ggml-backend.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109
  1. #include "ggml-backend-impl.h"
  2. #include "ggml-alloc.h"
  3. #include "ggml-impl.h"
  4. #include <assert.h>
  5. #include <limits.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #include <malloc.h>
  11. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  12. // backend buffer type
  13. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  14. return buft->iface.get_name(buft);
  15. }
  16. GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  17. return buft->iface.alloc_buffer(buft, size);
  18. }
  19. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  20. return buft->iface.get_alignment(buft);
  21. }
  22. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  23. // get_max_size is optional, defaults to SIZE_MAX
  24. if (buft->iface.get_max_size) {
  25. return buft->iface.get_max_size(buft);
  26. }
  27. return SIZE_MAX;
  28. }
  29. GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  30. // get_alloc_size is optional, defaults to ggml_nbytes
  31. if (buft->iface.get_alloc_size) {
  32. size_t size = buft->iface.get_alloc_size(buft, tensor);
  33. assert(size >= ggml_nbytes(tensor));
  34. return size;
  35. }
  36. return ggml_nbytes(tensor);
  37. }
  38. bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  39. return buft->iface.supports_backend(buft, backend);
  40. }
  41. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  42. if (buft->iface.is_host) {
  43. return buft->iface.is_host(buft);
  44. }
  45. return false;
  46. }
  47. // backend buffer
  48. GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
  49. ggml_backend_buffer_type_t buft,
  50. struct ggml_backend_buffer_i iface,
  51. ggml_backend_buffer_context_t context,
  52. size_t size) {
  53. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  54. (*buffer) = (struct ggml_backend_buffer) {
  55. /* .interface = */ iface,
  56. /* .buft = */ buft,
  57. /* .context = */ context,
  58. /* .size = */ size,
  59. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  60. };
  61. return buffer;
  62. }
  63. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  64. return buffer->iface.get_name(buffer);
  65. }
  66. #define ggml_assert_aligned(ptr) \
  67. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  68. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  69. if (buffer == NULL) {
  70. return;
  71. }
  72. if (buffer->iface.free_buffer != NULL) {
  73. buffer->iface.free_buffer(buffer);
  74. }
  75. // TODO: this needs to be freed in cuda and hipblas backends because
  76. // the cuda backend implementation compiled with msvc
  77. #if !defined(GGML_USE_CUDA) && !defined(GGML_USE_HIPBLAS)
  78. free(buffer);
  79. #endif
  80. }
  81. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  82. return buffer->size;
  83. }
  84. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  85. void * base = buffer->iface.get_base(buffer);
  86. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  87. return base;
  88. }
  89. GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  90. // init_tensor is optional
  91. if (buffer->iface.init_tensor) {
  92. buffer->iface.init_tensor(buffer, tensor);
  93. }
  94. }
  95. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  96. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  97. }
  98. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  99. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  100. }
  101. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  102. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  103. }
  104. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  105. buffer->iface.clear(buffer, value);
  106. }
  107. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  108. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  109. }
  110. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  111. buffer->usage = usage;
  112. // FIXME: add a generic callback to the buffer interface
  113. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  114. ggml_backend_multi_buffer_set_usage(buffer, usage);
  115. }
  116. }
  117. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  118. return buffer->buft;
  119. }
  120. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  121. if (buffer->iface.reset) {
  122. buffer->iface.reset(buffer);
  123. }
  124. }
  125. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  126. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  127. if (dst_buf->iface.cpy_tensor) {
  128. return src->buffer->iface.cpy_tensor(dst_buf, src, dst);
  129. }
  130. return false;
  131. }
  132. // backend
  133. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  134. if (backend == NULL) {
  135. return NULL;
  136. }
  137. return backend->guid;
  138. }
  139. const char * ggml_backend_name(ggml_backend_t backend) {
  140. if (backend == NULL) {
  141. return "NULL";
  142. }
  143. return backend->iface.get_name(backend);
  144. }
  145. void ggml_backend_free(ggml_backend_t backend) {
  146. if (backend == NULL) {
  147. return;
  148. }
  149. backend->iface.free(backend);
  150. }
  151. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  152. return backend->iface.get_default_buffer_type(backend);
  153. }
  154. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  155. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  156. }
  157. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  158. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  159. }
  160. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  161. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  162. }
  163. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  164. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  165. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  166. if (backend->iface.set_tensor_async == NULL) {
  167. ggml_backend_tensor_set(tensor, data, offset, size);
  168. } else {
  169. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  170. }
  171. }
  172. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  173. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  174. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  175. if (backend->iface.get_tensor_async == NULL) {
  176. ggml_backend_tensor_get(tensor, data, offset, size);
  177. } else {
  178. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  179. }
  180. }
  181. GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  182. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  183. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  184. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  185. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  186. if (!size) {
  187. return;
  188. }
  189. buf->iface.set_tensor(buf, tensor, data, offset, size);
  190. }
  191. GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  192. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  193. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  194. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  195. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  196. if (!size) {
  197. return;
  198. }
  199. buf->iface.get_tensor(buf, tensor, data, offset, size);
  200. }
  201. void ggml_backend_synchronize(ggml_backend_t backend) {
  202. if (backend->iface.synchronize == NULL) {
  203. return;
  204. }
  205. backend->iface.synchronize(backend);
  206. }
  207. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  208. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  209. return backend->iface.graph_plan_create(backend, cgraph);
  210. }
  211. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  212. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  213. backend->iface.graph_plan_free(backend, plan);
  214. }
  215. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  216. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  217. return backend->iface.graph_plan_compute(backend, plan);
  218. }
  219. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  220. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  221. ggml_backend_synchronize(backend);
  222. return err;
  223. }
  224. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  225. return backend->iface.graph_compute(backend, cgraph);
  226. }
  227. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  228. return backend->iface.supports_op(backend, op);
  229. }
  230. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  231. if (backend->iface.offload_op != NULL) {
  232. return backend->iface.offload_op(backend, op);
  233. }
  234. return false;
  235. }
  236. // backend copy
  237. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  238. if (a->type != b->type) {
  239. return false;
  240. }
  241. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  242. if (a->ne[i] != b->ne[i]) {
  243. return false;
  244. }
  245. if (a->nb[i] != b->nb[i]) {
  246. return false;
  247. }
  248. }
  249. return true;
  250. }
  251. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  252. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  253. if (src == dst) {
  254. return;
  255. }
  256. if (ggml_backend_buffer_is_host(src->buffer)) {
  257. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  258. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  259. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  260. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  261. #ifndef NDEBUG
  262. fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  263. #endif
  264. size_t nbytes = ggml_nbytes(src);
  265. void * data = malloc(nbytes);
  266. ggml_backend_tensor_get(src, data, 0, nbytes);
  267. ggml_backend_tensor_set(dst, data, 0, nbytes);
  268. free(data);
  269. }
  270. }
  271. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  272. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  273. if (src == dst) {
  274. return;
  275. }
  276. if (backend_dst->iface.cpy_tensor_async != NULL) {
  277. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  278. return;
  279. }
  280. }
  281. // an async copy would normally happen after all the queued operations on both backends are completed
  282. // sync src, set_async dst
  283. if (ggml_backend_buffer_is_host(src->buffer)) {
  284. ggml_backend_synchronize(backend_src);
  285. ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
  286. } else {
  287. ggml_backend_synchronize(backend_src);
  288. ggml_backend_tensor_copy(src, dst);
  289. ggml_backend_synchronize(backend_dst);
  290. }
  291. }
  292. // events
  293. ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
  294. if (backend->iface.event_new == NULL) {
  295. return NULL;
  296. }
  297. return backend->iface.event_new(backend);
  298. }
  299. void ggml_backend_event_free(ggml_backend_event_t event) {
  300. if (event == NULL) {
  301. return;
  302. }
  303. event->backend->iface.event_free(event);
  304. }
  305. void ggml_backend_event_record(ggml_backend_event_t event) {
  306. GGML_ASSERT(event->backend->iface.event_record != NULL);
  307. event->backend->iface.event_record(event);
  308. }
  309. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  310. GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
  311. event->backend->iface.event_synchronize(event);
  312. }
  313. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  314. GGML_ASSERT(backend->iface.event_wait != NULL);
  315. backend->iface.event_wait(backend, event);
  316. }
  317. // backend registry
  318. #define GGML_REG_MAX_BACKENDS 16
  319. struct ggml_backend_reg {
  320. char name[128];
  321. ggml_backend_init_fn init_fn;
  322. ggml_backend_buffer_type_t default_buffer_type;
  323. void * user_data;
  324. };
  325. static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
  326. static size_t ggml_backend_registry_count = 0;
  327. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  328. GGML_CALL static void ggml_backend_registry_init(void) {
  329. static bool initialized = false;
  330. if (initialized) {
  331. return;
  332. }
  333. initialized = true;
  334. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  335. // add forward decls here to avoid including the backend headers
  336. #ifdef GGML_USE_CUDA
  337. extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
  338. ggml_backend_cuda_reg_devices();
  339. #endif
  340. #ifdef GGML_USE_SYCL
  341. extern void ggml_backend_sycl_reg_devices(void);
  342. ggml_backend_sycl_reg_devices();
  343. #endif
  344. #ifdef GGML_USE_METAL
  345. extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  346. extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  347. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  348. #endif
  349. #ifdef GGML_USE_VULKAN
  350. extern GGML_CALL int ggml_backend_vk_reg_devices(void);
  351. ggml_backend_vk_reg_devices();
  352. #endif
  353. #ifdef GGML_USE_KOMPUTE
  354. extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
  355. ggml_backend_kompute_reg_devices();
  356. #endif
  357. }
  358. GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  359. GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
  360. size_t id = ggml_backend_registry_count;
  361. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  362. /* .name = */ {0},
  363. /* .fn = */ init_fn,
  364. /* .default_buffer_type = */ default_buffer_type,
  365. /* .user_data = */ user_data,
  366. };
  367. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  368. #ifndef NDEBUG
  369. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  370. #endif
  371. ggml_backend_registry_count++;
  372. }
  373. size_t ggml_backend_reg_get_count(void) {
  374. ggml_backend_registry_init();
  375. return ggml_backend_registry_count;
  376. }
  377. size_t ggml_backend_reg_find_by_name(const char * name) {
  378. ggml_backend_registry_init();
  379. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  380. // TODO: case insensitive in a portable way
  381. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  382. return i;
  383. }
  384. }
  385. // not found
  386. return SIZE_MAX;
  387. }
  388. // init from backend:params string
  389. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  390. ggml_backend_registry_init();
  391. const char * params = strchr(backend_str, ':');
  392. char backend_name[128];
  393. if (params == NULL) {
  394. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  395. params = "";
  396. } else {
  397. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  398. params++;
  399. }
  400. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  401. if (backend_i == SIZE_MAX) {
  402. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  403. return NULL;
  404. }
  405. return ggml_backend_reg_init_backend(backend_i, params);
  406. }
  407. const char * ggml_backend_reg_get_name(size_t i) {
  408. ggml_backend_registry_init();
  409. GGML_ASSERT(i < ggml_backend_registry_count);
  410. return ggml_backend_registry[i].name;
  411. }
  412. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  413. ggml_backend_registry_init();
  414. GGML_ASSERT(i < ggml_backend_registry_count);
  415. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  416. }
  417. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  418. ggml_backend_registry_init();
  419. GGML_ASSERT(i < ggml_backend_registry_count);
  420. return ggml_backend_registry[i].default_buffer_type;
  421. }
  422. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  423. ggml_backend_registry_init();
  424. GGML_ASSERT(i < ggml_backend_registry_count);
  425. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  426. }
  427. // backend CPU
  428. static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
  429. GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
  430. return "CPU";
  431. GGML_UNUSED(buffer);
  432. }
  433. GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  434. uintptr_t data = (uintptr_t)buffer->context;
  435. // align the buffer
  436. if (data % TENSOR_ALIGNMENT != 0) {
  437. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  438. }
  439. return (void *)data;
  440. }
  441. GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  442. free(buffer->context);
  443. }
  444. GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  445. memcpy((char *)tensor->data + offset, data, size);
  446. GGML_UNUSED(buffer);
  447. }
  448. GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  449. memcpy(data, (const char *)tensor->data + offset, size);
  450. GGML_UNUSED(buffer);
  451. }
  452. GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  453. if (ggml_backend_buffer_is_host(src->buffer)) {
  454. memcpy(dst->data, src->data, ggml_nbytes(src));
  455. return true;
  456. }
  457. return false;
  458. GGML_UNUSED(buffer);
  459. }
  460. GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  461. memset(buffer->context, value, buffer->size);
  462. }
  463. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  464. /* .get_name = */ ggml_backend_cpu_buffer_name,
  465. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  466. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  467. /* .init_tensor = */ NULL, // no initialization required
  468. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  469. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  470. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  471. /* .clear = */ ggml_backend_cpu_buffer_clear,
  472. /* .reset = */ NULL,
  473. };
  474. // for buffers from ptr, free is not called
  475. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  476. /* .get_name = */ ggml_backend_cpu_buffer_name,
  477. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  478. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  479. /* .init_tensor = */ NULL, // no initialization required
  480. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  481. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  482. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  483. /* .clear = */ ggml_backend_cpu_buffer_clear,
  484. /* .reset = */ NULL,
  485. };
  486. GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  487. return "CPU";
  488. GGML_UNUSED(buft);
  489. }
  490. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  491. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  492. void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
  493. if (data == NULL) {
  494. fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
  495. return NULL;
  496. }
  497. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  498. }
  499. GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  500. return TENSOR_ALIGNMENT;
  501. GGML_UNUSED(buft);
  502. }
  503. GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  504. return ggml_backend_is_cpu(backend);
  505. GGML_UNUSED(buft);
  506. }
  507. GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  508. return true;
  509. GGML_UNUSED(buft);
  510. }
  511. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  512. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  513. /* .iface = */ {
  514. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  515. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  516. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  517. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  518. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  519. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  520. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  521. },
  522. /* .context = */ NULL,
  523. };
  524. return &ggml_backend_cpu_buffer_type;
  525. }
  526. #ifdef GGML_USE_CPU_HBM
  527. // buffer type HBM
  528. #include <hbwmalloc.h>
  529. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  530. return "CPU_HBM";
  531. GGML_UNUSED(buft);
  532. }
  533. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
  534. return "CPU_HBM";
  535. GGML_UNUSED(buf);
  536. }
  537. GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  538. hbw_free(buffer->context);
  539. }
  540. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  541. //void * ptr = hbw_malloc(size);
  542. void * ptr;
  543. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  544. if (result != 0) {
  545. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  546. return NULL;
  547. }
  548. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  549. buffer->buft = buft;
  550. buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
  551. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  552. return buffer;
  553. }
  554. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  555. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  556. /* .iface = */ {
  557. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  558. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  559. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  560. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  561. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  562. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  563. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  564. },
  565. /* .context = */ NULL,
  566. };
  567. return &ggml_backend_cpu_buffer_type_hbm;
  568. }
  569. #endif
  570. struct ggml_backend_cpu_context {
  571. int n_threads;
  572. void * work_data;
  573. size_t work_size;
  574. ggml_abort_callback abort_callback;
  575. void * abort_callback_data;
  576. };
  577. GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  578. return "CPU";
  579. GGML_UNUSED(backend);
  580. }
  581. GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
  582. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  583. free(cpu_ctx->work_data);
  584. free(cpu_ctx);
  585. free(backend);
  586. }
  587. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  588. return ggml_backend_cpu_buffer_type();
  589. GGML_UNUSED(backend);
  590. }
  591. struct ggml_backend_plan_cpu {
  592. struct ggml_cplan cplan;
  593. struct ggml_cgraph cgraph;
  594. };
  595. GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  596. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  597. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  598. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  599. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  600. if (cpu_plan->cplan.work_size > 0) {
  601. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  602. if (cpu_plan->cplan.work_data == NULL) {
  603. free(cpu_plan);
  604. return NULL;
  605. }
  606. }
  607. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  608. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  609. return cpu_plan;
  610. }
  611. GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  612. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  613. free(cpu_plan->cplan.work_data);
  614. free(cpu_plan);
  615. GGML_UNUSED(backend);
  616. }
  617. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  618. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  619. return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  620. GGML_UNUSED(backend);
  621. }
  622. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  623. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  624. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  625. if (cpu_ctx->work_size < cplan.work_size) {
  626. free(cpu_ctx->work_data);
  627. cpu_ctx->work_data = malloc(cplan.work_size);
  628. if (cpu_ctx->work_data == NULL) {
  629. cpu_ctx->work_size = 0;
  630. return GGML_STATUS_ALLOC_FAILED;
  631. }
  632. cpu_ctx->work_size = cplan.work_size;
  633. }
  634. cplan.work_data = cpu_ctx->work_data;
  635. cplan.abort_callback = cpu_ctx->abort_callback;
  636. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  637. return ggml_graph_compute(cgraph, &cplan);
  638. }
  639. GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  640. switch (op->op) {
  641. case GGML_OP_CPY:
  642. return
  643. op->type != GGML_TYPE_IQ2_XXS &&
  644. op->type != GGML_TYPE_IQ2_XS &&
  645. op->type != GGML_TYPE_IQ1_S &&
  646. op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
  647. case GGML_OP_MUL_MAT:
  648. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
  649. default:
  650. return true;
  651. }
  652. GGML_UNUSED(backend);
  653. }
  654. static struct ggml_backend_i cpu_backend_i = {
  655. /* .get_name = */ ggml_backend_cpu_name,
  656. /* .free = */ ggml_backend_cpu_free,
  657. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  658. /* .set_tensor_async = */ NULL,
  659. /* .get_tensor_async = */ NULL,
  660. /* .cpy_tensor_async = */ NULL,
  661. /* .synchronize = */ NULL,
  662. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  663. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  664. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  665. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  666. /* .supports_op = */ ggml_backend_cpu_supports_op,
  667. /* .offload_op = */ NULL,
  668. /* .event_new = */ NULL,
  669. /* .event_free = */ NULL,
  670. /* .event_record = */ NULL,
  671. /* .event_wait = */ NULL,
  672. /* .event_synchronize = */ NULL,
  673. };
  674. static ggml_guid_t ggml_backend_cpu_guid(void) {
  675. static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
  676. return &guid;
  677. }
  678. ggml_backend_t ggml_backend_cpu_init(void) {
  679. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  680. if (ctx == NULL) {
  681. return NULL;
  682. }
  683. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  684. ctx->work_data = NULL;
  685. ctx->work_size = 0;
  686. ctx->abort_callback = NULL;
  687. ctx->abort_callback_data = NULL;
  688. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  689. if (cpu_backend == NULL) {
  690. free(ctx);
  691. return NULL;
  692. }
  693. *cpu_backend = (struct ggml_backend) {
  694. /* .guid = */ ggml_backend_cpu_guid(),
  695. /* .interface = */ cpu_backend_i,
  696. /* .context = */ ctx
  697. };
  698. return cpu_backend;
  699. }
  700. GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
  701. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
  702. }
  703. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  704. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  705. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  706. ctx->n_threads = n_threads;
  707. }
  708. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  709. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  710. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  711. ctx->abort_callback = abort_callback;
  712. ctx->abort_callback_data = abort_callback_data;
  713. }
  714. GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  715. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  716. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  717. }
  718. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  719. return ggml_backend_cpu_init();
  720. GGML_UNUSED(params);
  721. GGML_UNUSED(user_data);
  722. }
  723. // multi-buffer buffer
  724. struct ggml_backend_multi_buffer_context {
  725. ggml_backend_buffer_t * buffers;
  726. size_t n_buffers;
  727. };
  728. typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
  729. GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
  730. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  731. return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
  732. }
  733. GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  734. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  735. for (size_t i = 0; i < ctx->n_buffers; i++) {
  736. ggml_backend_buffer_free(ctx->buffers[i]);
  737. }
  738. free(ctx->buffers);
  739. free(ctx);
  740. }
  741. GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  742. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  743. for (size_t i = 0; i < ctx->n_buffers; i++) {
  744. ggml_backend_buffer_clear(ctx->buffers[i], value);
  745. }
  746. }
  747. static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
  748. static struct ggml_backend_buffer_i multi_backend_buffer_i = {
  749. /* .get_name = */ ggml_backend_multi_buffer_get_name,
  750. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  751. /* .get_base = */ NULL,
  752. /* .init_tensor = */ NULL,
  753. /* .set_tensor = */ NULL,
  754. /* .get_tensor = */ NULL,
  755. /* .cpy_tensor = */ NULL,
  756. /* .clear = */ ggml_backend_multi_buffer_clear,
  757. /* .reset = */ NULL,
  758. };
  759. return multi_backend_buffer_i;
  760. }
  761. GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  762. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  763. ctx->n_buffers = n_buffers;
  764. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  765. GGML_ASSERT(ctx->buffers != NULL);
  766. size_t total_size = 0;
  767. for (size_t i = 0; i < n_buffers; i++) {
  768. ctx->buffers[i] = buffers[i];
  769. total_size += ggml_backend_buffer_get_size(buffers[i]);
  770. }
  771. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
  772. }
  773. GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  774. return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
  775. }
  776. GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  777. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  778. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  779. for (size_t i = 0; i < ctx->n_buffers; i++) {
  780. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  781. }
  782. }
  783. // creates a copy of the tensor with the same memory layout
  784. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  785. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  786. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  787. dup->nb[i] = tensor->nb[i];
  788. }
  789. return dup;
  790. }
  791. static bool ggml_is_view_op(enum ggml_op op) {
  792. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  793. }
  794. // scheduler
  795. #ifndef GGML_SCHED_MAX_BACKENDS
  796. #define GGML_SCHED_MAX_BACKENDS 16
  797. #endif
  798. #ifndef GGML_SCHED_MAX_SPLITS
  799. #define GGML_SCHED_MAX_SPLITS 2048
  800. #endif
  801. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  802. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  803. #endif
  804. #ifndef GGML_SCHED_MAX_COPIES
  805. #define GGML_SCHED_MAX_COPIES 4
  806. #endif
  807. struct ggml_backend_sched_split {
  808. int backend_id;
  809. int i_start;
  810. int i_end;
  811. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  812. int n_inputs;
  813. // graph view of this split
  814. struct ggml_cgraph graph;
  815. };
  816. struct ggml_backend_sched {
  817. bool is_reset; // true if the scheduler has been reset since the last graph split
  818. bool is_alloc;
  819. int n_backends;
  820. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  821. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  822. ggml_gallocr_t galloc;
  823. // hash keys of the nodes in the graph
  824. struct ggml_hash_set hash_set;
  825. // hash values
  826. int * tensor_backend_id;
  827. struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  828. int * node_backend_ids; // [graph_size]
  829. int * leaf_backend_ids; // [graph_size]
  830. // copy of the graph with modified inputs
  831. struct ggml_cgraph * graph;
  832. // graph splits
  833. struct ggml_backend_sched_split * splits;
  834. int n_splits;
  835. int splits_capacity;
  836. // pipeline parallelism support
  837. int n_copies;
  838. int cur_copy;
  839. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  840. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  841. int n_graph_inputs;
  842. struct ggml_context * ctx;
  843. ggml_backend_sched_eval_callback callback_eval;
  844. void * callback_eval_user_data;
  845. // align context_buffer to GGML_MEM_ALIGN
  846. #ifdef _MSC_VER
  847. __declspec(align(GGML_MEM_ALIGN))
  848. #else
  849. __attribute__((aligned(GGML_MEM_ALIGN)))
  850. #endif
  851. char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
  852. };
  853. #define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
  854. #define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
  855. // returns the priority of the backend, lower id is higher priority
  856. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  857. for (int i = 0; i < sched->n_backends; i++) {
  858. if (sched->backends[i] == backend) {
  859. return i;
  860. }
  861. }
  862. return -1;
  863. }
  864. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) {
  865. ggml_backend_buffer_t buffer = tensor->buffer;
  866. if (buffer == NULL) {
  867. return -1;
  868. }
  869. // find highest prio backend that supports the buffer type
  870. for (int i = 0; i < sched->n_backends; i++) {
  871. if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
  872. return i;
  873. }
  874. }
  875. fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n",
  876. __func__, ggml_backend_buffer_name(buffer), tensor->name);
  877. GGML_ASSERT(false);
  878. return -1;
  879. }
  880. #if 0
  881. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  882. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  883. #define GET_CAUSE(node) causes[hash_id(node)]
  884. #else
  885. #define SET_CAUSE(node, ...)
  886. #define GET_CAUSE(node) ""
  887. #endif
  888. // returns the backend that should be used for the node based on the current locations
  889. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  890. // TODO: use supports_op to check if the backend supports the op
  891. // assign pre-allocated nodes to their backend
  892. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
  893. if (cur_backend_id != -1) {
  894. SET_CAUSE(tensor, "1.dst");
  895. return cur_backend_id;
  896. }
  897. // view_src
  898. if (tensor->view_src != NULL) {
  899. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
  900. if (cur_backend_id != -1) {
  901. SET_CAUSE(tensor, "1.vsrc");
  902. return cur_backend_id;
  903. }
  904. }
  905. // graph input
  906. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  907. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  908. SET_CAUSE(tensor, "1.inp");
  909. return cur_backend_id;
  910. }
  911. // assign nodes that use weights to the backend of the weights
  912. // operations with weights are preferably run on the same backend as the weights
  913. for (int i = 0; i < GGML_MAX_SRC; i++) {
  914. const struct ggml_tensor * src = tensor->src[i];
  915. if (src == NULL) {
  916. continue;
  917. }
  918. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  919. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
  920. // check if a backend with higher prio wants to offload the op
  921. if (src_backend_id == sched->n_backends - 1) {
  922. for (int b = 0; b < src_backend_id; b++) {
  923. if (ggml_backend_offload_op(sched->backends[b], tensor)) {
  924. SET_CAUSE(tensor, "1.off");
  925. return b;
  926. }
  927. }
  928. }
  929. SET_CAUSE(tensor, "1.wgt%d", i);
  930. return src_backend_id;
  931. }
  932. }
  933. return -1;
  934. }
  935. static char * fmt_size(size_t size) {
  936. static char buffer[128];
  937. if (size >= 1024*1024) {
  938. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  939. } else {
  940. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  941. }
  942. return buffer;
  943. }
  944. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  945. int cur_split = 0;
  946. for (int i = 0; i < graph->n_nodes; i++) {
  947. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  948. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  949. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  950. sched->splits[cur_split].n_inputs);
  951. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  952. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  953. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  954. }
  955. fprintf(stderr, "\n");
  956. cur_split++;
  957. }
  958. struct ggml_tensor * node = graph->nodes[i];
  959. if (ggml_is_view_op(node->op)) {
  960. continue;
  961. }
  962. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  963. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  964. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  965. for (int j = 0; j < GGML_MAX_SRC; j++) {
  966. struct ggml_tensor * src = node->src[j];
  967. if (src == NULL) {
  968. continue;
  969. }
  970. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  971. fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  972. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  973. }
  974. fprintf(stderr, "\n");
  975. }
  976. }
  977. //#define DEBUG_PASS1
  978. //#define DEBUG_PASS2
  979. //#define DEBUG_PASS3
  980. //#define DEBUG_PASS4
  981. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  982. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  983. // reset splits
  984. sched->n_splits = 0;
  985. sched->n_graph_inputs = 0;
  986. sched->is_reset = false;
  987. struct ggml_init_params params = {
  988. /* .mem_size = */ sizeof(sched->context_buffer),
  989. /* .mem_buffer = */ sched->context_buffer,
  990. /* .no_alloc = */ true
  991. };
  992. ggml_free(sched->ctx);
  993. sched->ctx = ggml_init(params);
  994. if (sched->ctx == NULL) {
  995. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  996. GGML_ASSERT(false);
  997. }
  998. // pass 1: assign backends to ops with pre-allocated inputs
  999. for (int i = 0; i < graph->n_leafs; i++) {
  1000. struct ggml_tensor * leaf = graph->leafs[i];
  1001. int * leaf_backend_id = &tensor_backend_id(leaf);
  1002. if (*leaf_backend_id != -1) {
  1003. // do not overwrite user assignments
  1004. continue;
  1005. }
  1006. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  1007. }
  1008. for (int i = 0; i < graph->n_nodes; i++) {
  1009. struct ggml_tensor * node = graph->nodes[i];
  1010. int * node_backend_id = &tensor_backend_id(node);
  1011. if (*node_backend_id != -1) {
  1012. // do not overwrite user assignments
  1013. continue;
  1014. }
  1015. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  1016. // src
  1017. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1018. struct ggml_tensor * src = node->src[j];
  1019. if (src == NULL) {
  1020. continue;
  1021. }
  1022. int * src_backend_id = &tensor_backend_id(src);
  1023. if (*src_backend_id == -1) {
  1024. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  1025. }
  1026. }
  1027. }
  1028. #ifdef DEBUG_PASS1
  1029. fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1030. #endif
  1031. // pass 2: expand current backend assignments
  1032. // assign the same backend to adjacent nodes
  1033. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  1034. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  1035. // pass 2.2 expand gpu down
  1036. {
  1037. int cur_backend_id = -1;
  1038. for (int i = 0; i < graph->n_nodes; i++) {
  1039. struct ggml_tensor * node = graph->nodes[i];
  1040. if (ggml_is_view_op(node->op)) {
  1041. continue;
  1042. }
  1043. int * node_backend_id = &tensor_backend_id(node);
  1044. if (*node_backend_id != -1) {
  1045. if (*node_backend_id == sched->n_backends - 1) {
  1046. // skip cpu (lowest prio backend)
  1047. cur_backend_id = -1;
  1048. } else {
  1049. cur_backend_id = *node_backend_id;
  1050. }
  1051. } else {
  1052. *node_backend_id = cur_backend_id;
  1053. SET_CAUSE(node, "2.2");
  1054. }
  1055. }
  1056. }
  1057. // pass 2.1 expand gpu up
  1058. {
  1059. int cur_backend_id = -1;
  1060. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1061. struct ggml_tensor * node = graph->nodes[i];
  1062. if (ggml_is_view_op(node->op)) {
  1063. continue;
  1064. }
  1065. int * node_backend_id = &tensor_backend_id(node);
  1066. if (*node_backend_id != -1) {
  1067. if (*node_backend_id == sched->n_backends - 1) {
  1068. // skip cpu (lowest prio backend)
  1069. cur_backend_id = -1;
  1070. } else {
  1071. cur_backend_id = *node_backend_id;
  1072. }
  1073. } else {
  1074. *node_backend_id = cur_backend_id;
  1075. SET_CAUSE(node, "2.1");
  1076. }
  1077. }
  1078. }
  1079. // pass 2.4 expand rest down
  1080. {
  1081. int cur_backend_id = -1;
  1082. for (int i = 0; i < graph->n_nodes; i++) {
  1083. struct ggml_tensor * node = graph->nodes[i];
  1084. if (ggml_is_view_op(node->op)) {
  1085. continue;
  1086. }
  1087. int * node_backend_id = &tensor_backend_id(node);
  1088. if (*node_backend_id != -1) {
  1089. cur_backend_id = *node_backend_id;
  1090. } else {
  1091. *node_backend_id = cur_backend_id;
  1092. SET_CAUSE(node, "2.4");
  1093. }
  1094. }
  1095. }
  1096. // pass 2.3 expand rest up
  1097. {
  1098. int cur_backend_id = -1;
  1099. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1100. struct ggml_tensor * node = graph->nodes[i];
  1101. if (ggml_is_view_op(node->op)) {
  1102. continue;
  1103. }
  1104. int * node_backend_id = &tensor_backend_id(node);
  1105. if (*node_backend_id != -1) {
  1106. cur_backend_id = *node_backend_id;
  1107. } else {
  1108. *node_backend_id = cur_backend_id;
  1109. SET_CAUSE(node, "2.3");
  1110. }
  1111. }
  1112. }
  1113. #ifdef DEBUG_PASS2
  1114. fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1115. #endif
  1116. // pass 3: assign backends to remaining src from dst and view_src
  1117. for (int i = 0; i < graph->n_nodes; i++) {
  1118. struct ggml_tensor * node = graph->nodes[i];
  1119. int * cur_backend_id = &tensor_backend_id(node);
  1120. if (node->view_src != NULL && *cur_backend_id == -1) {
  1121. *cur_backend_id = tensor_backend_id(node->view_src);
  1122. SET_CAUSE(node, "3.vsrc");
  1123. }
  1124. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1125. struct ggml_tensor * src = node->src[j];
  1126. if (src == NULL) {
  1127. continue;
  1128. }
  1129. int * src_backend_id = &tensor_backend_id(src);
  1130. if (*src_backend_id == -1) {
  1131. if (src->view_src != NULL) {
  1132. // views are always on the same backend as the source
  1133. *src_backend_id = tensor_backend_id(src->view_src);
  1134. SET_CAUSE(src, "3.vsrc");
  1135. } else {
  1136. *src_backend_id = *cur_backend_id;
  1137. SET_CAUSE(src, "3.cur");
  1138. }
  1139. }
  1140. }
  1141. }
  1142. #ifdef DEBUG_PASS3
  1143. fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1144. #endif
  1145. // pass 4: split graph, find tensors that need to be copied
  1146. {
  1147. int i_split = 0;
  1148. struct ggml_backend_sched_split * split = &sched->splits[0];
  1149. // find the backend of the first split, skipping view ops
  1150. for (int i = 0; i < graph->n_nodes; i++) {
  1151. struct ggml_tensor * node = graph->nodes[i];
  1152. if (!ggml_is_view_op(node->op)) {
  1153. split->backend_id = tensor_backend_id(node);
  1154. break;
  1155. }
  1156. }
  1157. split->i_start = 0;
  1158. split->n_inputs = 0;
  1159. memset(split->inputs, 0, sizeof(split->inputs)); //HACK
  1160. int cur_backend_id = split->backend_id;
  1161. for (int i = 0; i < graph->n_nodes; i++) {
  1162. struct ggml_tensor * node = graph->nodes[i];
  1163. if (ggml_is_view_op(node->op)) {
  1164. continue;
  1165. }
  1166. const int node_backend_id = tensor_backend_id(node);
  1167. GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
  1168. // check if we should start a new split based on the sources of the current node
  1169. bool need_new_split = false;
  1170. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  1171. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1172. struct ggml_tensor * src = node->src[j];
  1173. if (src == NULL) {
  1174. continue;
  1175. }
  1176. // check if a weight is on a different backend
  1177. // by starting a new split, the memory of the previously offloaded weights can be reused
  1178. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  1179. int src_backend_id = tensor_backend_id(src);
  1180. if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
  1181. need_new_split = true;
  1182. break;
  1183. }
  1184. }
  1185. // check if the split has too many inputs
  1186. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  1187. const size_t id = hash_id(src);
  1188. int src_backend_id = sched->tensor_backend_id[id];
  1189. if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
  1190. //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
  1191. need_new_split = true;
  1192. break;
  1193. }
  1194. }
  1195. }
  1196. }
  1197. if (node_backend_id != cur_backend_id || need_new_split) {
  1198. split->i_end = i;
  1199. i_split++;
  1200. if (i_split >= sched->splits_capacity) {
  1201. sched->splits_capacity *= 2;
  1202. sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  1203. GGML_ASSERT(sched->splits != NULL);
  1204. }
  1205. GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
  1206. split = &sched->splits[i_split];
  1207. split->backend_id = node_backend_id;
  1208. split->i_start = i;
  1209. split->n_inputs = 0;
  1210. cur_backend_id = node_backend_id;
  1211. }
  1212. // find inputs that are not on the same backend
  1213. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1214. struct ggml_tensor * src = node->src[j];
  1215. if (src == NULL) {
  1216. continue;
  1217. }
  1218. const int src_backend_id = tensor_backend_id(src);
  1219. assert(src_backend_id != -1); // all inputs should be assigned by now
  1220. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  1221. size_t id = hash_id(src);
  1222. if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
  1223. ggml_backend_t backend = sched->backends[src_backend_id];
  1224. for (int c = 0; c < sched->n_copies; c++) {
  1225. struct ggml_tensor * tensor_copy;
  1226. if (c == sched->cur_copy) {
  1227. tensor_copy = src; // use the original tensor as the current copy
  1228. } else {
  1229. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1230. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1231. }
  1232. if (sched->n_copies > 1) {
  1233. ggml_set_input(tensor_copy);
  1234. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1235. }
  1236. sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
  1237. SET_CAUSE(tensor_copy, "4.cpy");
  1238. }
  1239. int n_graph_inputs = sched->n_graph_inputs++;
  1240. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1241. sched->graph_inputs[n_graph_inputs] = src;
  1242. }
  1243. }
  1244. if (src_backend_id != node_backend_id) {
  1245. // create a copy of the input in the split's backend
  1246. const size_t id = hash_id(src);
  1247. if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
  1248. ggml_backend_t backend = sched->backends[cur_backend_id];
  1249. for (int c = 0; c < sched->n_copies; c++) {
  1250. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1251. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1252. if (sched->n_copies > 1) {
  1253. ggml_set_input(tensor_copy);
  1254. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1255. }
  1256. sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
  1257. SET_CAUSE(tensor_copy, "4.cpy");
  1258. }
  1259. int n_inputs = split->n_inputs++;
  1260. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1261. split->inputs[n_inputs] = src;
  1262. }
  1263. node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
  1264. }
  1265. }
  1266. }
  1267. split->i_end = graph->n_nodes;
  1268. sched->n_splits = i_split + 1;
  1269. }
  1270. #ifdef DEBUG_PASS4
  1271. fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1272. #endif
  1273. // create copies of the graph for each split
  1274. // TODO: avoid this copy
  1275. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
  1276. for (int i = 0; i < sched->n_splits; i++) {
  1277. struct ggml_backend_sched_split * split = &sched->splits[i];
  1278. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1279. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1280. for (int j = 0; j < split->n_inputs; j++) {
  1281. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1282. struct ggml_tensor * input = split->inputs[j];
  1283. const size_t input_id = hash_id(input);
  1284. struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
  1285. // add a dependency to the input source so that it is not freed before the copy is done
  1286. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1287. input_dep->src[0] = input;
  1288. sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
  1289. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1290. // add a dependency to the input copy so that it is allocated at the start of the split
  1291. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1292. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1293. }
  1294. for (int j = split->i_start; j < split->i_end; j++) {
  1295. assert(graph_copy->size > graph_copy->n_nodes);
  1296. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1297. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1298. }
  1299. }
  1300. if (sched->n_copies > 1) {
  1301. // add input copies as leafs so that they are allocated first
  1302. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1303. struct ggml_tensor * input = sched->graph_inputs[i];
  1304. size_t id = hash_id(input);
  1305. int backend_id = tensor_backend_id(input);
  1306. for (int c = 0; c < sched->n_copies; c++) {
  1307. struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
  1308. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1309. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1310. }
  1311. }
  1312. for (int i = 0; i < sched->n_splits; i++) {
  1313. struct ggml_backend_sched_split * split = &sched->splits[i];
  1314. int backend_id = split->backend_id;
  1315. for (int j = 0; j < split->n_inputs; j++) {
  1316. struct ggml_tensor * input = split->inputs[j];
  1317. size_t id = hash_id(input);
  1318. for (int c = 0; c < sched->n_copies; c++) {
  1319. struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
  1320. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1321. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1322. }
  1323. }
  1324. }
  1325. }
  1326. // add leafs from the original graph
  1327. for (int i = 0; i < graph->n_leafs; i++) {
  1328. struct ggml_tensor * leaf = graph->leafs[i];
  1329. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1330. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1331. }
  1332. sched->graph = graph_copy;
  1333. }
  1334. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1335. // allocate graph
  1336. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1337. // the re-allocation may cause the split inputs to be moved to a different address
  1338. ggml_backend_sched_synchronize(sched);
  1339. #ifndef NDEBUG
  1340. fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
  1341. #endif
  1342. ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1343. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1344. fprintf(stderr, "%s: failed to allocate graph\n", __func__);
  1345. return false;
  1346. }
  1347. }
  1348. return true;
  1349. }
  1350. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1351. struct ggml_backend_sched_split * splits = sched->splits;
  1352. for (int i = 0; i < sched->n_splits; i++) {
  1353. struct ggml_backend_sched_split * split = &splits[i];
  1354. int split_backend_id = split->backend_id;
  1355. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1356. // copy the input tensors to the split backend
  1357. for (int j = 0; j < split->n_inputs; j++) {
  1358. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1359. struct ggml_tensor * input = split->inputs[j];
  1360. struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
  1361. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1362. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1363. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1364. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1365. } else {
  1366. ggml_backend_synchronize(split_backend);
  1367. }
  1368. ggml_backend_tensor_copy(input, input_cpy);
  1369. } else {
  1370. // wait for the split backend to finish using the input before overwriting it
  1371. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1372. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1373. } else {
  1374. ggml_backend_synchronize(split_backend);
  1375. }
  1376. ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
  1377. }
  1378. }
  1379. if (!sched->callback_eval) {
  1380. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1381. if (ec != GGML_STATUS_SUCCESS) {
  1382. return ec;
  1383. }
  1384. } else {
  1385. // similar to ggml_backend_compare_graph_backend
  1386. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1387. struct ggml_tensor * t = split->graph.nodes[j0];
  1388. // check if the user needs data from this node
  1389. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1390. int j1 = j0;
  1391. // determine the range [j0, j1] of nodes that can be computed together
  1392. while (!need && j1 < split->graph.n_nodes - 1) {
  1393. t = split->graph.nodes[++j1];
  1394. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1395. }
  1396. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1397. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1398. if (ec != GGML_STATUS_SUCCESS) {
  1399. return ec;
  1400. }
  1401. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1402. ggml_backend_synchronize(split_backend);
  1403. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1404. break;
  1405. }
  1406. j0 = j1;
  1407. }
  1408. }
  1409. // record the event of this copy
  1410. if (split->n_inputs > 0) {
  1411. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1412. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
  1413. }
  1414. }
  1415. }
  1416. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1417. return GGML_STATUS_SUCCESS;
  1418. }
  1419. ggml_backend_sched_t ggml_backend_sched_new(
  1420. ggml_backend_t * backends,
  1421. ggml_backend_buffer_type_t * bufts,
  1422. int n_backends,
  1423. size_t graph_size,
  1424. bool parallel) {
  1425. GGML_ASSERT(n_backends > 0);
  1426. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1427. GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
  1428. struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
  1429. // initialize hash table
  1430. sched->hash_set = ggml_hash_set_new(graph_size);
  1431. sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
  1432. sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
  1433. const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1434. sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1435. sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1436. sched->n_backends = n_backends;
  1437. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1438. const int initial_splits_capacity = 16;
  1439. sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1440. sched->splits_capacity = initial_splits_capacity;
  1441. for (int b = 0; b < n_backends; b++) {
  1442. sched->backends[b] = backends[b];
  1443. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1444. GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b]));
  1445. if (sched->n_copies > 1) {
  1446. for (int c = 0; c < sched->n_copies; c++) {
  1447. sched->events[b][c] = ggml_backend_event_new(backends[b]);
  1448. }
  1449. }
  1450. }
  1451. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1452. ggml_backend_sched_reset(sched);
  1453. return sched;
  1454. }
  1455. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1456. if (sched == NULL) {
  1457. return;
  1458. }
  1459. for (int b = 0; b < sched->n_backends; b++) {
  1460. for (int c = 0; c < sched->n_copies; c++) {
  1461. ggml_backend_event_free(sched->events[b][c]);
  1462. }
  1463. }
  1464. ggml_gallocr_free(sched->galloc);
  1465. ggml_free(sched->ctx);
  1466. free(sched->splits);
  1467. free(sched->hash_set.keys);
  1468. free(sched->tensor_backend_id);
  1469. free(sched->tensor_copies);
  1470. free(sched->node_backend_ids);
  1471. free(sched->leaf_backend_ids);
  1472. free(sched);
  1473. }
  1474. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1475. // reset state for the next run
  1476. if (!sched->is_reset) {
  1477. size_t hash_size = sched->hash_set.size;
  1478. memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
  1479. memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
  1480. memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
  1481. sched->is_reset = true;
  1482. }
  1483. sched->is_alloc = false;
  1484. }
  1485. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1486. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
  1487. ggml_backend_sched_split_graph(sched, measure_graph);
  1488. // TODO: extract this to a separate function
  1489. if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1490. return false;
  1491. }
  1492. ggml_backend_sched_reset(sched);
  1493. ggml_backend_sched_synchronize(sched);
  1494. return true;
  1495. }
  1496. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1497. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
  1498. ggml_backend_sched_split_graph(sched, graph);
  1499. if (!ggml_backend_sched_alloc_splits(sched)) {
  1500. return false;
  1501. }
  1502. sched->is_alloc = true;
  1503. return true;
  1504. }
  1505. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1506. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1507. ggml_backend_sched_synchronize(sched);
  1508. return err;
  1509. }
  1510. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1511. if (!sched->is_reset && !sched->is_alloc) {
  1512. ggml_backend_sched_reset(sched);
  1513. }
  1514. if (!sched->is_alloc) {
  1515. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1516. return GGML_STATUS_ALLOC_FAILED;
  1517. }
  1518. }
  1519. return ggml_backend_sched_compute_splits(sched);
  1520. }
  1521. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1522. for (int i = 0; i < sched->n_backends; i++) {
  1523. ggml_backend_synchronize(sched->backends[i]);
  1524. }
  1525. }
  1526. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1527. sched->callback_eval = callback;
  1528. sched->callback_eval_user_data = user_data;
  1529. }
  1530. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1531. return sched->n_splits;
  1532. }
  1533. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1534. return sched->n_copies;
  1535. }
  1536. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1537. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1538. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1539. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1540. }
  1541. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1542. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1543. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1544. tensor_backend_id(node) = backend_index;
  1545. }
  1546. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1547. int backend_index = tensor_backend_id(node);
  1548. if (backend_index == -1) {
  1549. return NULL;
  1550. }
  1551. return sched->backends[backend_index];
  1552. }
  1553. // utils
  1554. void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  1555. GGML_ASSERT(tensor->buffer == NULL);
  1556. GGML_ASSERT(tensor->view_src != NULL);
  1557. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1558. GGML_ASSERT(tensor->view_src->data != NULL);
  1559. tensor->buffer = buffer;
  1560. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1561. ggml_backend_buffer_init_tensor(buffer, tensor);
  1562. }
  1563. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1564. GGML_ASSERT(tensor->buffer == NULL);
  1565. GGML_ASSERT(tensor->data == NULL);
  1566. GGML_ASSERT(tensor->view_src == NULL);
  1567. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1568. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1569. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1570. tensor->buffer = buffer;
  1571. tensor->data = addr;
  1572. ggml_backend_buffer_init_tensor(buffer, tensor);
  1573. }
  1574. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1575. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1576. GGML_ASSERT(src != NULL);
  1577. GGML_ASSERT(src->data && "graph must be allocated");
  1578. size_t id = ggml_hash_insert(hash_set, src);
  1579. if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
  1580. return node_copies[ggml_hash_find(hash_set, src)];
  1581. }
  1582. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1583. if (src->view_src != NULL) {
  1584. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1585. dst->view_offs = src->view_offs;
  1586. }
  1587. dst->op = src->op;
  1588. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1589. ggml_set_name(dst, src->name);
  1590. // copy src
  1591. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1592. struct ggml_tensor * s = src->src[i];
  1593. if (s == NULL) {
  1594. continue;
  1595. }
  1596. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1597. }
  1598. node_copies[id] = dst;
  1599. return dst;
  1600. }
  1601. static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1602. size_t id = ggml_hash_find(hash_set, src);
  1603. if (node_init[id]) {
  1604. return;
  1605. }
  1606. node_init[id] = true;
  1607. struct ggml_tensor * dst = node_copies[id];
  1608. if (dst->view_src != NULL) {
  1609. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1610. ggml_backend_view_init(dst->view_src->buffer, dst);
  1611. }
  1612. else {
  1613. ggml_backend_tensor_copy(src, dst);
  1614. }
  1615. // init src
  1616. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1617. struct ggml_tensor * s = src->src[i];
  1618. if (s == NULL) {
  1619. continue;
  1620. }
  1621. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1622. }
  1623. }
  1624. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1625. struct ggml_hash_set hash_set = {
  1626. /* .size = */ graph->visited_hash_table.size,
  1627. /* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
  1628. };
  1629. struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1630. bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
  1631. struct ggml_init_params params = {
  1632. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1633. /* .mem_buffer = */ NULL,
  1634. /* .no_alloc = */ true
  1635. };
  1636. struct ggml_context * ctx_allocated = ggml_init(params);
  1637. struct ggml_context * ctx_unallocated = ggml_init(params);
  1638. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1639. fprintf(stderr, "failed to allocate context for graph copy\n");
  1640. free(hash_set.keys);
  1641. free(node_copies);
  1642. free(node_init);
  1643. ggml_free(ctx_allocated);
  1644. ggml_free(ctx_unallocated);
  1645. return (struct ggml_backend_graph_copy) {
  1646. /* .buffer = */ NULL,
  1647. /* .ctx_allocated = */ NULL,
  1648. /* .ctx_unallocated = */ NULL,
  1649. /* .graph = */ NULL,
  1650. };
  1651. }
  1652. // dup nodes
  1653. for (int i = 0; i < graph->n_nodes; i++) {
  1654. struct ggml_tensor * node = graph->nodes[i];
  1655. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1656. }
  1657. // allocate nodes
  1658. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1659. if (buffer == NULL) {
  1660. fprintf(stderr, "failed to allocate buffer for graph copy\n");
  1661. free(hash_set.keys);
  1662. free(node_copies);
  1663. free(node_init);
  1664. ggml_free(ctx_allocated);
  1665. ggml_free(ctx_unallocated);
  1666. return (struct ggml_backend_graph_copy) {
  1667. /* .buffer = */ NULL,
  1668. /* .ctx_allocated = */ NULL,
  1669. /* .ctx_unallocated = */ NULL,
  1670. /* .graph = */ NULL,
  1671. };
  1672. }
  1673. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1674. // copy data and init views
  1675. for (int i = 0; i < graph->n_nodes; i++) {
  1676. struct ggml_tensor * node = graph->nodes[i];
  1677. graph_copy_init_tensor(hash_set, node_copies, node_init, node);
  1678. }
  1679. // build graph copy
  1680. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1681. for (int i = 0; i < graph->n_nodes; i++) {
  1682. struct ggml_tensor * node = graph->nodes[i];
  1683. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
  1684. graph_copy->nodes[i] = node_copy;
  1685. }
  1686. graph_copy->n_nodes = graph->n_nodes;
  1687. free(hash_set.keys);
  1688. free(node_copies);
  1689. free(node_init);
  1690. return (struct ggml_backend_graph_copy) {
  1691. /* .buffer = */ buffer,
  1692. /* .ctx_allocated = */ ctx_allocated,
  1693. /* .ctx_unallocated = */ ctx_unallocated,
  1694. /* .graph = */ graph_copy,
  1695. };
  1696. }
  1697. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1698. ggml_backend_buffer_free(copy.buffer);
  1699. ggml_free(copy.ctx_allocated);
  1700. ggml_free(copy.ctx_unallocated);
  1701. }
  1702. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1703. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1704. if (copy.buffer == NULL) {
  1705. return false;
  1706. }
  1707. struct ggml_cgraph * g1 = graph;
  1708. struct ggml_cgraph * g2 = copy.graph;
  1709. assert(g1->n_nodes == g2->n_nodes);
  1710. for (int i = 0; i < g1->n_nodes; i++) {
  1711. //printf("eval %d/%d\n", i, g1->n_nodes);
  1712. struct ggml_tensor * t1 = g1->nodes[i];
  1713. struct ggml_tensor * t2 = g2->nodes[i];
  1714. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1715. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1716. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1717. ggml_backend_graph_compute(backend1, &g1v);
  1718. ggml_backend_graph_compute(backend2, &g2v);
  1719. if (ggml_is_view_op(t1->op)) {
  1720. continue;
  1721. }
  1722. // compare results, calculate rms etc
  1723. if (!callback(i, t1, t2, user_data)) {
  1724. break;
  1725. }
  1726. }
  1727. ggml_backend_graph_copy_free(copy);
  1728. return true;
  1729. }