ggml.go 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782
  1. package ggml
  2. /*
  3. #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
  4. #include <stdlib.h>
  5. #include <stdint.h>
  6. #include <time.h>
  7. #include <string.h>
  8. #include "ggml.h"
  9. #include "ggml-cpu.h"
  10. #include "ggml-backend.h"
  11. static struct ggml_backend_feature * getBackendFeatures(void *fp, ggml_backend_reg_t reg) {return ((ggml_backend_get_features_t)(fp))(reg);}
  12. static struct ggml_backend_feature * getNextBackendFeatures(struct ggml_backend_feature * feature) { return &feature[1];}
  13. typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
  14. COMPILER inline get_compiler() {
  15. #if defined(__clang__)
  16. return COMP_CLANG;
  17. #elif defined(__GNUC__)
  18. return COMP_GCC;
  19. #else
  20. return UNKNOWN_COMPILER;
  21. #endif
  22. }
  23. // Define a fixed-size struct to store timing data
  24. #define MAX_TENSOR_NAME 256
  25. #define MAX_TIMINGS 1000
  26. typedef struct {
  27. char tensor_name[MAX_TENSOR_NAME];
  28. double duration_ms;
  29. } timing_entry;
  30. typedef struct {
  31. timing_entry entries[MAX_TIMINGS];
  32. int count;
  33. } timing_data;
  34. // Global timing data structure
  35. timing_data g_timings = {0};
  36. double get_time_ms() {
  37. struct timespec ts;
  38. clock_gettime(CLOCK_MONOTONIC, &ts);
  39. return ts.tv_sec * 1000.0 + ts.tv_nsec / 1000000.0;
  40. }
  41. bool debug_callback(struct ggml_tensor * t, bool ask, void * user_data) {
  42. static double start_time;
  43. static char current_tensor[MAX_TENSOR_NAME];
  44. if (ask) {
  45. start_time = get_time_ms();
  46. strncpy(current_tensor, t->name, MAX_TENSOR_NAME - 1);
  47. current_tensor[MAX_TENSOR_NAME - 1] = '\0';
  48. } else {
  49. double end_time = get_time_ms();
  50. double duration = end_time - start_time;
  51. if (g_timings.count < MAX_TIMINGS) {
  52. strncpy(g_timings.entries[g_timings.count].tensor_name, current_tensor, MAX_TENSOR_NAME - 1);
  53. g_timings.entries[g_timings.count].duration_ms = duration;
  54. g_timings.count++;
  55. }
  56. }
  57. return true;
  58. }
  59. void clear_timings() {
  60. g_timings.count = 0;
  61. }
  62. */
  63. import "C"
  64. import (
  65. "fmt"
  66. "io"
  67. "log/slog"
  68. "os"
  69. "strings"
  70. "sync"
  71. "unsafe"
  72. "github.com/ollama/ollama/envconfig"
  73. "github.com/ollama/ollama/format"
  74. fs "github.com/ollama/ollama/fs/ggml"
  75. "github.com/ollama/ollama/ml"
  76. "golang.org/x/sync/errgroup"
  77. ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
  78. )
  79. type device struct {
  80. d *C.struct_ggml_backend_device
  81. }
  82. func (d device) LogValue() slog.Value {
  83. var free, total uint64
  84. C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
  85. kind := "unknown"
  86. switch C.ggml_backend_dev_type(d.d) {
  87. case C.GGML_BACKEND_DEVICE_TYPE_CPU:
  88. kind = "cpu"
  89. case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  90. kind = "gpu"
  91. case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  92. kind = "accel"
  93. }
  94. return slog.GroupValue(
  95. slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
  96. slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
  97. slog.String("kind", kind),
  98. slog.String("free", format.HumanBytes2(free)),
  99. slog.String("total", format.HumanBytes2(total)),
  100. )
  101. }
  102. var devices = sync.OnceValue(func() []device {
  103. ggml.OnceLoad()
  104. s := make([]device, C.ggml_backend_dev_count())
  105. for i := range s {
  106. s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
  107. }
  108. return s
  109. })
  110. type Backend struct {
  111. meta *fs.GGML
  112. cpus, gpus []Context
  113. tensors map[string]*Context
  114. }
  115. func New(r *os.File) (ml.Backend, error) {
  116. meta, n, err := fs.Decode(r, -1)
  117. if err != nil {
  118. return nil, err
  119. }
  120. slog.Info(
  121. "",
  122. "architecture", meta.KV().Architecture(),
  123. "file_type", meta.KV().FileType(),
  124. "name", meta.KV().String("general.name"),
  125. "description", meta.KV().String("general.description"),
  126. "num_tensors", len(meta.Tensors().Items()),
  127. "num_key_values", len(meta.KV()),
  128. )
  129. var cpus, gpus []Context
  130. for _, d := range devices() {
  131. switch C.ggml_backend_dev_type(d.d) {
  132. case C.GGML_BACKEND_DEVICE_TYPE_CPU,
  133. C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
  134. slog.Info("cpu", "device", d)
  135. cpus = append(cpus, Context{
  136. ctx: C.ggml_init(C.struct_ggml_init_params{
  137. mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
  138. no_alloc: true,
  139. }),
  140. backend: C.ggml_backend_dev_init(d.d, nil),
  141. })
  142. case C.GGML_BACKEND_DEVICE_TYPE_GPU:
  143. slog.Info("gpu", "device", d)
  144. gpus = append(gpus, Context{
  145. ctx: C.ggml_init(C.struct_ggml_init_params{
  146. mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
  147. no_alloc: true,
  148. }),
  149. backend: C.ggml_backend_dev_init(d.d, nil),
  150. })
  151. }
  152. }
  153. ctxFunc := func(s []Context) (*Context, error) {
  154. for _, e := range s {
  155. return &e, nil
  156. }
  157. return nil, fmt.Errorf("no devices available")
  158. }
  159. tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
  160. for _, t := range meta.Tensors().Items() {
  161. c, err := ctxFunc(append(gpus, cpus...))
  162. if err != nil {
  163. return nil, err
  164. }
  165. func() {
  166. tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
  167. cname := C.CString(t.Name)
  168. defer C.free(unsafe.Pointer(cname))
  169. C.ggml_set_name(tt, cname)
  170. tensors[t] = c
  171. }()
  172. }
  173. for _, b := range append(gpus, cpus...) {
  174. C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
  175. }
  176. sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
  177. var g errgroup.Group
  178. for t, c := range tensors {
  179. g.Go(func() error {
  180. bts := make([]byte, t.Size())
  181. n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
  182. if err != nil {
  183. return err
  184. }
  185. if n != int(t.Size()) {
  186. return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
  187. }
  188. cname := C.CString(t.Name)
  189. defer C.free(unsafe.Pointer(cname))
  190. C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n))
  191. return nil
  192. })
  193. }
  194. if err := g.Wait(); err != nil {
  195. return nil, err
  196. }
  197. return &Backend{
  198. meta: meta,
  199. cpus: cpus,
  200. gpus: gpus,
  201. }, nil
  202. }
  203. func init() {
  204. ml.RegisterBackend("ggml", New)
  205. }
  206. func (b *Backend) Config() ml.Config {
  207. return b.meta.KV()
  208. }
  209. func (b *Backend) Get(name string) ml.Tensor {
  210. cname := C.CString(name)
  211. defer C.free(unsafe.Pointer(cname))
  212. for _, c := range append(b.gpus, b.cpus...) {
  213. if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
  214. return &Tensor{t: t}
  215. }
  216. }
  217. return nil
  218. }
  219. func (b *Backend) NewContext() ml.Context {
  220. nodes := max(8192, len(b.meta.Tensors().Items())*5)
  221. c := C.ggml_init(C.struct_ggml_init_params{
  222. mem_buffer: nil,
  223. mem_size: C.size_t(nodes)*C.ggml_tensor_overhead() + C.ggml_graph_overhead_custom(C.size_t(nodes), false),
  224. no_alloc: true,
  225. })
  226. backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
  227. bufts := make([]*C.struct_ggml_backend_buffer_type, len(b.gpus)+len(b.cpus))
  228. for i, c := range append(b.gpus, b.cpus...) {
  229. backends[i] = c.backend
  230. bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
  231. }
  232. return &Context{
  233. ctx: c,
  234. backend: backends[0],
  235. nodes: nodes,
  236. sched: C.ggml_backend_sched_new(
  237. (*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
  238. (*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
  239. C.int(len(backends)),
  240. C.size_t(nodes),
  241. true,
  242. ),
  243. }
  244. }
  245. type Context struct {
  246. ctx *C.struct_ggml_context
  247. backend *C.struct_ggml_backend
  248. sched *C.struct_ggml_backend_sched
  249. graph *C.struct_ggml_cgraph
  250. nodes int
  251. }
  252. func (c *Context) Forward(t ml.Tensor) {
  253. if c.graph == nil {
  254. c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
  255. }
  256. C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
  257. }
  258. // Timing retrieves the collected timing data
  259. func (c *Context) Timing() []ml.OpTiming {
  260. sequence := make([]ml.OpTiming, C.g_timings.count)
  261. for i := range int(C.g_timings.count) {
  262. entry := C.g_timings.entries[i]
  263. tensorName := C.GoString(&entry.tensor_name[0])
  264. // Determine operation type and description based on tensor name
  265. var opType ml.OpType
  266. var opDesc string
  267. switch {
  268. case strings.Contains(tensorName, "(view)"):
  269. opType, opDesc = ml.View, "Memory view"
  270. case strings.Contains(tensorName, "(copy)") || strings.Contains(tensorName, "(copy of"):
  271. opType, opDesc = ml.Copy, "Memory copy"
  272. case strings.Contains(tensorName, "(reshaped)"):
  273. opType, opDesc = ml.Reshape, "Reshape"
  274. case strings.Contains(tensorName, "(permuted)"):
  275. opType, opDesc = ml.Permute, "Permute dimensions"
  276. case strings.Contains(tensorName, "(cont)"):
  277. opType, opDesc = ml.Contiguous, "Make contiguous"
  278. case strings.Contains(tensorName, "(transposed)"):
  279. opType, opDesc = ml.Transpose, "Transpose"
  280. case strings.HasPrefix(tensorName, "leaf_"):
  281. opType, opDesc = ml.Input, fmt.Sprintf("Input tensor %s", tensorName)
  282. case strings.HasPrefix(tensorName, "node_"):
  283. opType, opDesc = ml.ComputeOp, fmt.Sprintf("Computation %s", tensorName)
  284. default:
  285. opType, opDesc = "Unknown", tensorName
  286. }
  287. sequence[i] = ml.OpTiming{
  288. Type: opType,
  289. Operation: opDesc,
  290. Duration: float64(entry.duration_ms),
  291. Order: i,
  292. }
  293. }
  294. return sequence
  295. }
  296. func (c *Context) Compute(tensors ...ml.Tensor) {
  297. if envconfig.Benchmark() {
  298. // Clear previous timings before new computation
  299. C.clear_timings()
  300. C.ggml_backend_sched_set_eval_callback(
  301. c.sched,
  302. C.ggml_backend_eval_callback(C.debug_callback),
  303. nil,
  304. )
  305. }
  306. C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
  307. needSync := true
  308. sync := func() {
  309. if needSync {
  310. C.ggml_backend_sched_synchronize(c.sched)
  311. needSync = false
  312. }
  313. }
  314. for _, t := range tensors {
  315. if C.ggml_nbytes(t.(*Tensor).t) > 0 {
  316. t.(*Tensor).sync = sync
  317. }
  318. }
  319. }
  320. func (c *Context) MaxTensors() int {
  321. return c.nodes
  322. }
  323. func shapeToGGML(shape []int) *C.int64_t {
  324. sh := make([]C.int64_t, len(shape))
  325. for i, s := range shape {
  326. sh[i] = (C.int64_t)(s)
  327. }
  328. return &sh[0]
  329. }
  330. func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
  331. if len(shape) < 1 || len(shape) > 4 {
  332. panic("unsupported number of dimensions")
  333. }
  334. for _, dim := range shape {
  335. if dim < 1 {
  336. panic("invalid shape")
  337. }
  338. }
  339. var t *C.struct_ggml_tensor
  340. switch dtype {
  341. case ml.DTypeF32:
  342. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), shapeToGGML(shape))
  343. case ml.DTypeF16:
  344. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F16, C.int(len(shape)), shapeToGGML(shape))
  345. case ml.DTypeI32:
  346. t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), shapeToGGML(shape))
  347. default:
  348. panic("unsupported dtype")
  349. }
  350. b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
  351. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  352. C.ggml_set_zero(t)
  353. return &Tensor{t: t}
  354. }
  355. func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
  356. n := len(s)
  357. if n == 0 {
  358. var shape C.int64_t = 0
  359. t := C.ggml_new_tensor(ctx.ctx, dtype, 1, &shape)
  360. return &Tensor{t: t}, nil
  361. }
  362. for _, v := range shape {
  363. n /= v
  364. }
  365. if n != 1 {
  366. return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
  367. }
  368. t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), shapeToGGML(shape))
  369. b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
  370. C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
  371. C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
  372. return &Tensor{t: t}, nil
  373. }
  374. func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
  375. return fromSlice(c, s, shape, C.GGML_TYPE_F32)
  376. }
  377. func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
  378. return fromSlice(c, s, shape, C.GGML_TYPE_I32)
  379. }
  380. func (c *Context) Close() {
  381. if c != nil {
  382. C.ggml_backend_sched_free(c.sched)
  383. C.ggml_free(c.ctx)
  384. }
  385. }
  386. type Tensor struct {
  387. t *C.struct_ggml_tensor
  388. sync func()
  389. }
  390. func (t *Tensor) LogValue() slog.Value {
  391. return slog.GroupValue(
  392. slog.String("name", C.GoString(C.ggml_get_name(t.t))),
  393. slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
  394. slog.Any("shape", t.Shape()),
  395. )
  396. }
  397. func (t *Tensor) Dim(n int) int {
  398. return int(t.t.ne[n])
  399. }
  400. func (t *Tensor) Stride(n int) int {
  401. return int(t.t.nb[n])
  402. }
  403. func (t *Tensor) Shape() []int {
  404. shape := make([]int, C.ggml_n_dims(t.t))
  405. for i := range shape {
  406. shape[i] = t.Dim(i)
  407. }
  408. return shape
  409. }
  410. func (t *Tensor) Bytes() (data []byte) {
  411. if t.sync != nil {
  412. data = make([]byte, C.ggml_nbytes(t.t))
  413. t.sync()
  414. C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
  415. }
  416. return
  417. }
  418. func (t *Tensor) Floats() (data []float32) {
  419. if t.sync != nil {
  420. data = make([]float32, C.ggml_nelements(t.t))
  421. t.sync()
  422. C.ggml_backend_tensor_get(t.t, unsafe.Pointer(&data[0]), 0, C.ggml_nbytes(t.t))
  423. }
  424. return
  425. }
  426. func (t *Tensor) DType() ml.DType {
  427. switch t.t._type {
  428. case C.GGML_TYPE_F32:
  429. return ml.DTypeF32
  430. case C.GGML_TYPE_F16:
  431. return ml.DTypeF16
  432. case C.GGML_TYPE_I32:
  433. return ml.DTypeI32
  434. default:
  435. return ml.DTypeOther
  436. }
  437. }
  438. func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  439. return &Tensor{
  440. t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  441. }
  442. }
  443. func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
  444. if len(s) > 0 {
  445. return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
  446. }
  447. return t
  448. }
  449. func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
  450. return &Tensor{
  451. t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
  452. }
  453. }
  454. func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
  455. return &Tensor{
  456. t: C.ggml_cont(ctx.(*Context).ctx, t.t),
  457. }
  458. }
  459. func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  460. return &Tensor{
  461. t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  462. }
  463. }
  464. func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  465. return &Tensor{
  466. t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  467. }
  468. }
  469. func (t *Tensor) MulmatFullPrec(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  470. mul := C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t)
  471. C.ggml_mul_mat_set_prec(mul, C.GGML_PREC_F32)
  472. return &Tensor{
  473. t: mul,
  474. }
  475. }
  476. func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
  477. tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
  478. if b != nil {
  479. tt = tt.Add(ctx, b)
  480. }
  481. return tt
  482. }
  483. func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
  484. return (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
  485. }
  486. func (t *Tensor) Pad(ctx ml.Context, shape ...int) ml.Tensor {
  487. if len(shape) != 4 {
  488. panic("expected 4 dimensions")
  489. }
  490. return &Tensor{
  491. t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  492. }
  493. }
  494. func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
  495. if len(shape) != 4 {
  496. panic("expected 4 dimensions")
  497. }
  498. return &Tensor{
  499. t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  500. }
  501. }
  502. func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  503. return &Tensor{
  504. t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  505. }
  506. }
  507. func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
  508. return &Tensor{
  509. t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
  510. }
  511. }
  512. func (t *Tensor) Reshape(ctx ml.Context, shape ...int) ml.Tensor {
  513. switch len(shape) {
  514. case 1:
  515. return &Tensor{
  516. t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
  517. }
  518. case 2:
  519. return &Tensor{
  520. t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
  521. }
  522. case 3:
  523. return &Tensor{
  524. t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
  525. }
  526. case 4:
  527. return &Tensor{
  528. t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
  529. }
  530. default:
  531. panic("unsupported number of dimensions")
  532. }
  533. }
  534. func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
  535. return &Tensor{
  536. t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
  537. }
  538. }
  539. func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
  540. return &Tensor{
  541. t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
  542. }
  543. }
  544. func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
  545. return &Tensor{
  546. t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
  547. }
  548. }
  549. func (t *Tensor) Unpad(ctx ml.Context, shape ...int) ml.Tensor {
  550. if len(shape) != 4 {
  551. panic("expected 4 dimensions")
  552. }
  553. return &Tensor{
  554. t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
  555. }
  556. }
  557. func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
  558. switch len(shape) {
  559. case 1:
  560. return &Tensor{
  561. t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
  562. }
  563. case 3:
  564. return &Tensor{
  565. t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
  566. C.int64_t(shape[0]), C.int64_t(shape[2]),
  567. C.size_t(shape[1]),
  568. C.size_t(offset)),
  569. }
  570. case 5:
  571. return &Tensor{
  572. t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
  573. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
  574. C.size_t(shape[1]), C.size_t(shape[3]),
  575. C.size_t(offset)),
  576. }
  577. case 7:
  578. return &Tensor{
  579. t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
  580. C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
  581. C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
  582. C.size_t(offset)),
  583. }
  584. default:
  585. panic("unsupported number of dimensions")
  586. }
  587. }
  588. const (
  589. ropeTypeNorm C.int = iota
  590. )
  591. func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
  592. if ropeFactors == nil {
  593. ropeFactors = &Tensor{}
  594. }
  595. dequant := t.t
  596. if C.ggml_is_quantized(t.t._type) {
  597. dequant = C.ggml_cast(ctx.(*Context).ctx, t.t, C.GGML_TYPE_F32)
  598. }
  599. return &Tensor{
  600. t: C.ggml_rope_ext(
  601. ctx.(*Context).ctx, dequant, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
  602. C.int(ropeDim),
  603. 131072, // YaRN n_ctx_train
  604. ropeTypeNorm, // ROPE_TYPE_NORM
  605. C.float(ropeBase),
  606. C.float(ropeScale),
  607. 0., // YaRN ext_factor
  608. 1., // YaRN attn_factor
  609. 32., // YaRN beta_fast
  610. 1., // YaRN beta_slow
  611. ),
  612. }
  613. }
  614. func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
  615. return &Tensor{
  616. t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
  617. }
  618. }
  619. func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
  620. return &Tensor{
  621. t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
  622. }
  623. }
  624. func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
  625. return &Tensor{
  626. t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
  627. }
  628. }
  629. func (b *Backend) SystemInfo() string {
  630. var compiler string
  631. switch C.get_compiler() {
  632. case C.COMP_UNKNOWN:
  633. compiler = "cgo(unknown_compiler)"
  634. case C.COMP_GCC:
  635. compiler = "cgo(gcc)"
  636. case C.COMP_CLANG:
  637. compiler = "cgo(clang)"
  638. }
  639. var s string
  640. for i := range C.ggml_backend_reg_count() {
  641. reg := C.ggml_backend_reg_get(i)
  642. fName := C.CString("ggml_backend_get_features")
  643. defer C.free(unsafe.Pointer(fName))
  644. get_features_fn := C.ggml_backend_reg_get_proc_address(reg, fName)
  645. if get_features_fn != nil {
  646. s += C.GoString(C.ggml_backend_reg_name(reg))
  647. s += " : "
  648. for features := C.getBackendFeatures(get_features_fn, reg); features.name != nil; features = C.getNextBackendFeatures(features) {
  649. s += C.GoString(features.name)
  650. s += " = "
  651. s += C.GoString(features.value)
  652. s += " | "
  653. }
  654. }
  655. }
  656. return s + compiler
  657. }