scaled", -1); @@ -14589,7 +14603,7 @@ static int llama_decode_internal( } // non-causal masks do not use the KV cache - if (hparams.causal_attn) { + if (hparams.causal_attn || lctx.image_embeds) { llama_kv_cache_update(&lctx); // if we have enough unused cells before the current head ->