ggml-backend.c 77 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131
  1. /**
  2. * llama.cpp - git ee459f40f65810a810151b24eba5b8bd174ceffe - do not edit this file
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023-2024 The ggml authors
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #include "ggml-backend-impl.h"
  27. #include "ggml-alloc.h"
  28. #include "ggml-impl.h"
  29. #include <assert.h>
  30. #include <limits.h>
  31. #include <stdarg.h>
  32. #include <stdio.h>
  33. #include <stdlib.h>
  34. #include <string.h>
  35. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  36. // backend buffer type
  37. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  38. return buft->iface.get_name(buft);
  39. }
  40. GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  41. return buft->iface.alloc_buffer(buft, size);
  42. }
  43. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  44. return buft->iface.get_alignment(buft);
  45. }
  46. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  47. // get_max_size is optional, defaults to SIZE_MAX
  48. if (buft->iface.get_max_size) {
  49. return buft->iface.get_max_size(buft);
  50. }
  51. return SIZE_MAX;
  52. }
  53. GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  54. // get_alloc_size is optional, defaults to ggml_nbytes
  55. if (buft->iface.get_alloc_size) {
  56. size_t size = buft->iface.get_alloc_size(buft, tensor);
  57. assert(size >= ggml_nbytes(tensor));
  58. return size;
  59. }
  60. return ggml_nbytes(tensor);
  61. }
  62. bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  63. return buft->iface.supports_backend(buft, backend);
  64. }
  65. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  66. if (buft->iface.is_host) {
  67. return buft->iface.is_host(buft);
  68. }
  69. return false;
  70. }
  71. // backend buffer
  72. GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
  73. ggml_backend_buffer_type_t buft,
  74. struct ggml_backend_buffer_i iface,
  75. ggml_backend_buffer_context_t context,
  76. size_t size) {
  77. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  78. (*buffer) = (struct ggml_backend_buffer) {
  79. /* .interface = */ iface,
  80. /* .buft = */ buft,
  81. /* .context = */ context,
  82. /* .size = */ size,
  83. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  84. };
  85. return buffer;
  86. }
  87. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  88. return buffer->iface.get_name(buffer);
  89. }
  90. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  91. if (buffer == NULL) {
  92. return;
  93. }
  94. if (buffer->iface.free_buffer != NULL) {
  95. buffer->iface.free_buffer(buffer);
  96. }
  97. // TODO: this needs to be freed in cuda and hipblas backends because
  98. // the cuda backend implementation compiled with msvc
  99. #if !defined(GGML_USE_CUDA) && !defined(GGML_USE_HIPBLAS)
  100. free(buffer);
  101. #endif
  102. }
  103. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  104. return buffer->size;
  105. }
  106. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  107. void * base = buffer->iface.get_base(buffer);
  108. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  109. return base;
  110. }
  111. GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  112. // init_tensor is optional
  113. if (buffer->iface.init_tensor) {
  114. buffer->iface.init_tensor(buffer, tensor);
  115. }
  116. }
  117. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  118. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  119. }
  120. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  121. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  122. }
  123. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  124. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  125. }
  126. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  127. buffer->iface.clear(buffer, value);
  128. }
  129. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  130. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  131. }
  132. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  133. buffer->usage = usage;
  134. // FIXME: add a generic callback to the buffer interface
  135. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  136. ggml_backend_multi_buffer_set_usage(buffer, usage);
  137. }
  138. }
  139. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  140. return buffer->buft;
  141. }
  142. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  143. if (buffer->iface.reset) {
  144. buffer->iface.reset(buffer);
  145. }
  146. }
  147. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  148. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  149. if (dst_buf->iface.cpy_tensor) {
  150. return dst_buf->iface.cpy_tensor(dst_buf, src, dst);
  151. }
  152. return false;
  153. }
  154. // backend
  155. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  156. if (backend == NULL) {
  157. return NULL;
  158. }
  159. return backend->guid;
  160. }
  161. const char * ggml_backend_name(ggml_backend_t backend) {
  162. if (backend == NULL) {
  163. return "NULL";
  164. }
  165. return backend->iface.get_name(backend);
  166. }
  167. void ggml_backend_free(ggml_backend_t backend) {
  168. if (backend == NULL) {
  169. return;
  170. }
  171. backend->iface.free(backend);
  172. }
  173. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  174. return backend->iface.get_default_buffer_type(backend);
  175. }
  176. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  177. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  178. }
  179. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  180. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  181. }
  182. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  183. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  184. }
  185. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  186. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  187. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  188. if (backend->iface.set_tensor_async == NULL) {
  189. ggml_backend_tensor_set(tensor, data, offset, size);
  190. } else {
  191. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  192. }
  193. }
  194. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  195. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  196. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  197. if (backend->iface.get_tensor_async == NULL) {
  198. ggml_backend_tensor_get(tensor, data, offset, size);
  199. } else {
  200. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  201. }
  202. }
  203. GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  204. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  205. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  206. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  207. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  208. if (!size) {
  209. return;
  210. }
  211. buf->iface.set_tensor(buf, tensor, data, offset, size);
  212. }
  213. GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  214. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  215. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  216. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  217. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  218. if (!size) {
  219. return;
  220. }
  221. buf->iface.get_tensor(buf, tensor, data, offset, size);
  222. }
  223. void ggml_backend_synchronize(ggml_backend_t backend) {
  224. if (backend->iface.synchronize == NULL) {
  225. return;
  226. }
  227. backend->iface.synchronize(backend);
  228. }
  229. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  230. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  231. return backend->iface.graph_plan_create(backend, cgraph);
  232. }
  233. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  234. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  235. backend->iface.graph_plan_free(backend, plan);
  236. }
  237. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  238. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  239. return backend->iface.graph_plan_compute(backend, plan);
  240. }
  241. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  242. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  243. ggml_backend_synchronize(backend);
  244. return err;
  245. }
  246. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  247. return backend->iface.graph_compute(backend, cgraph);
  248. }
  249. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  250. return backend->iface.supports_op(backend, op);
  251. }
  252. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  253. if (backend->iface.offload_op != NULL) {
  254. return backend->iface.offload_op(backend, op);
  255. }
  256. return false;
  257. }
  258. // backend copy
  259. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  260. if (a->type != b->type) {
  261. return false;
  262. }
  263. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  264. if (a->ne[i] != b->ne[i]) {
  265. return false;
  266. }
  267. if (a->nb[i] != b->nb[i]) {
  268. return false;
  269. }
  270. }
  271. return true;
  272. }
  273. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  274. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  275. if (src == dst) {
  276. return;
  277. }
  278. if (ggml_backend_buffer_is_host(src->buffer)) {
  279. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  280. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  281. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  282. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  283. #ifndef NDEBUG
  284. fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  285. #endif
  286. size_t nbytes = ggml_nbytes(src);
  287. void * data = malloc(nbytes);
  288. ggml_backend_tensor_get(src, data, 0, nbytes);
  289. ggml_backend_tensor_set(dst, data, 0, nbytes);
  290. free(data);
  291. }
  292. }
  293. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  294. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  295. if (src == dst) {
  296. return;
  297. }
  298. if (backend_dst->iface.cpy_tensor_async != NULL) {
  299. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  300. return;
  301. }
  302. }
  303. // an async copy would normally happen after all the queued operations on both backends are completed
  304. // sync src, set_async dst
  305. if (ggml_backend_buffer_is_host(src->buffer)) {
  306. ggml_backend_synchronize(backend_src);
  307. ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
  308. } else {
  309. ggml_backend_synchronize(backend_src);
  310. ggml_backend_tensor_copy(src, dst);
  311. ggml_backend_synchronize(backend_dst);
  312. }
  313. }
  314. // events
  315. ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
  316. if (backend->iface.event_new == NULL) {
  317. return NULL;
  318. }
  319. return backend->iface.event_new(backend);
  320. }
  321. void ggml_backend_event_free(ggml_backend_event_t event) {
  322. if (event == NULL) {
  323. return;
  324. }
  325. event->backend->iface.event_free(event);
  326. }
  327. void ggml_backend_event_record(ggml_backend_event_t event) {
  328. GGML_ASSERT(event->backend->iface.event_record != NULL);
  329. event->backend->iface.event_record(event);
  330. }
  331. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  332. GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
  333. event->backend->iface.event_synchronize(event);
  334. }
  335. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  336. GGML_ASSERT(backend->iface.event_wait != NULL);
  337. backend->iface.event_wait(backend, event);
  338. }
  339. // backend registry
  340. #define GGML_REG_MAX_BACKENDS 16
  341. struct ggml_backend_reg {
  342. char name[128];
  343. ggml_backend_init_fn init_fn;
  344. ggml_backend_buffer_type_t default_buffer_type;
  345. void * user_data;
  346. };
  347. static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
  348. static size_t ggml_backend_registry_count = 0;
  349. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  350. GGML_CALL static void ggml_backend_registry_init(void) {
  351. static bool initialized = false;
  352. if (initialized) {
  353. return;
  354. }
  355. initialized = true;
  356. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  357. // add forward decls here to avoid including the backend headers
  358. #ifdef GGML_USE_CUDA
  359. extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
  360. ggml_backend_cuda_reg_devices();
  361. #endif
  362. #ifdef GGML_USE_SYCL
  363. extern void ggml_backend_sycl_reg_devices(void);
  364. ggml_backend_sycl_reg_devices();
  365. #endif
  366. #ifdef GGML_USE_METAL
  367. extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  368. extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  369. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  370. #endif
  371. #ifdef GGML_USE_VULKAN
  372. extern GGML_CALL int ggml_backend_vk_reg_devices(void);
  373. ggml_backend_vk_reg_devices();
  374. #endif
  375. #ifdef GGML_USE_KOMPUTE
  376. extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
  377. ggml_backend_kompute_reg_devices();
  378. #endif
  379. }
  380. GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  381. GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
  382. size_t id = ggml_backend_registry_count;
  383. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  384. /* .name = */ {0},
  385. /* .fn = */ init_fn,
  386. /* .default_buffer_type = */ default_buffer_type,
  387. /* .user_data = */ user_data,
  388. };
  389. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  390. #ifndef NDEBUG
  391. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  392. #endif
  393. ggml_backend_registry_count++;
  394. }
  395. size_t ggml_backend_reg_get_count(void) {
  396. ggml_backend_registry_init();
  397. return ggml_backend_registry_count;
  398. }
  399. size_t ggml_backend_reg_find_by_name(const char * name) {
  400. ggml_backend_registry_init();
  401. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  402. // TODO: case insensitive in a portable way
  403. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  404. return i;
  405. }
  406. }
  407. // not found
  408. return SIZE_MAX;
  409. }
  410. // init from backend:params string
  411. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  412. ggml_backend_registry_init();
  413. const char * params = strchr(backend_str, ':');
  414. char backend_name[128];
  415. if (params == NULL) {
  416. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  417. params = "";
  418. } else {
  419. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  420. params++;
  421. }
  422. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  423. if (backend_i == SIZE_MAX) {
  424. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  425. return NULL;
  426. }
  427. return ggml_backend_reg_init_backend(backend_i, params);
  428. }
  429. const char * ggml_backend_reg_get_name(size_t i) {
  430. ggml_backend_registry_init();
  431. GGML_ASSERT(i < ggml_backend_registry_count);
  432. return ggml_backend_registry[i].name;
  433. }
  434. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  435. ggml_backend_registry_init();
  436. GGML_ASSERT(i < ggml_backend_registry_count);
  437. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  438. }
  439. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  440. ggml_backend_registry_init();
  441. GGML_ASSERT(i < ggml_backend_registry_count);
  442. return ggml_backend_registry[i].default_buffer_type;
  443. }
  444. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  445. ggml_backend_registry_init();
  446. GGML_ASSERT(i < ggml_backend_registry_count);
  447. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  448. }
  449. // backend CPU
  450. static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
  451. GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
  452. return "CPU";
  453. GGML_UNUSED(buffer);
  454. }
  455. GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  456. uintptr_t data = (uintptr_t)buffer->context;
  457. // align the buffer
  458. if (data % TENSOR_ALIGNMENT != 0) {
  459. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  460. }
  461. return (void *)data;
  462. }
  463. GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  464. free(buffer->context);
  465. }
  466. GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  467. memcpy((char *)tensor->data + offset, data, size);
  468. GGML_UNUSED(buffer);
  469. }
  470. GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  471. memcpy(data, (const char *)tensor->data + offset, size);
  472. GGML_UNUSED(buffer);
  473. }
  474. GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  475. if (ggml_backend_buffer_is_host(src->buffer)) {
  476. memcpy(dst->data, src->data, ggml_nbytes(src));
  477. return true;
  478. }
  479. return false;
  480. GGML_UNUSED(buffer);
  481. }
  482. GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  483. memset(buffer->context, value, buffer->size);
  484. }
  485. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  486. /* .get_name = */ ggml_backend_cpu_buffer_name,
  487. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  488. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  489. /* .init_tensor = */ NULL, // no initialization required
  490. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  491. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  492. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  493. /* .clear = */ ggml_backend_cpu_buffer_clear,
  494. /* .reset = */ NULL,
  495. };
  496. // for buffers from ptr, free is not called
  497. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  498. /* .get_name = */ ggml_backend_cpu_buffer_name,
  499. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  500. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  501. /* .init_tensor = */ NULL, // no initialization required
  502. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  503. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  504. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  505. /* .clear = */ ggml_backend_cpu_buffer_clear,
  506. /* .reset = */ NULL,
  507. };
  508. GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  509. return "CPU";
  510. GGML_UNUSED(buft);
  511. }
  512. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  513. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  514. void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
  515. if (data == NULL) {
  516. fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
  517. return NULL;
  518. }
  519. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  520. }
  521. GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  522. return TENSOR_ALIGNMENT;
  523. GGML_UNUSED(buft);
  524. }
  525. GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  526. return ggml_backend_is_cpu(backend);
  527. GGML_UNUSED(buft);
  528. }
  529. GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  530. return true;
  531. GGML_UNUSED(buft);
  532. }
  533. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  534. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  535. /* .iface = */ {
  536. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  537. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  538. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  539. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  540. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  541. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  542. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  543. },
  544. /* .context = */ NULL,
  545. };
  546. return &ggml_backend_cpu_buffer_type;
  547. }
  548. #ifdef GGML_USE_CPU_HBM
  549. // buffer type HBM
  550. #include <hbwmalloc.h>
  551. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  552. return "CPU_HBM";
  553. GGML_UNUSED(buft);
  554. }
  555. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
  556. return "CPU_HBM";
  557. GGML_UNUSED(buf);
  558. }
  559. GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  560. hbw_free(buffer->context);
  561. }
  562. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  563. //void * ptr = hbw_malloc(size);
  564. void * ptr;
  565. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  566. if (result != 0) {
  567. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  568. return NULL;
  569. }
  570. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  571. buffer->buft = buft;
  572. buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
  573. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  574. return buffer;
  575. }
  576. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  577. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  578. /* .iface = */ {
  579. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  580. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  581. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  582. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  583. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  584. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  585. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  586. },
  587. /* .context = */ NULL,
  588. };
  589. return &ggml_backend_cpu_buffer_type_hbm;
  590. }
  591. #endif
  592. struct ggml_backend_cpu_context {
  593. int n_threads;
  594. void * work_data;
  595. size_t work_size;
  596. ggml_abort_callback abort_callback;
  597. void * abort_callback_data;
  598. };
  599. GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  600. return "CPU";
  601. GGML_UNUSED(backend);
  602. }
  603. GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
  604. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  605. free(cpu_ctx->work_data);
  606. free(cpu_ctx);
  607. free(backend);
  608. }
  609. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  610. return ggml_backend_cpu_buffer_type();
  611. GGML_UNUSED(backend);
  612. }
  613. struct ggml_backend_plan_cpu {
  614. struct ggml_cplan cplan;
  615. struct ggml_cgraph cgraph;
  616. };
  617. GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  618. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  619. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  620. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  621. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  622. if (cpu_plan->cplan.work_size > 0) {
  623. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  624. if (cpu_plan->cplan.work_data == NULL) {
  625. free(cpu_plan);
  626. return NULL;
  627. }
  628. }
  629. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  630. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  631. return cpu_plan;
  632. }
  633. GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  634. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  635. free(cpu_plan->cplan.work_data);
  636. free(cpu_plan);
  637. GGML_UNUSED(backend);
  638. }
  639. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  640. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  641. return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  642. GGML_UNUSED(backend);
  643. }
  644. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  645. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  646. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  647. if (cpu_ctx->work_size < cplan.work_size) {
  648. free(cpu_ctx->work_data);
  649. cpu_ctx->work_data = malloc(cplan.work_size);
  650. if (cpu_ctx->work_data == NULL) {
  651. cpu_ctx->work_size = 0;
  652. return GGML_STATUS_ALLOC_FAILED;
  653. }
  654. cpu_ctx->work_size = cplan.work_size;
  655. }
  656. cplan.work_data = cpu_ctx->work_data;
  657. cplan.abort_callback = cpu_ctx->abort_callback;
  658. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  659. return ggml_graph_compute(cgraph, &cplan);
  660. }
  661. GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  662. switch (op->op) {
  663. case GGML_OP_CPY:
  664. return
  665. op->type != GGML_TYPE_IQ2_XXS &&
  666. op->type != GGML_TYPE_IQ2_XS &&
  667. op->type != GGML_TYPE_IQ1_S &&
  668. op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
  669. case GGML_OP_MUL_MAT:
  670. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
  671. default:
  672. return true;
  673. }
  674. GGML_UNUSED(backend);
  675. }
  676. static struct ggml_backend_i cpu_backend_i = {
  677. /* .get_name = */ ggml_backend_cpu_name,
  678. /* .free = */ ggml_backend_cpu_free,
  679. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  680. /* .set_tensor_async = */ NULL,
  681. /* .get_tensor_async = */ NULL,
  682. /* .cpy_tensor_async = */ NULL,
  683. /* .synchronize = */ NULL,
  684. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  685. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  686. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  687. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  688. /* .supports_op = */ ggml_backend_cpu_supports_op,
  689. /* .offload_op = */ NULL,
  690. /* .event_new = */ NULL,
  691. /* .event_free = */ NULL,
  692. /* .event_record = */ NULL,
  693. /* .event_wait = */ NULL,
  694. /* .event_synchronize = */ NULL,
  695. };
  696. static ggml_guid_t ggml_backend_cpu_guid(void) {
  697. static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
  698. return &guid;
  699. }
  700. ggml_backend_t ggml_backend_cpu_init(void) {
  701. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  702. if (ctx == NULL) {
  703. return NULL;
  704. }
  705. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  706. ctx->work_data = NULL;
  707. ctx->work_size = 0;
  708. ctx->abort_callback = NULL;
  709. ctx->abort_callback_data = NULL;
  710. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  711. if (cpu_backend == NULL) {
  712. free(ctx);
  713. return NULL;
  714. }
  715. *cpu_backend = (struct ggml_backend) {
  716. /* .guid = */ ggml_backend_cpu_guid(),
  717. /* .interface = */ cpu_backend_i,
  718. /* .context = */ ctx
  719. };
  720. return cpu_backend;
  721. }
  722. GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
  723. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
  724. }
  725. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  726. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  727. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  728. ctx->n_threads = n_threads;
  729. }
  730. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  731. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  732. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  733. ctx->abort_callback = abort_callback;
  734. ctx->abort_callback_data = abort_callback_data;
  735. }
  736. GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  737. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  738. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  739. }
  740. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  741. return ggml_backend_cpu_init();
  742. GGML_UNUSED(params);
  743. GGML_UNUSED(user_data);
  744. }
  745. // multi-buffer buffer
  746. struct ggml_backend_multi_buffer_context {
  747. ggml_backend_buffer_t * buffers;
  748. size_t n_buffers;
  749. };
  750. typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
  751. GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
  752. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  753. return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
  754. }
  755. GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  756. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  757. for (size_t i = 0; i < ctx->n_buffers; i++) {
  758. ggml_backend_buffer_free(ctx->buffers[i]);
  759. }
  760. free(ctx->buffers);
  761. free(ctx);
  762. }
  763. GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  764. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  765. for (size_t i = 0; i < ctx->n_buffers; i++) {
  766. ggml_backend_buffer_clear(ctx->buffers[i], value);
  767. }
  768. }
  769. static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
  770. static struct ggml_backend_buffer_i multi_backend_buffer_i = {
  771. /* .get_name = */ ggml_backend_multi_buffer_get_name,
  772. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  773. /* .get_base = */ NULL,
  774. /* .init_tensor = */ NULL,
  775. /* .set_tensor = */ NULL,
  776. /* .get_tensor = */ NULL,
  777. /* .cpy_tensor = */ NULL,
  778. /* .clear = */ ggml_backend_multi_buffer_clear,
  779. /* .reset = */ NULL,
  780. };
  781. return multi_backend_buffer_i;
  782. }
  783. GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  784. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  785. ctx->n_buffers = n_buffers;
  786. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  787. GGML_ASSERT(ctx->buffers != NULL);
  788. size_t total_size = 0;
  789. for (size_t i = 0; i < n_buffers; i++) {
  790. ctx->buffers[i] = buffers[i];
  791. total_size += ggml_backend_buffer_get_size(buffers[i]);
  792. }
  793. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
  794. }
  795. GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  796. return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
  797. }
  798. GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  799. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  800. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  801. for (size_t i = 0; i < ctx->n_buffers; i++) {
  802. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  803. }
  804. }
  805. // creates a copy of the tensor with the same memory layout
  806. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  807. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  808. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  809. dup->nb[i] = tensor->nb[i];
  810. }
  811. return dup;
  812. }
  813. static bool ggml_is_view_op(enum ggml_op op) {
  814. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  815. }
  816. // scheduler
  817. #ifndef GGML_SCHED_MAX_BACKENDS
  818. #define GGML_SCHED_MAX_BACKENDS 16
  819. #endif
  820. #ifndef GGML_SCHED_MAX_SPLITS
  821. #define GGML_SCHED_MAX_SPLITS 2048
  822. #endif
  823. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  824. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  825. #endif
  826. #ifndef GGML_SCHED_MAX_COPIES
  827. #define GGML_SCHED_MAX_COPIES 4
  828. #endif
  829. struct ggml_backend_sched_split {
  830. int backend_id;
  831. int i_start;
  832. int i_end;
  833. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  834. int n_inputs;
  835. // graph view of this split
  836. struct ggml_cgraph graph;
  837. };
  838. struct ggml_backend_sched {
  839. bool is_reset; // true if the scheduler has been reset since the last graph split
  840. bool is_alloc;
  841. int n_backends;
  842. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  843. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  844. ggml_gallocr_t galloc;
  845. // hash keys of the nodes in the graph
  846. struct ggml_hash_set hash_set;
  847. // hash values
  848. int * tensor_backend_id;
  849. struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  850. int * node_backend_ids; // [graph_size]
  851. int * leaf_backend_ids; // [graph_size]
  852. // copy of the graph with modified inputs
  853. struct ggml_cgraph * graph;
  854. // graph splits
  855. struct ggml_backend_sched_split * splits;
  856. int n_splits;
  857. int splits_capacity;
  858. // pipeline parallelism support
  859. int n_copies;
  860. int cur_copy;
  861. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  862. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  863. int n_graph_inputs;
  864. struct ggml_context * ctx;
  865. ggml_backend_sched_eval_callback callback_eval;
  866. void * callback_eval_user_data;
  867. // align context_buffer to GGML_MEM_ALIGN
  868. #ifdef _MSC_VER
  869. __declspec(align(GGML_MEM_ALIGN))
  870. #else
  871. __attribute__((aligned(GGML_MEM_ALIGN)))
  872. #endif
  873. char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
  874. };
  875. #define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
  876. #define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
  877. // returns the priority of the backend, lower id is higher priority
  878. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  879. for (int i = 0; i < sched->n_backends; i++) {
  880. if (sched->backends[i] == backend) {
  881. return i;
  882. }
  883. }
  884. return -1;
  885. }
  886. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) {
  887. ggml_backend_buffer_t buffer = tensor->buffer;
  888. if (buffer == NULL) {
  889. return -1;
  890. }
  891. // find highest prio backend that supports the buffer type
  892. for (int i = 0; i < sched->n_backends; i++) {
  893. if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
  894. return i;
  895. }
  896. }
  897. fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n",
  898. __func__, ggml_backend_buffer_name(buffer), tensor->name);
  899. GGML_ASSERT(false);
  900. return -1;
  901. }
  902. #if 0
  903. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  904. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  905. #define GET_CAUSE(node) causes[hash_id(node)]
  906. #else
  907. #define SET_CAUSE(node, ...)
  908. #define GET_CAUSE(node) ""
  909. #endif
  910. // returns the backend that should be used for the node based on the current locations
  911. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  912. // TODO: use supports_op to check if the backend supports the op
  913. // assign pre-allocated nodes to their backend
  914. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
  915. if (cur_backend_id != -1) {
  916. SET_CAUSE(tensor, "1.dst");
  917. return cur_backend_id;
  918. }
  919. // view_src
  920. if (tensor->view_src != NULL) {
  921. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
  922. if (cur_backend_id != -1) {
  923. SET_CAUSE(tensor, "1.vsrc");
  924. return cur_backend_id;
  925. }
  926. }
  927. // graph input
  928. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  929. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  930. SET_CAUSE(tensor, "1.inp");
  931. return cur_backend_id;
  932. }
  933. // assign nodes that use weights to the backend of the weights
  934. // operations with weights are preferably run on the same backend as the weights
  935. for (int i = 0; i < GGML_MAX_SRC; i++) {
  936. const struct ggml_tensor * src = tensor->src[i];
  937. if (src == NULL) {
  938. continue;
  939. }
  940. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  941. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
  942. // check if a backend with higher prio wants to offload the op
  943. if (src_backend_id == sched->n_backends - 1) {
  944. for (int b = 0; b < src_backend_id; b++) {
  945. if (ggml_backend_offload_op(sched->backends[b], tensor)) {
  946. SET_CAUSE(tensor, "1.off");
  947. return b;
  948. }
  949. }
  950. }
  951. SET_CAUSE(tensor, "1.wgt%d", i);
  952. return src_backend_id;
  953. }
  954. }
  955. return -1;
  956. }
  957. static char * fmt_size(size_t size) {
  958. static char buffer[128];
  959. if (size >= 1024*1024) {
  960. snprintf(buffer, sizeof(buffer), "%zuM", size/1024/1024);
  961. } else {
  962. snprintf(buffer, sizeof(buffer), "%zuK", size/1024);
  963. }
  964. return buffer;
  965. }
  966. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  967. int cur_split = 0;
  968. for (int i = 0; i < graph->n_nodes; i++) {
  969. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  970. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  971. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  972. sched->splits[cur_split].n_inputs);
  973. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  974. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  975. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  976. }
  977. fprintf(stderr, "\n");
  978. cur_split++;
  979. }
  980. struct ggml_tensor * node = graph->nodes[i];
  981. if (ggml_is_view_op(node->op)) {
  982. continue;
  983. }
  984. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  985. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  986. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  987. for (int j = 0; j < GGML_MAX_SRC; j++) {
  988. struct ggml_tensor * src = node->src[j];
  989. if (src == NULL) {
  990. continue;
  991. }
  992. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  993. fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  994. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  995. }
  996. fprintf(stderr, "\n");
  997. }
  998. }
  999. //#define DEBUG_PASS1
  1000. //#define DEBUG_PASS2
  1001. //#define DEBUG_PASS3
  1002. //#define DEBUG_PASS4
  1003. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  1004. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1005. // reset splits
  1006. sched->n_splits = 0;
  1007. sched->n_graph_inputs = 0;
  1008. sched->is_reset = false;
  1009. struct ggml_init_params params = {
  1010. /* .mem_size = */ sizeof(sched->context_buffer),
  1011. /* .mem_buffer = */ sched->context_buffer,
  1012. /* .no_alloc = */ true
  1013. };
  1014. ggml_free(sched->ctx);
  1015. sched->ctx = ggml_init(params);
  1016. if (sched->ctx == NULL) {
  1017. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  1018. GGML_ASSERT(false);
  1019. }
  1020. // pass 1: assign backends to ops with pre-allocated inputs
  1021. for (int i = 0; i < graph->n_leafs; i++) {
  1022. struct ggml_tensor * leaf = graph->leafs[i];
  1023. int * leaf_backend_id = &tensor_backend_id(leaf);
  1024. if (*leaf_backend_id != -1) {
  1025. // do not overwrite user assignments
  1026. continue;
  1027. }
  1028. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  1029. }
  1030. for (int i = 0; i < graph->n_nodes; i++) {
  1031. struct ggml_tensor * node = graph->nodes[i];
  1032. int * node_backend_id = &tensor_backend_id(node);
  1033. if (*node_backend_id != -1) {
  1034. // do not overwrite user assignments
  1035. continue;
  1036. }
  1037. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  1038. // src
  1039. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1040. struct ggml_tensor * src = node->src[j];
  1041. if (src == NULL) {
  1042. continue;
  1043. }
  1044. int * src_backend_id = &tensor_backend_id(src);
  1045. if (*src_backend_id == -1) {
  1046. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  1047. }
  1048. }
  1049. }
  1050. #ifdef DEBUG_PASS1
  1051. fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1052. #endif
  1053. // pass 2: expand current backend assignments
  1054. // assign the same backend to adjacent nodes
  1055. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  1056. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  1057. // pass 2.2 expand gpu down
  1058. {
  1059. int cur_backend_id = -1;
  1060. for (int i = 0; i < graph->n_nodes; i++) {
  1061. struct ggml_tensor * node = graph->nodes[i];
  1062. if (ggml_is_view_op(node->op)) {
  1063. continue;
  1064. }
  1065. int * node_backend_id = &tensor_backend_id(node);
  1066. if (*node_backend_id != -1) {
  1067. if (*node_backend_id == sched->n_backends - 1) {
  1068. // skip cpu (lowest prio backend)
  1069. cur_backend_id = -1;
  1070. } else {
  1071. cur_backend_id = *node_backend_id;
  1072. }
  1073. } else {
  1074. *node_backend_id = cur_backend_id;
  1075. SET_CAUSE(node, "2.2");
  1076. }
  1077. }
  1078. }
  1079. // pass 2.1 expand gpu up
  1080. {
  1081. int cur_backend_id = -1;
  1082. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1083. struct ggml_tensor * node = graph->nodes[i];
  1084. if (ggml_is_view_op(node->op)) {
  1085. continue;
  1086. }
  1087. int * node_backend_id = &tensor_backend_id(node);
  1088. if (*node_backend_id != -1) {
  1089. if (*node_backend_id == sched->n_backends - 1) {
  1090. // skip cpu (lowest prio backend)
  1091. cur_backend_id = -1;
  1092. } else {
  1093. cur_backend_id = *node_backend_id;
  1094. }
  1095. } else {
  1096. *node_backend_id = cur_backend_id;
  1097. SET_CAUSE(node, "2.1");
  1098. }
  1099. }
  1100. }
  1101. // pass 2.4 expand rest down
  1102. {
  1103. int cur_backend_id = -1;
  1104. for (int i = 0; i < graph->n_nodes; i++) {
  1105. struct ggml_tensor * node = graph->nodes[i];
  1106. if (ggml_is_view_op(node->op)) {
  1107. continue;
  1108. }
  1109. int * node_backend_id = &tensor_backend_id(node);
  1110. if (*node_backend_id != -1) {
  1111. cur_backend_id = *node_backend_id;
  1112. } else {
  1113. *node_backend_id = cur_backend_id;
  1114. SET_CAUSE(node, "2.4");
  1115. }
  1116. }
  1117. }
  1118. // pass 2.3 expand rest up
  1119. {
  1120. int cur_backend_id = -1;
  1121. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1122. struct ggml_tensor * node = graph->nodes[i];
  1123. if (ggml_is_view_op(node->op)) {
  1124. continue;
  1125. }
  1126. int * node_backend_id = &tensor_backend_id(node);
  1127. if (*node_backend_id != -1) {
  1128. cur_backend_id = *node_backend_id;
  1129. } else {
  1130. *node_backend_id = cur_backend_id;
  1131. SET_CAUSE(node, "2.3");
  1132. }
  1133. }
  1134. }
  1135. #ifdef DEBUG_PASS2
  1136. fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1137. #endif
  1138. // pass 3: assign backends to remaining src from dst and view_src
  1139. for (int i = 0; i < graph->n_nodes; i++) {
  1140. struct ggml_tensor * node = graph->nodes[i];
  1141. int * cur_backend_id = &tensor_backend_id(node);
  1142. if (node->view_src != NULL && *cur_backend_id == -1) {
  1143. *cur_backend_id = tensor_backend_id(node->view_src);
  1144. SET_CAUSE(node, "3.vsrc");
  1145. }
  1146. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1147. struct ggml_tensor * src = node->src[j];
  1148. if (src == NULL) {
  1149. continue;
  1150. }
  1151. int * src_backend_id = &tensor_backend_id(src);
  1152. if (*src_backend_id == -1) {
  1153. if (src->view_src != NULL) {
  1154. // views are always on the same backend as the source
  1155. *src_backend_id = tensor_backend_id(src->view_src);
  1156. SET_CAUSE(src, "3.vsrc");
  1157. } else {
  1158. *src_backend_id = *cur_backend_id;
  1159. SET_CAUSE(src, "3.cur");
  1160. }
  1161. }
  1162. }
  1163. }
  1164. #ifdef DEBUG_PASS3
  1165. fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1166. #endif
  1167. // pass 4: split graph, find tensors that need to be copied
  1168. {
  1169. int i_split = 0;
  1170. struct ggml_backend_sched_split * split = &sched->splits[0];
  1171. // find the backend of the first split, skipping view ops
  1172. for (int i = 0; i < graph->n_nodes; i++) {
  1173. struct ggml_tensor * node = graph->nodes[i];
  1174. if (!ggml_is_view_op(node->op)) {
  1175. split->backend_id = tensor_backend_id(node);
  1176. break;
  1177. }
  1178. }
  1179. split->i_start = 0;
  1180. split->n_inputs = 0;
  1181. memset(split->inputs, 0, sizeof(split->inputs)); //HACK
  1182. int cur_backend_id = split->backend_id;
  1183. for (int i = 0; i < graph->n_nodes; i++) {
  1184. struct ggml_tensor * node = graph->nodes[i];
  1185. if (ggml_is_view_op(node->op)) {
  1186. continue;
  1187. }
  1188. const int node_backend_id = tensor_backend_id(node);
  1189. GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
  1190. // check if we should start a new split based on the sources of the current node
  1191. bool need_new_split = false;
  1192. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  1193. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1194. struct ggml_tensor * src = node->src[j];
  1195. if (src == NULL) {
  1196. continue;
  1197. }
  1198. // check if a weight is on a different backend
  1199. // by starting a new split, the memory of the previously offloaded weights can be reused
  1200. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  1201. int src_backend_id = tensor_backend_id(src);
  1202. if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
  1203. need_new_split = true;
  1204. break;
  1205. }
  1206. }
  1207. // check if the split has too many inputs
  1208. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  1209. const size_t id = hash_id(src);
  1210. int src_backend_id = sched->tensor_backend_id[id];
  1211. if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
  1212. //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
  1213. need_new_split = true;
  1214. break;
  1215. }
  1216. }
  1217. }
  1218. }
  1219. if (node_backend_id != cur_backend_id || need_new_split) {
  1220. split->i_end = i;
  1221. i_split++;
  1222. if (i_split >= sched->splits_capacity) {
  1223. sched->splits_capacity *= 2;
  1224. sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  1225. GGML_ASSERT(sched->splits != NULL);
  1226. }
  1227. GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
  1228. split = &sched->splits[i_split];
  1229. split->backend_id = node_backend_id;
  1230. split->i_start = i;
  1231. split->n_inputs = 0;
  1232. cur_backend_id = node_backend_id;
  1233. }
  1234. // find inputs that are not on the same backend
  1235. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1236. struct ggml_tensor * src = node->src[j];
  1237. if (src == NULL) {
  1238. continue;
  1239. }
  1240. const int src_backend_id = tensor_backend_id(src);
  1241. assert(src_backend_id != -1); // all inputs should be assigned by now
  1242. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  1243. size_t id = hash_id(src);
  1244. if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
  1245. ggml_backend_t backend = sched->backends[src_backend_id];
  1246. for (int c = 0; c < sched->n_copies; c++) {
  1247. struct ggml_tensor * tensor_copy;
  1248. if (c == sched->cur_copy) {
  1249. tensor_copy = src; // use the original tensor as the current copy
  1250. } else {
  1251. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1252. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1253. }
  1254. if (sched->n_copies > 1) {
  1255. ggml_set_input(tensor_copy);
  1256. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1257. }
  1258. sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
  1259. SET_CAUSE(tensor_copy, "4.cpy");
  1260. }
  1261. int n_graph_inputs = sched->n_graph_inputs++;
  1262. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1263. sched->graph_inputs[n_graph_inputs] = src;
  1264. }
  1265. }
  1266. if (src_backend_id != node_backend_id) {
  1267. // create a copy of the input in the split's backend
  1268. const size_t id = hash_id(src);
  1269. if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
  1270. ggml_backend_t backend = sched->backends[cur_backend_id];
  1271. for (int c = 0; c < sched->n_copies; c++) {
  1272. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1273. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1274. if (sched->n_copies > 1) {
  1275. ggml_set_input(tensor_copy);
  1276. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1277. }
  1278. sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
  1279. SET_CAUSE(tensor_copy, "4.cpy");
  1280. }
  1281. int n_inputs = split->n_inputs++;
  1282. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1283. split->inputs[n_inputs] = src;
  1284. }
  1285. node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
  1286. }
  1287. }
  1288. }
  1289. split->i_end = graph->n_nodes;
  1290. sched->n_splits = i_split + 1;
  1291. }
  1292. #ifdef DEBUG_PASS4
  1293. fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1294. #endif
  1295. // create copies of the graph for each split
  1296. // TODO: avoid this copy
  1297. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
  1298. for (int i = 0; i < sched->n_splits; i++) {
  1299. struct ggml_backend_sched_split * split = &sched->splits[i];
  1300. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1301. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1302. for (int j = 0; j < split->n_inputs; j++) {
  1303. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1304. struct ggml_tensor * input = split->inputs[j];
  1305. const size_t input_id = hash_id(input);
  1306. struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
  1307. // add a dependency to the input source so that it is not freed before the copy is done
  1308. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1309. input_dep->src[0] = input;
  1310. sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
  1311. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1312. // add a dependency to the input copy so that it is allocated at the start of the split
  1313. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1314. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1315. }
  1316. for (int j = split->i_start; j < split->i_end; j++) {
  1317. assert(graph_copy->size > graph_copy->n_nodes);
  1318. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1319. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1320. }
  1321. }
  1322. if (sched->n_copies > 1) {
  1323. // add input copies as leafs so that they are allocated first
  1324. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1325. struct ggml_tensor * input = sched->graph_inputs[i];
  1326. size_t id = hash_id(input);
  1327. int backend_id = tensor_backend_id(input);
  1328. for (int c = 0; c < sched->n_copies; c++) {
  1329. struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
  1330. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1331. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1332. }
  1333. }
  1334. for (int i = 0; i < sched->n_splits; i++) {
  1335. struct ggml_backend_sched_split * split = &sched->splits[i];
  1336. int backend_id = split->backend_id;
  1337. for (int j = 0; j < split->n_inputs; j++) {
  1338. struct ggml_tensor * input = split->inputs[j];
  1339. size_t id = hash_id(input);
  1340. for (int c = 0; c < sched->n_copies; c++) {
  1341. struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
  1342. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1343. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1344. }
  1345. }
  1346. }
  1347. }
  1348. // add leafs from the original graph
  1349. for (int i = 0; i < graph->n_leafs; i++) {
  1350. struct ggml_tensor * leaf = graph->leafs[i];
  1351. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1352. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1353. }
  1354. sched->graph = graph_copy;
  1355. }
  1356. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1357. // allocate graph
  1358. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1359. // the re-allocation may cause the split inputs to be moved to a different address
  1360. ggml_backend_sched_synchronize(sched);
  1361. #ifndef NDEBUG
  1362. fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
  1363. #endif
  1364. ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1365. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1366. fprintf(stderr, "%s: failed to allocate graph\n", __func__);
  1367. return false;
  1368. }
  1369. }
  1370. return true;
  1371. }
  1372. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1373. struct ggml_backend_sched_split * splits = sched->splits;
  1374. for (int i = 0; i < sched->n_splits; i++) {
  1375. struct ggml_backend_sched_split * split = &splits[i];
  1376. int split_backend_id = split->backend_id;
  1377. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1378. // copy the input tensors to the split backend
  1379. for (int j = 0; j < split->n_inputs; j++) {
  1380. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1381. struct ggml_tensor * input = split->inputs[j];
  1382. struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
  1383. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1384. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1385. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1386. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1387. } else {
  1388. ggml_backend_synchronize(split_backend);
  1389. }
  1390. ggml_backend_tensor_copy(input, input_cpy);
  1391. } else {
  1392. // wait for the split backend to finish using the input before overwriting it
  1393. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1394. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1395. } else {
  1396. ggml_backend_synchronize(split_backend);
  1397. }
  1398. ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
  1399. }
  1400. }
  1401. if (!sched->callback_eval) {
  1402. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1403. if (ec != GGML_STATUS_SUCCESS) {
  1404. return ec;
  1405. }
  1406. } else {
  1407. // similar to ggml_backend_compare_graph_backend
  1408. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1409. struct ggml_tensor * t = split->graph.nodes[j0];
  1410. // check if the user needs data from this node
  1411. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1412. int j1 = j0;
  1413. // determine the range [j0, j1] of nodes that can be computed together
  1414. while (!need && j1 < split->graph.n_nodes - 1) {
  1415. t = split->graph.nodes[++j1];
  1416. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1417. }
  1418. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1419. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1420. if (ec != GGML_STATUS_SUCCESS) {
  1421. return ec;
  1422. }
  1423. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1424. ggml_backend_synchronize(split_backend);
  1425. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1426. break;
  1427. }
  1428. j0 = j1;
  1429. }
  1430. }
  1431. // record the event of this copy
  1432. if (split->n_inputs > 0) {
  1433. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1434. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
  1435. }
  1436. }
  1437. }
  1438. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1439. return GGML_STATUS_SUCCESS;
  1440. }
  1441. ggml_backend_sched_t ggml_backend_sched_new(
  1442. ggml_backend_t * backends,
  1443. ggml_backend_buffer_type_t * bufts,
  1444. int n_backends,
  1445. size_t graph_size,
  1446. bool parallel) {
  1447. GGML_ASSERT(n_backends > 0);
  1448. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1449. GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
  1450. struct ggml_backend_sched * sched = calloc(1, sizeof(struct ggml_backend_sched));
  1451. // initialize hash table
  1452. sched->hash_set = ggml_hash_set_new(graph_size);
  1453. sched->tensor_backend_id = calloc(sched->hash_set.size, sizeof(sched->tensor_backend_id[0]));
  1454. sched->tensor_copies = calloc(sched->hash_set.size, sizeof(sched->tensor_copies[0]));
  1455. const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1456. sched->node_backend_ids = calloc(nodes_size, sizeof(sched->node_backend_ids[0]));
  1457. sched->leaf_backend_ids = calloc(nodes_size, sizeof(sched->leaf_backend_ids[0]));
  1458. sched->n_backends = n_backends;
  1459. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1460. const int initial_splits_capacity = 16;
  1461. sched->splits = calloc(initial_splits_capacity, sizeof(sched->splits[0]));
  1462. sched->splits_capacity = initial_splits_capacity;
  1463. for (int b = 0; b < n_backends; b++) {
  1464. sched->backends[b] = backends[b];
  1465. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1466. GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b]));
  1467. if (sched->n_copies > 1) {
  1468. for (int c = 0; c < sched->n_copies; c++) {
  1469. sched->events[b][c] = ggml_backend_event_new(backends[b]);
  1470. }
  1471. }
  1472. }
  1473. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1474. ggml_backend_sched_reset(sched);
  1475. return sched;
  1476. }
  1477. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1478. if (sched == NULL) {
  1479. return;
  1480. }
  1481. for (int b = 0; b < sched->n_backends; b++) {
  1482. for (int c = 0; c < sched->n_copies; c++) {
  1483. ggml_backend_event_free(sched->events[b][c]);
  1484. }
  1485. }
  1486. ggml_gallocr_free(sched->galloc);
  1487. ggml_free(sched->ctx);
  1488. free(sched->splits);
  1489. free(sched->hash_set.keys);
  1490. free(sched->tensor_backend_id);
  1491. free(sched->tensor_copies);
  1492. free(sched->node_backend_ids);
  1493. free(sched->leaf_backend_ids);
  1494. free(sched);
  1495. }
  1496. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1497. // reset state for the next run
  1498. if (!sched->is_reset) {
  1499. size_t hash_size = sched->hash_set.size;
  1500. memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
  1501. memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
  1502. memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
  1503. sched->is_reset = true;
  1504. }
  1505. sched->is_alloc = false;
  1506. }
  1507. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1508. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
  1509. ggml_backend_sched_split_graph(sched, measure_graph);
  1510. // TODO: extract this to a separate function
  1511. if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1512. return false;
  1513. }
  1514. ggml_backend_sched_reset(sched);
  1515. ggml_backend_sched_synchronize(sched);
  1516. return true;
  1517. }
  1518. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1519. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
  1520. ggml_backend_sched_split_graph(sched, graph);
  1521. if (!ggml_backend_sched_alloc_splits(sched)) {
  1522. return false;
  1523. }
  1524. sched->is_alloc = true;
  1525. return true;
  1526. }
  1527. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1528. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1529. ggml_backend_sched_synchronize(sched);
  1530. return err;
  1531. }
  1532. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1533. if (!sched->is_reset && !sched->is_alloc) {
  1534. ggml_backend_sched_reset(sched);
  1535. }
  1536. if (!sched->is_alloc) {
  1537. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1538. return GGML_STATUS_ALLOC_FAILED;
  1539. }
  1540. }
  1541. return ggml_backend_sched_compute_splits(sched);
  1542. }
  1543. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1544. for (int i = 0; i < sched->n_backends; i++) {
  1545. ggml_backend_synchronize(sched->backends[i]);
  1546. }
  1547. }
  1548. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1549. sched->callback_eval = callback;
  1550. sched->callback_eval_user_data = user_data;
  1551. }
  1552. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1553. return sched->n_splits;
  1554. }
  1555. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1556. return sched->n_copies;
  1557. }
  1558. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1559. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1560. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1561. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1562. }
  1563. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1564. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1565. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1566. tensor_backend_id(node) = backend_index;
  1567. }
  1568. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1569. int backend_index = tensor_backend_id(node);
  1570. if (backend_index == -1) {
  1571. return NULL;
  1572. }
  1573. return sched->backends[backend_index];
  1574. }
  1575. // utils
  1576. void ggml_backend_view_init(struct ggml_tensor * tensor) {
  1577. GGML_ASSERT(tensor->buffer == NULL);
  1578. GGML_ASSERT(tensor->view_src != NULL);
  1579. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1580. GGML_ASSERT(tensor->view_src->data != NULL);
  1581. tensor->buffer = tensor->view_src->buffer;
  1582. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1583. ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
  1584. }
  1585. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1586. GGML_ASSERT(tensor->buffer == NULL);
  1587. GGML_ASSERT(tensor->data == NULL);
  1588. GGML_ASSERT(tensor->view_src == NULL);
  1589. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1590. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1591. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1592. tensor->buffer = buffer;
  1593. tensor->data = addr;
  1594. ggml_backend_buffer_init_tensor(buffer, tensor);
  1595. }
  1596. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1597. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1598. GGML_ASSERT(src != NULL);
  1599. GGML_ASSERT(src->data && "graph must be allocated");
  1600. size_t id = ggml_hash_insert(hash_set, src);
  1601. if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
  1602. return node_copies[ggml_hash_find(hash_set, src)];
  1603. }
  1604. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1605. if (src->view_src != NULL) {
  1606. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1607. dst->view_offs = src->view_offs;
  1608. }
  1609. dst->op = src->op;
  1610. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1611. ggml_set_name(dst, src->name);
  1612. // copy src
  1613. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1614. struct ggml_tensor * s = src->src[i];
  1615. if (s == NULL) {
  1616. continue;
  1617. }
  1618. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1619. }
  1620. node_copies[id] = dst;
  1621. return dst;
  1622. }
  1623. static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1624. size_t id = ggml_hash_find(hash_set, src);
  1625. if (node_init[id]) {
  1626. return;
  1627. }
  1628. node_init[id] = true;
  1629. struct ggml_tensor * dst = node_copies[id];
  1630. if (dst->view_src != NULL) {
  1631. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1632. ggml_backend_view_init(dst);
  1633. }
  1634. else {
  1635. ggml_backend_tensor_copy(src, dst);
  1636. }
  1637. // init src
  1638. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1639. struct ggml_tensor * s = src->src[i];
  1640. if (s == NULL) {
  1641. continue;
  1642. }
  1643. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1644. }
  1645. }
  1646. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1647. struct ggml_hash_set hash_set = {
  1648. /* .size = */ graph->visited_hash_table.size,
  1649. /* .keys = */ calloc(graph->visited_hash_table.size, sizeof(hash_set.keys[0])) // NOLINT
  1650. };
  1651. struct ggml_tensor ** node_copies = calloc(hash_set.size, sizeof(node_copies[0])); // NOLINT
  1652. bool * node_init = calloc(hash_set.size, sizeof(node_init[0]));
  1653. struct ggml_init_params params = {
  1654. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1655. /* .mem_buffer = */ NULL,
  1656. /* .no_alloc = */ true
  1657. };
  1658. struct ggml_context * ctx_allocated = ggml_init(params);
  1659. struct ggml_context * ctx_unallocated = ggml_init(params);
  1660. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1661. fprintf(stderr, "failed to allocate context for graph copy\n");
  1662. free(hash_set.keys);
  1663. free(node_copies);
  1664. free(node_init);
  1665. ggml_free(ctx_allocated);
  1666. ggml_free(ctx_unallocated);
  1667. return (struct ggml_backend_graph_copy) {
  1668. /* .buffer = */ NULL,
  1669. /* .ctx_allocated = */ NULL,
  1670. /* .ctx_unallocated = */ NULL,
  1671. /* .graph = */ NULL,
  1672. };
  1673. }
  1674. // dup nodes
  1675. for (int i = 0; i < graph->n_nodes; i++) {
  1676. struct ggml_tensor * node = graph->nodes[i];
  1677. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1678. }
  1679. // allocate nodes
  1680. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1681. if (buffer == NULL) {
  1682. fprintf(stderr, "failed to allocate buffer for graph copy\n");
  1683. free(hash_set.keys);
  1684. free(node_copies);
  1685. free(node_init);
  1686. ggml_free(ctx_allocated);
  1687. ggml_free(ctx_unallocated);
  1688. return (struct ggml_backend_graph_copy) {
  1689. /* .buffer = */ NULL,
  1690. /* .ctx_allocated = */ NULL,
  1691. /* .ctx_unallocated = */ NULL,
  1692. /* .graph = */ NULL,
  1693. };
  1694. }
  1695. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1696. // copy data and init views
  1697. for (int i = 0; i < graph->n_nodes; i++) {
  1698. struct ggml_tensor * node = graph->nodes[i];
  1699. graph_copy_init_tensor(hash_set, node_copies, node_init, node);
  1700. }
  1701. // build graph copy
  1702. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1703. for (int i = 0; i < graph->n_nodes; i++) {
  1704. struct ggml_tensor * node = graph->nodes[i];
  1705. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
  1706. graph_copy->nodes[i] = node_copy;
  1707. }
  1708. graph_copy->n_nodes = graph->n_nodes;
  1709. free(hash_set.keys);
  1710. free(node_copies);
  1711. free(node_init);
  1712. return (struct ggml_backend_graph_copy) {
  1713. /* .buffer = */ buffer,
  1714. /* .ctx_allocated = */ ctx_allocated,
  1715. /* .ctx_unallocated = */ ctx_unallocated,
  1716. /* .graph = */ graph_copy,
  1717. };
  1718. }
  1719. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1720. ggml_backend_buffer_free(copy.buffer);
  1721. ggml_free(copy.ctx_allocated);
  1722. ggml_free(copy.ctx_unallocated);
  1723. }
  1724. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1725. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1726. if (copy.buffer == NULL) {
  1727. return false;
  1728. }
  1729. struct ggml_cgraph * g1 = graph;
  1730. struct ggml_cgraph * g2 = copy.graph;
  1731. assert(g1->n_nodes == g2->n_nodes);
  1732. for (int i = 0; i < g1->n_nodes; i++) {
  1733. //printf("eval %d/%d\n", i, g1->n_nodes);
  1734. struct ggml_tensor * t1 = g1->nodes[i];
  1735. struct ggml_tensor * t2 = g2->nodes[i];
  1736. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1737. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1738. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1739. ggml_backend_graph_compute(backend1, &g1v);
  1740. ggml_backend_graph_compute(backend2, &g2v);
  1741. if (ggml_is_view_op(t1->op)) {
  1742. continue;
  1743. }
  1744. // compare results, calculate rms etc
  1745. if (!callback(i, t1, t2, user_data)) {
  1746. break;
  1747. }
  1748. }
  1749. ggml_backend_graph_copy_free(copy);
  1750. return true;
  1751. }