1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003 |
- package ggml
- // #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
- // #include <stdlib.h>
- // #include <stdint.h>
- // #include "ggml.h"
- // #include "ggml-cpu.h"
- // #include "ggml-backend.h"
- import "C"
- import (
- "errors"
- "fmt"
- "io"
- "log/slog"
- "maps"
- "os"
- "slices"
- "strconv"
- "strings"
- "unicode"
- "unsafe"
- "github.com/ollama/ollama/format"
- fs "github.com/ollama/ollama/fs/ggml"
- "github.com/ollama/ollama/ml"
- ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
- "golang.org/x/sync/errgroup"
- )
- func devices() []*C.struct_ggml_backend_device {
- ggml.OnceLoad()
- ds := make([]*C.struct_ggml_backend_device, C.ggml_backend_dev_count())
- for i := range ds {
- ds[i] = C.ggml_backend_dev_get(C.size_t(i))
- }
- return ds
- }
- type Backend struct {
- meta *fs.GGML
- sched *C.struct_ggml_backend_sched
- tensors map[string]*C.struct_ggml_tensor
- // input is the backend used for inputs
- input *C.struct_ggml_backend_buffer_type
- // output is the backend used for outputs
- output *C.struct_ggml_backend_buffer_type
- // layers is the backend used for repeating layers
- layers map[int]*C.struct_ggml_backend_buffer_type
- flashAttention bool
- // maxGraphNodes is the maximum allowed number of graph nodes in this scheduler
- maxGraphNodes int
- }
- func New(r *os.File, params ml.BackendParams) (ml.Backend, error) {
- meta, n, err := fs.Decode(r, -1)
- if err != nil {
- return nil, err
- }
- slog.Info(
- "",
- "architecture", meta.KV().Architecture(),
- "file_type", meta.KV().FileType(),
- "name", meta.KV().String("general.name"),
- "description", meta.KV().String("general.description"),
- "num_tensors", len(meta.Tensors().Items()),
- "num_key_values", len(meta.KV()),
- )
- type deviceBufferType struct {
- d *C.struct_ggml_backend_device
- bts []*C.struct_ggml_backend_buffer_type
- }
- var cpus, accels, gpus []*C.struct_ggml_backend_device
- for _, d := range devices() {
- switch C.ggml_backend_dev_type(d) {
- case C.GGML_BACKEND_DEVICE_TYPE_CPU:
- if len(cpus) == 0 {
- // only the first cpu device should be used
- cpus = append(cpus, d)
- }
- case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
- accels = append(accels, d)
- case C.GGML_BACKEND_DEVICE_TYPE_GPU:
- gpus = append(gpus, d)
- }
- }
- // create list of buffer types for the cpu
- cpuDeviceBufferType := deviceBufferType{d: C.ggml_backend_dev_by_type(C.GGML_BACKEND_DEVICE_TYPE_CPU)}
- for _, d := range append(accels, append(gpus, cpus...)...) {
- switch C.ggml_backend_dev_type(d) {
- case C.GGML_BACKEND_DEVICE_TYPE_CPU,
- C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
- cpuDeviceBufferType.bts = append(cpuDeviceBufferType.bts, C.ggml_backend_dev_buffer_type(d))
- }
- }
- // create list of buffer types for each gpu
- var gpuDeviceBufferTypes []deviceBufferType
- for _, d := range gpus {
- bt := C.ggml_backend_dev_buffer_type(d)
- gpuDeviceBufferTypes = append(gpuDeviceBufferTypes, deviceBufferType{
- d: d,
- bts: append([]*C.struct_ggml_backend_buffer_type{bt}, cpuDeviceBufferType.bts...),
- })
- }
- useDefaultSplit := true
- for _, s := range params.TensorSplit {
- if s != 0 {
- useDefaultSplit = false
- break
- }
- }
- // calculate splits
- splits := make([]float32, len(gpus))
- if useDefaultSplit {
- // default: split on free memory
- for i := range splits {
- var free, total C.size_t
- C.ggml_backend_dev_memory(gpus[i], &free, &total)
- splits[i] = float32(free)
- }
- } else {
- splits = params.TensorSplit
- }
- var sum float32
- // cumulative sum of all splits
- for i := range splits {
- sum += splits[i]
- splits[i] = sum
- }
- // normalize splits
- for i := range splits {
- splits[i] /= sum
- }
- // inputs always use cpu
- input := cpuDeviceBufferType
- blocks := int(meta.KV().BlockCount())
- // define a range of gpu layers. anything outside of this range is assigned to the cpu
- gpuRangeStart := max(0, blocks-params.NumGPULayers)
- gpuRangeStop := min(gpuRangeStart+params.NumGPULayers, blocks+1)
- assignLayer := func(i int) deviceBufferType {
- if i < gpuRangeStart || i >= gpuRangeStop {
- return cpuDeviceBufferType
- }
- index := slices.IndexFunc(splits, func(f float32) bool { return float32(i-gpuRangeStart)/float32(gpuRangeStop-gpuRangeStart) < f })
- if index < 0 || index >= len(gpuDeviceBufferTypes) {
- return cpuDeviceBufferType
- }
- return gpuDeviceBufferTypes[index]
- }
- // repeating layers are assigned based on their index in reverse order, e.g. i / (block_count + 1)
- layers := make([]deviceBufferType, blocks)
- for i := range layers {
- layers[i] = assignLayer(i)
- }
- // outputs are assigned iff allowed by splits and configured number of gpu layers
- output := assignLayer(blocks)
- maxTensors := len(meta.Tensors().Items())
- maxTensors += 1
- // each layer has at most 2 extra tensors for rope operations
- maxTensors += blocks * 2
- type tensor struct {
- source *fs.Tensor
- target string
- }
- // some tensors are mapped to different names so keep a list
- targets := make(map[string][]string)
- // contexts are shared by tensors of the same buffer type
- ctxs := make(map[*C.struct_ggml_backend_buffer_type]*C.struct_ggml_context)
- createTensor := func(t tensor, bts []*C.struct_ggml_backend_buffer_type) *C.struct_ggml_tensor {
- for _, bt := range bts {
- if _, ok := ctxs[bt]; !ok {
- ctxs[bt] = C.ggml_init(C.struct_ggml_init_params{
- mem_size: C.ggml_tensor_overhead() * C.size_t(maxTensors),
- no_alloc: true,
- })
- }
- targets[t.source.Name] = append(targets[t.source.Name], t.target)
- name := t.source.Name
- if t.target != "" {
- name = t.target
- }
- cname := C.CString(name)
- defer C.free(unsafe.Pointer(cname))
- if tt := C.ggml_get_tensor(ctxs[bt], cname); tt != nil {
- return tt
- }
- tt := C.ggml_new_tensor(ctxs[bt], t.source.Kind, C.int(len(t.source.Shape)), (*C.int64_t)(unsafe.Pointer(&t.source.Shape[0])))
- C.ggml_set_name(tt, cname)
- slog.Debug("created tensor", "name", name, "shape", t.source.Shape, "dtype", t.source.Kind, "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
- //nolint:staticcheck // TODO: check if buffer type supports this tensor
- return tt
- }
- return nil
- }
- contains := func(s string, parts ...string) bool {
- split := strings.Split(s, ".")
- for _, part := range parts {
- if slices.Contains(split, part) {
- return true
- }
- }
- return false
- }
- for _, t := range meta.Tensors().Items() {
- switch {
- case contains(t.Name, "position_embd", "token_embd", "token_norm_embd", "token_types"):
- createTensor(tensor{source: t}, input.bts)
- if _, ok := meta.Tensors().GroupLayers()["output"]; !ok && t.Name == "token_embd.weight" {
- createTensor(tensor{source: t, target: "output.weight"}, output.bts)
- }
- case contains(t.Name, "cls", "output", "output_norm"):
- createTensor(tensor{source: t}, output.bts)
- case strings.HasPrefix(t.Name, "v.") || strings.HasPrefix(t.Name, "mm."):
- // TODO: assign vision tensors to the gpu if possible
- createTensor(tensor{source: t}, output.bts)
- case contains(t.Name, "rope_freqs", "rope_factors_long", "rope_factors_short"):
- // these tensors should be repeated per layer
- for i, layer := range layers {
- createTensor(tensor{
- source: t,
- target: "blk." + strconv.Itoa(i) + "." + t.Name,
- }, layer.bts)
- }
- default:
- layerIndex := -1
- if fields := strings.FieldsFunc(t.Name, func(r rune) bool { return !unicode.IsNumber(r) }); len(fields) > 0 {
- if i, err := strconv.Atoi(fields[0]); err == nil {
- layerIndex = i
- }
- }
- if layerIndex >= 0 {
- createTensor(tensor{source: t}, layers[layerIndex].bts)
- } else {
- // load all other tensors on the cpu
- createTensor(tensor{source: t}, input.bts)
- }
- }
- }
- // allocate buffers for each context
- bbs := make(map[*C.struct_ggml_context]*C.struct_ggml_backend_buffer, len(ctxs))
- for bt, c := range ctxs {
- if C.ggml_get_first_tensor(c) == nil {
- continue
- }
- b := C.ggml_backend_alloc_ctx_tensors_from_buft(c, bt)
- C.ggml_backend_buffer_set_usage(b, C.GGML_BACKEND_BUFFER_USAGE_WEIGHTS)
- bbs[c] = b
- }
- for bs := range maps.Values(bbs) {
- slog.Info("model weights", "buffer", C.GoString(C.ggml_backend_buffer_name(bs)), "size", format.HumanBytes2(uint64(C.ggml_backend_buffer_get_size(bs))))
- }
- // map tensor names to tensors for easy lookup later
- tensors := make(map[string]*C.struct_ggml_tensor)
- for _, c := range ctxs {
- for t := C.ggml_get_first_tensor(c); t != nil; t = C.ggml_get_next_tensor(c, t) {
- tensors[C.GoString(C.ggml_get_name(t))] = t
- }
- }
- // concurrently read in tensor data. uses a section reader which is safe for concurrent reads
- sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
- var g errgroup.Group
- for _, t := range meta.Tensors().Items() {
- for _, target := range targets[t.Name] {
- g.Go(func() error {
- if target == "" {
- target = t.Name
- }
- tt, ok := tensors[target]
- if !ok {
- return fmt.Errorf("unassigned tensor: %s", t.Name)
- }
- bts := C.malloc(C.size_t(t.Size()))
- if bts == nil {
- return errors.New("failed to allocate tensor buffer")
- }
- defer C.free(bts)
- buf := unsafe.Slice((*byte)(bts), t.Size())
- n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), buf)
- if err != nil || n != len(buf) {
- return errors.New("read failed")
- }
- C.ggml_backend_tensor_set(tt, bts, 0, C.size_t(t.Size()))
- return nil
- })
- }
- }
- if g.Wait() != nil {
- return nil, err
- }
- // map devices to backend buffer types so new tensors can be assigned to the correct device
- deviceBufferTypes := make(map[*C.struct_ggml_backend_device]*C.struct_ggml_backend_buffer_type)
- // create backends and buffer types used for the compute graph scheduler
- var schedBackends []*C.struct_ggml_backend
- var schedBufts []*C.struct_ggml_backend_buffer_type
- for _, d := range append(gpus, append(accels, cpus...)...) {
- b := C.ggml_backend_dev_init(d, nil)
- bt := C.ggml_backend_get_default_buffer_type(b)
- if d := C.ggml_backend_get_device(b); C.ggml_backend_dev_type(d) == C.GGML_BACKEND_DEVICE_TYPE_CPU && len(gpus) > 0 {
- // use the first gpu host buffer type for gpu if possible
- if hbt := C.ggml_backend_dev_host_buffer_type(gpus[0]); hbt != nil {
- bt = hbt
- }
- }
- deviceBufferTypes[d] = bt
- schedBackends = append(schedBackends, b)
- schedBufts = append(schedBufts, bt)
- slog.Info("compute graph", "backend", C.GoString(C.ggml_backend_name(b)), "buffer_type", C.GoString(C.ggml_backend_buft_name(bt)))
- if C.ggml_backend_is_cpu(b) {
- // set number of threads for cpu backend
- C.ggml_backend_cpu_set_n_threads(b, C.int(Threads(params.NumThreads)))
- }
- }
- maxGraphNodes := max(8192, len(meta.Tensors().Items())*5)
- return &Backend{
- flashAttention: params.FlashAttention,
- meta: meta,
- tensors: tensors,
- sched: C.ggml_backend_sched_new(
- (*C.ggml_backend_t)(unsafe.Pointer(&schedBackends[0])),
- (*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&schedBufts[0])),
- C.int(len(schedBackends)),
- C.size_t(maxGraphNodes),
- C._Bool(len(gpus) > 1 && slices.Contains(gpus, output.d)),
- ),
- input: deviceBufferTypes[input.d],
- output: deviceBufferTypes[output.d],
- layers: func() map[int]*C.struct_ggml_backend_buffer_type {
- m := make(map[int]*C.struct_ggml_backend_buffer_type)
- for i, layer := range layers {
- m[i] = deviceBufferTypes[layer.d]
- }
- return m
- }(),
- maxGraphNodes: maxGraphNodes,
- }, nil
- }
- func init() {
- ml.RegisterBackend("ggml", New)
- }
- func (b *Backend) Config() ml.Config {
- return b.meta.KV()
- }
- func (b *Backend) Get(name string) ml.Tensor {
- if t, ok := b.tensors[name]; ok {
- return &Tensor{b: b, t: t}
- }
- return nil
- }
- func (b *Backend) NewContext() ml.Context {
- return b.NewContextSize(b.maxGraphNodes)
- }
- func (b *Backend) NewContextSize(n int) ml.Context {
- if n > b.maxGraphNodes {
- panic(fmt.Errorf("requested number of graph nodes (%v) for new context exceeds maximum (%v)", n, b.maxGraphNodes))
- }
- return &Context{
- b: b,
- maxGraphNodes: n,
- ctx: C.ggml_init(C.struct_ggml_init_params{
- mem_size: C.size_t(n)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(n), false),
- no_alloc: true,
- }),
- }
- }
- func (b *Backend) CacheConfig() ml.CacheConfig {
- if b.flashAttention {
- return ml.CacheConfig{CachePadding: 256, MaskDType: ml.DTypeF16, MaskBatchPadding: C.GGML_KQ_MASK_PAD}
- } else {
- return ml.CacheConfig{CachePadding: 32, PermutedV: true}
- }
- }
- type Context struct {
- b *Backend
- ctx *C.struct_ggml_context
- graph *C.struct_ggml_cgraph
- // buft is the buffer type used for new tensors
- buft *C.struct_ggml_backend_buffer_type
- // maxGraphNodes is the maximum allowed number of graph nodes in this context
- maxGraphNodes int
- }
- func (c Context) Input() ml.Context {
- if c.b.input != nil {
- return &Context{
- b: c.b,
- ctx: c.ctx,
- buft: c.b.input,
- maxGraphNodes: c.maxGraphNodes,
- }
- }
- return &c
- }
- func (c Context) Output() ml.Context {
- if c.b.output != nil {
- return &Context{
- b: c.b,
- ctx: c.ctx,
- buft: c.b.output,
- maxGraphNodes: c.maxGraphNodes,
- }
- }
- return &c
- }
- func (c Context) Layer(i int) ml.Context {
- if buft, ok := c.b.layers[i]; ok {
- return &Context{
- b: c.b,
- ctx: c.ctx,
- buft: buft,
- maxGraphNodes: c.maxGraphNodes,
- }
- }
- return &c
- }
- func (c *Context) Forward(tensors ...ml.Tensor) ml.Context {
- if c.graph == nil {
- c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.maxGraphNodes), false)
- }
- for _, tensor := range tensors {
- C.ggml_build_forward_expand(c.graph, tensor.(*Tensor).t)
- }
- return c
- }
- func (c Context) Compute(tensors ...ml.Tensor) {
- C.ggml_backend_sched_graph_compute_async(c.b.sched, c.graph)
- C.ggml_backend_sched_reset(c.b.sched)
- needSync := true
- sync := func() {
- if needSync {
- C.ggml_backend_sched_synchronize(c.b.sched)
- needSync = false
- }
- }
- for _, t := range tensors {
- if C.ggml_nbytes(t.(*Tensor).t) > 0 {
- t.(*Tensor).sync = sync
- }
- }
- }
- func (c Context) MaxGraphNodes() int {
- return c.maxGraphNodes
- }
- func shapeToGGML(shape []int) *C.int64_t {
- sh := make([]C.int64_t, len(shape))
- for i, s := range shape {
- sh[i] = C.int64_t(s)
- }
- return &sh[0]
- }
- func pad(length, pad C.size_t) C.size_t {
- return ((length + pad - 1) / pad) * pad
- }
- func (c Context) newTensor(dtype ml.DType, shape []int) ml.Tensor {
- if c.buft == nil {
- panic("set Input, Output, or Layer before creating tensors")
- }
- var cdtype uint32
- switch dtype {
- case ml.DTypeF32:
- cdtype = C.GGML_TYPE_F32
- case ml.DTypeF16:
- cdtype = C.GGML_TYPE_F16
- case ml.DTypeQ80:
- cdtype = C.GGML_TYPE_Q8_0
- case ml.DTypeQ40:
- cdtype = C.GGML_TYPE_Q4_0
- case ml.DTypeI32:
- cdtype = C.GGML_TYPE_I32
- default:
- panic("unsupported dtype")
- }
- if len(shape) < 1 || shape[0] == 0 {
- var shape C.int64_t = 0
- return &Tensor{b: c.b, t: C.ggml_new_tensor(c.ctx, cdtype, 1, &shape)}
- } else if len(shape) > 4 {
- panic("unsupported number of dimensions")
- }
- for _, dim := range shape {
- if dim < 1 {
- panic("invalid shape")
- }
- }
- t := C.ggml_new_tensor(c.ctx, cdtype, C.int(len(shape)), shapeToGGML(shape))
- size := pad(C.ggml_backend_buft_get_alloc_size(c.buft, t), C.ggml_backend_buft_get_alignment(c.buft))
- b := C.ggml_backend_buft_alloc_buffer(c.buft, size)
- C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
- return &Tensor{b: c.b, t: t}
- }
- func (c Context) Empty(dtype ml.DType, shape ...int) ml.Tensor {
- return c.newTensor(dtype, shape)
- }
- func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
- t := c.newTensor(dtype, shape)
- C.ggml_set_zero(t.(*Tensor).t)
- return t
- }
- func checkShape[S ~[]E, E any](s S, shape ...int) error {
- n := len(s)
- if n == 0 {
- return nil
- }
- for _, v := range shape {
- n /= v
- }
- if n != 1 {
- return fmt.Errorf("invalid shape: %v", shape)
- }
- return nil
- }
- func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
- if err := checkShape(s, shape...); err != nil {
- return nil, err
- }
- t := c.newTensor(ml.DTypeF32, shape)
- if len(s) > 0 {
- C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
- }
- return t, nil
- }
- func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
- if err := checkShape(s, shape...); err != nil {
- return nil, err
- }
- t := c.newTensor(ml.DTypeI32, shape)
- if len(s) > 0 {
- C.ggml_backend_tensor_set(t.(*Tensor).t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
- }
- return t, nil
- }
- func (c *Context) Close() {
- if c != nil {
- C.ggml_free(c.ctx)
- }
- }
- type Tensor struct {
- b *Backend
- t *C.struct_ggml_tensor
- sync func()
- }
- func (t *Tensor) LogValue() slog.Value {
- return slog.GroupValue(
- slog.String("name", C.GoString(C.ggml_get_name(t.t))),
- slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
- slog.Any("shape", t.Shape()),
- )
- }
- func (t *Tensor) Dim(n int) int {
- return int(t.t.ne[n])
- }
- func (t *Tensor) Stride(n int) int {
- return int(t.t.nb[n])
- }
- func (t *Tensor) Shape() []int {
- shape := make([]int, C.ggml_n_dims(t.t))
- for i := range shape {
- shape[i] = t.Dim(i)
- }
- return shape
- }
- func (t *Tensor) Bytes() (data []byte) {
- if t.sync != nil {
- data = make([]byte, C.ggml_nbytes(t.t))
- t.sync()
- C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
- }
- return
- }
- func (t *Tensor) Floats() (data []float32) {
- if t.sync != nil {
- data = make([]float32, C.ggml_nelements(t.t))
- t.sync()
- C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
- }
- return
- }
- func (t *Tensor) DType() ml.DType {
- switch t.t._type {
- case C.GGML_TYPE_F32:
- return ml.DTypeF32
- case C.GGML_TYPE_F16:
- return ml.DTypeF16
- case C.GGML_TYPE_Q8_0:
- return ml.DTypeQ80
- case C.GGML_TYPE_Q4_0:
- return ml.DTypeQ40
- case C.GGML_TYPE_I32:
- return ml.DTypeI32
- default:
- return ml.DTypeOther
- }
- }
- func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
- return &Tensor{
- b: t.b,
- t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
- }
- }
- func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
- if len(s) > 0 {
- return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
- }
- return t
- }
- func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
- return &Tensor{
- b: t.b,
- t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
- }
- }
- func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
- return &Tensor{
- b: t.b,
- t: C.ggml_cont(ctx.(*Context).ctx, t.t),
- }
- }
- func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
- return &Tensor{
- b: t.b,
- t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
- }
- }
- func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
- return &Tensor{
- b: t.b,
- t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
- }
- }
- func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
- mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
- C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
- return &Tensor{
- b: t.b,
- t: mul,
- }
- }
- func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
- tt := (&Tensor{b: t.b, t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
- if b != nil {
- tt = tt.Add(ctx, b)
- }
- return tt
- }
- func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
- return (&Tensor{b: t.b, t: C.ggml_rms_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
- }
- func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
- if len(shape) != 4 {
- panic("expected 4 dimensions")
- }
- return &Tensor{
- b: t.b,
- t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
- }
- }
- func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
- if len(shape) != 4 {
- panic("expected 4 dimensions")
- }
- return &Tensor{
- b: t.b,
- t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
- }
- }
- func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
- return &Tensor{
- b: t.b,
- t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
- }
- }
- func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
- return &Tensor{
- b: t.b,
- t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
- }
- }
- func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
- switch len(shape) {
- case 1:
- return &Tensor{
- b: t.b,
- t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
- }
- case 2:
- return &Tensor{
- b: t.b,
- t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
- }
- case 3:
- return &Tensor{
- b: t.b,
- t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
- }
- case 4:
- return &Tensor{
- b: t.b,
- t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
- }
- default:
- panic("unsupported number of dimensions")
- }
- }
- func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
- return &Tensor{
- b: t.b,
- t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
- }
- }
- func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
- return &Tensor{
- b: t.b,
- t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
- }
- }
- func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
- return &Tensor{
- b: t.b,
- t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
- }
- }
- func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
- if len(shape) != 4 {
- panic("expected 4 dimensions")
- }
- return &Tensor{
- b: t.b,
- t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
- }
- }
- func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
- switch len(shape) {
- case 1:
- return &Tensor{
- b: t.b,
- t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
- }
- case 3:
- return &Tensor{
- b: t.b,
- t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
- C.int64_t(shape[0]), C.int64_t(shape[2]),
- C.size_t(shape[1]),
- C.size_t(offset)),
- }
- case 5:
- return &Tensor{
- b: t.b,
- t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
- C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
- C.size_t(shape[1]), C.size_t(shape[3]),
- C.size_t(offset)),
- }
- case 7:
- return &Tensor{
- b: t.b,
- t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
- C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
- C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
- C.size_t(offset)),
- }
- default:
- panic("unsupported number of dimensions")
- }
- }
- const (
- ropeTypeNorm C.int = 0
- ropeTypeNeox C.int = 2
- ropeTypeMrope C.int = 8
- ropeTypeVision C.int = 24
- )
- func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim, ropeType uint32, ropeBase, ropeScale float32) ml.Tensor {
- if ropeFactors == nil {
- ropeFactors = &Tensor{b: t.b}
- }
- dequant := t.t
- if C.ggml_is_quantized(t.t._type) {
- dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
- }
- return &Tensor{
- b: t.b,
- t: C.ggml_rope_ext(
- ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
- C.int(ropeDim),
- C.int(ropeType),
- 131072, // YaRN n_ctx_train
- C.float(ropeBase),
- C.float(ropeScale),
- 0., // YaRN ext_factor
- 1., // YaRN attn_factor
- 32., // YaRN beta_fast
- 1., // YaRN beta_slow
- ),
- }
- }
- func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
- return &Tensor{
- b: t.b,
- t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
- }
- }
- func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
- return &Tensor{
- b: t.b,
- t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
- }
- }
- func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
- return &Tensor{
- b: t.b,
- t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
- }
- }
- func (t *Tensor) AvgPool2D(ctx ml.Context, k, s int, p float32) ml.Tensor {
- return &Tensor{
- b: t.b,
- t: C.ggml_pool_2d(ctx.(*Context).ctx, t.t, C.GGML_OP_POOL_AVG, C.int(k), C.int(k), C.int(s), C.int(s), C.float(p), C.float(p)),
- }
- }
- func (t *Tensor) Set(ctx ml.Context, t2 ml.Tensor, offset int, strides ...int) ml.Tensor {
- var tt *C.struct_ggml_tensor
- switch len(strides) {
- case 0:
- tt = C.ggml_set_1d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset))
- case 1:
- tt = C.ggml_set_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.size_t(offset), C.size_t(strides[0]))
- default:
- panic("unsupported number of dimensions")
- }
- return &Tensor{b: t.b, t: tt}
- }
- func (t *Tensor) ScaledDotProductAttention(ctx ml.Context, key, value, mask ml.Tensor, scale float64) ml.Tensor {
- var kqMask *C.struct_ggml_tensor
- if mask != nil {
- kqMask = mask.(*Tensor).t
- }
- query := t.Permute(ctx, 0, 2, 1, 3)
- key = key.Permute(ctx, 0, 2, 1, 3)
- if t.b.flashAttention {
- value = value.Permute(ctx, 0, 2, 1, 3)
- kqv := C.ggml_flash_attn_ext(ctx.(*Context).ctx, query.(*Tensor).t, key.(*Tensor).t, value.(*Tensor).t, kqMask, C.float(scale), 0, 0)
- C.ggml_flash_attn_ext_set_prec(kqv, C.GGML_PREC_F32)
- return &Tensor{b: t.b, t: kqv}
- } else {
- kq := key.MulmatFullPrec(ctx, query)
- kq = &Tensor{
- b: t.b,
- t: C.ggml_soft_max_ext(ctx.(*Context).ctx, kq.(*Tensor).t, kqMask, C.float(scale), 0),
- }
- kqv := value.Mulmat(ctx, kq)
- return kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
- }
- }
|