package llama import ( "log/slog" "math" "github.com/ollama/ollama/ml" "github.com/ollama/ollama/ml/nn" "github.com/ollama/ollama/model" ) type Options struct { RopeFactors ml.Tensor `ggml:"rope_freqs.weight"` hiddenSize, numHeads, numKVHeads int64 eps, ropeBase, ropeScale float32 ropeDim uint32 } type Model struct { model.Base TextProcessor TokenEmbedding *nn.Embedding `ggml:"token_embd"` Layers []Layer `ggml:"blk"` OutputNorm *nn.RMSNorm `ggml:"output_norm"` Output *nn.Linear `ggml:"output"` *Options } func New(c ml.Config) (model.Model, error) { return &Model{ TextProcessor: newTextProcessor(c), Layers: make([]Layer, c.Uint("block_count")), Options: &Options{ hiddenSize: int64(c.Uint("embedding_length")), numHeads: int64(c.Uint("attention.head_count")), numKVHeads: int64(c.Uint("attention.head_count_kv")), eps: c.Float("attention.layer_norm_rms_epsilon"), ropeBase: c.Float("rope.freq_base"), ropeScale: c.Float("rope.freq_scale", 1), ropeDim: c.Uint("rope.dimension_count"), }, }, nil } type SelfAttention struct { Query *nn.Linear `ggml:"attn_q"` Key *nn.Linear `ggml:"attn_k"` Value *nn.Linear `ggml:"attn_v"` Output *nn.Linear `ggml:"attn_output"` } func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor { batchSize := hiddenState.Dim(0) headDim := opts.hiddenSize / opts.numHeads q := sa.Query.Forward(ctx, hiddenState) q = q.Reshape(ctx, headDim, opts.numHeads, batchSize) // q = q.Rope(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale) k := sa.Key.Forward(ctx, hiddenState) k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize) // k = k.Rope(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale) v := sa.Value.Forward(ctx, hiddenState) v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize) k, v = cache.Put(ctx, k, v, cache.Options) q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx) k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx) v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx) slog.Info("self attention", "q", q, "k", k, "v", v) kq := k.Mulmat(ctx, q) kq = kq.Scale(ctx, 1.0/math.Sqrt(float64(headDim))) kq = kq.Softmax(ctx) kqv := v.Mulmat(ctx, kq) kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx) kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize) return sa.Output.Forward(ctx, kqv) } type MLP struct { Up *nn.Linear `ggml:"ffn_up"` Down *nn.Linear `ggml:"ffn_down"` Gate *nn.Linear `ggml:"ffn_gate"` } func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor { hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState)) return mlp.Down.Forward(ctx, hiddenState) } type Layer struct { AttentionNorm *nn.RMSNorm `ggml:"attn_norm"` SelfAttention *SelfAttention MLPNorm *nn.RMSNorm `ggml:"ffn_norm"` MLP *MLP } func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor { residual := hiddenState hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps) hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts) hiddenState = hiddenState.Add(ctx, residual) residual = hiddenState hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps) hiddenState = l.MLP.Forward(ctx, hiddenState, opts) return hiddenState.Add(ctx, residual) } func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) { inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs())) if err != nil { return nil, err } positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions())) if err != nil { return nil, err } hiddenState := m.TokenEmbedding.Forward(ctx, inputs) slog.Info("breakpoint", "inputs", inputs, "positions", positions, "hiddenState", hiddenState) for i, layer := range m.Layers { hiddenState = layer.Forward(ctx, hiddenState, positions, opts.Cache.Sub(i), m.Options) } hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps) hiddenState = m.Output.Forward(ctx, hiddenState) outputs, err := ctx.FromIntSlice([]int32{int32(len(opts.Positions())) - 1}, 1) if err != nil { return nil, err } return hiddenState.Rows(ctx, outputs), nil } func init() { model.Register("llama", New) }