123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- package mllama
- import (
- "bytes"
- "encoding/binary"
- "fmt"
- "hash/fnv"
- "image"
- "slices"
- "github.com/ollama/ollama/kvcache"
- "github.com/ollama/ollama/ml"
- "github.com/ollama/ollama/ml/nn"
- "github.com/ollama/ollama/model"
- "github.com/ollama/ollama/model/input"
- )
- type Model struct {
- model.Base
- model.BytePairEncoding
- *VisionModel `gguf:"v,vision"`
- *TextModel
- Projector *nn.Linear `gguf:"mm.0"`
- ImageProcessor
- }
- const (
- crossAttentionLayer = iota
- selfAttentionLayer
- )
- func New(c ml.Config) (model.Model, error) {
- // Verify unified config
- if c.Uint("vision.block_count") == 0 {
- return nil, fmt.Errorf("non-unified vision model not supported")
- }
- m := Model{
- BytePairEncoding: model.NewBytePairEncoding(
- c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
- &model.Vocabulary{
- Values: c.Strings("tokenizer.ggml.tokens"),
- Types: c.Uints("tokenizer.ggml.token_type"),
- Merges: c.Strings("tokenizer.ggml.merges"),
- BOS: int32(c.Uint("tokenizer.ggml.bos_token_id")),
- AddBOS: c.Bool("tokenizer.ggml.add_bos_token", true),
- EOS: int32(c.Uint("tokenizer.ggml.eos_token_id")),
- AddEOS: c.Bool("tokenizer.ggml.add_eos_token", false),
- },
- ),
- ImageProcessor: newImageProcessor(c),
- VisionModel: newVisionModel(c),
- TextModel: newTextModel(c),
- }
- encoderCache := kvcache.NewEncoderCache()
- encoderCache.SetConfig(ml.CacheConfig{})
- m.Cache = kvcache.NewWrapperCache(encoderCache, kvcache.NewCausalCache(m.TextModel.Shift))
- return &m, nil
- }
- func (m *Model) EncodeMultimodal(ctx ml.Context, multimodalData []byte) (any, error) {
- if len(m.VisionModel.Transformer.Layers) == 0 || len(m.GlobalTransformer.Layers) == 0 {
- return nil, model.ErrNoVisionModel
- }
- image, _, err := image.Decode(bytes.NewReader(multimodalData))
- if err != nil {
- return nil, err
- }
- f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(image)
- if err != nil {
- return nil, err
- }
- pixelValues, err := ctx.Input().FromFloatSlice(f32s,
- m.ImageProcessor.imageSize,
- m.ImageProcessor.imageSize,
- m.ImageProcessor.numChannels,
- m.ImageProcessor.maxNumTiles,
- )
- if err != nil {
- return nil, err
- }
- aspectRatio, err := ctx.Input().FromIntSlice([]int32{int32(aspectRatioID)}, 1)
- if err != nil {
- return nil, err
- }
- positions := make([]int32, 1601)
- for i := range positions {
- positions[i] = int32(i)
- }
- positionIDs, err := ctx.Input().FromIntSlice(positions, len(positions))
- if err != nil {
- return nil, err
- }
- crossAttentionStates := m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
- return m.Projector.Forward(ctx, crossAttentionStates), nil
- }
- func (m *Model) PostTokenize(inputs []input.Input) ([]input.Input, error) {
- var images []input.Input
- fnvHash := fnv.New64a()
- for i := range inputs {
- if inputs[i].Multimodal == nil {
- if len(images) > 0 {
- inputs[i].Multimodal = []ml.Tensor{images[0].Multimodal.(ml.Tensor)}
- inputs[i].MultimodalHash = images[0].MultimodalHash
- for j := 1; j < len(images); j++ {
- inputs[i].Multimodal = append(inputs[i].Multimodal.([]ml.Tensor), images[0].Multimodal.(ml.Tensor))
- fnvHash.Reset()
- binary.Write(fnvHash, binary.NativeEndian, inputs[i].MultimodalHash)
- binary.Write(fnvHash, binary.NativeEndian, inputs[j].MultimodalHash)
- inputs[i].MultimodalHash = fnvHash.Sum64()
- }
- images = nil
- }
- } else {
- images = append(images, inputs[i])
- inputs[i].Token = -1
- }
- }
- inputs = slices.DeleteFunc(inputs, func(input input.Input) bool { return input.Token == -1 })
- return inputs, nil
- }
- func (m *Model) Forward(ctx ml.Context, batch input.Batch) (ml.Tensor, error) {
- var crossAttentionStates ml.Tensor
- if len(batch.Multimodal) > 0 {
- images := batch.Multimodal[len(batch.Multimodal)-1].Multimodal.([]ml.Tensor)
- if len(images) > 0 {
- crossAttentionStates = images[len(images)-1]
- }
- }
- inputs, err := ctx.Input().FromIntSlice(batch.Inputs, len(batch.Inputs))
- if err != nil {
- return nil, err
- }
- positions, err := ctx.Input().FromIntSlice(batch.Positions, len(batch.Positions))
- if err != nil {
- return nil, err
- }
- outputs, err := ctx.Input().FromIntSlice(batch.Outputs, len(batch.Outputs))
- if err != nil {
- return nil, err
- }
- // TODO: attention mask, cross attention mask
- return m.TextModel.Forward(ctx, inputs, positions, outputs, nil, crossAttentionStates, nil, m.Cache.(*kvcache.WrapperCache)), nil
- }
- func init() {
- model.Register("mllama", New)
- }
|