123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- package llama
- import (
- "fmt"
- "math"
- "strings"
- "github.com/ollama/ollama/kvcache"
- "github.com/ollama/ollama/ml"
- "github.com/ollama/ollama/ml/nn"
- "github.com/ollama/ollama/model"
- "github.com/ollama/ollama/model/input"
- )
- type Options struct {
- hiddenSize, numHeads, numKVHeads int
- eps, ropeBase, ropeScale float32
- ropeDim uint32
- }
- type Model struct {
- model.Base
- model.BytePairEncoding
- TokenEmbedding *nn.Embedding `gguf:"token_embd"`
- Layers []Layer `gguf:"blk"`
- OutputNorm *nn.RMSNorm `gguf:"output_norm"`
- Output *nn.Linear `gguf:"output,alt:token_embd"`
- *Options
- }
- func New(c ml.Config) (model.Model, error) {
- if !strings.EqualFold(c.String("tokenizer.ggml.model"), "gpt2") {
- return nil, fmt.Errorf("tokenizer %s not yet supported", c.String("tokenizer.ggml.model"))
- }
- m := Model{
- BytePairEncoding: model.NewBytePairEncoding(
- c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
- &model.Vocabulary{
- Values: c.Strings("tokenizer.ggml.tokens"),
- Types: c.Uints("tokenizer.ggml.token_type"),
- Merges: c.Strings("tokenizer.ggml.merges"),
- BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
- AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
- EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
- AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
- },
- ),
- Layers: make([]Layer, c.Uint("block_count")),
- Options: &Options{
- hiddenSize: int(c.Uint("embedding_length")),
- numHeads: int(c.Uint("attention.head_count")),
- numKVHeads: int(c.Uint("attention.head_count_kv")),
- eps: c.Float("attention.layer_norm_rms_epsilon"),
- ropeBase: c.Float("rope.freq_base"),
- ropeScale: c.Float("rope.freq_scale", 1),
- ropeDim: c.Uint("rope.dimension_count"),
- },
- }
- m.Cache = kvcache.NewCausalCache(m.Shift)
- return &m, nil
- }
- type SelfAttention struct {
- Query *nn.Linear `gguf:"attn_q"`
- Key *nn.Linear `gguf:"attn_k"`
- Value *nn.Linear `gguf:"attn_v"`
- Output *nn.Linear `gguf:"attn_output"`
- RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
- }
- func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
- batchSize := hiddenState.Dim(1)
- headDim := opts.hiddenSize / opts.numHeads
- ropeType := uint32(0)
- q := sa.Query.Forward(ctx, hiddenState)
- q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
- q = q.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
- k := sa.Key.Forward(ctx, hiddenState)
- k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
- k = k.RoPE(ctx, positionIDs, sa.RopeFactors, opts.ropeDim, ropeType, opts.ropeBase, opts.ropeScale)
- v := sa.Value.Forward(ctx, hiddenState)
- v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
- scaleFactor := 1.0 / math.Sqrt(float64(headDim))
- kqv := nn.Attention(ctx, q, k, v, scaleFactor, cache)
- kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
- return sa.Output.Forward(ctx, kqv)
- }
- func (m *Model) Shift(ctx ml.Context, layer int, key, shift ml.Tensor) (ml.Tensor, error) {
- return key.RoPE(ctx, shift, m.Layers[layer].SelfAttention.RopeFactors, uint32(0), m.ropeDim, m.ropeBase, m.ropeScale), nil
- }
- type MLP struct {
- Up *nn.Linear `gguf:"ffn_up"`
- Down *nn.Linear `gguf:"ffn_down"`
- Gate *nn.Linear `gguf:"ffn_gate"`
- }
- func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
- hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
- return mlp.Down.Forward(ctx, hiddenState)
- }
- type Layer struct {
- AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
- SelfAttention *SelfAttention
- MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
- MLP *MLP
- }
- func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs, outputs ml.Tensor, cache kvcache.Cache, opts *Options) ml.Tensor {
- residual := hiddenState
- hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
- hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
- // In the final layer (outputs != nil), optimize by pruning to just the token positions
- // we need logits for.
- if outputs != nil {
- hiddenState = hiddenState.Rows(ctx, outputs)
- residual = residual.Rows(ctx, outputs)
- }
- hiddenState = hiddenState.Add(ctx, residual)
- residual = hiddenState
- hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
- hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
- return hiddenState.Add(ctx, residual)
- }
- func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
- inputs, err := ctx.Input().FromIntSlice(batch.Inputs, len(batch.Inputs))
- if err != nil {
- return nil, err
- }
- positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
- if err != nil {
- return nil, err
- }
- outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
- if err != nil {
- return nil, err
- }
- hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
- for i, layer := range m.Layers {
- m.Cache.SetLayer(i)
- var lastLayerOutputs ml.Tensor
- if i == len(m.Layers)-1 {
- lastLayerOutputs = outputs
- }
- hiddenState = layer.Forward(ctx, hiddenState, positions, lastLayerOutputs, m.Cache, m.Options)
- }
- hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
- return m.Output.Forward(ctx, hiddenState), nil
- }
- func init() {
- model.Register("llama", New)
- }
|