123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- package convert
- import (
- "strings"
- "github.com/pdevine/tensor"
- "github.com/pdevine/tensor/native"
- "github.com/ollama/ollama/llm"
- )
- type gemmaModel struct {
- ModelParameters
- MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
- HiddenSize uint32 `json:"hidden_size"`
- HiddenLayers uint32 `json:"num_hidden_layers"`
- IntermediateSize uint32 `json:"intermediate_size"`
- NumAttentionHeads uint32 `json:"num_attention_heads"`
- NumKeyValueHeads uint32 `json:"num_key_value_heads"`
- RMSNormEPS float32 `json:"rms_norm_eps"`
- HeadDim uint32 `json:"head_dim"`
- }
- var _ ModelConverter = (*gemmaModel)(nil)
- func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
- kv := p.ModelParameters.KV(t)
- kv["general.architecture"] = "gemma"
- kv["gemma.context_length"] = p.MaxPositionEmbeddings
- kv["gemma.embedding_length"] = p.HiddenSize
- kv["gemma.block_count"] = p.HiddenLayers
- kv["gemma.feed_forward_length"] = p.IntermediateSize
- kv["gemma.attention.head_count"] = p.NumAttentionHeads
- kv["gemma.attention.head_count_kv"] = p.NumKeyValueHeads
- kv["gemma.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
- kv["gemma.attention.key_length"] = p.HeadDim
- kv["gemma.attention.value_length"] = p.HeadDim
- kv["tokenizer.ggml.eot_token_id"] = uint32(107)
- kv["tokenizer.ggml.middle_token_id"] = uint32(68)
- kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
- kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
- return kv
- }
- func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
- var out []llm.Tensor
- for _, t := range ts {
- if strings.HasSuffix(t.Name(), "_norm.weight") {
- t.SetRepacker(p.addOne)
- }
- out = append(out, llm.Tensor{
- Name: t.Name(),
- Kind: t.Kind(),
- Shape: t.Shape(),
- WriterTo: t,
- })
- }
- return out
- }
- func (p *gemmaModel) Replacements() []string {
- return []string{
- "model.embed_tokens", "token_embd",
- "model.norm", "output_norm",
- "model.layers", "blk",
- "input_layernorm", "attn_norm",
- "self_attn.q_proj", "attn_q",
- "self_attn.k_proj", "attn_k",
- "self_attn.v_proj", "attn_v",
- "self_attn.o_proj", "attn_output",
- "mlp.gate_proj", "ffn_gate",
- "mlp.down_proj", "ffn_down",
- "mlp.up_proj", "ffn_up",
- "post_attention_layernorm", "ffn_norm",
- }
- }
- func (*gemmaModel) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
- n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
- ones := tensor.Ones(tensor.Float32, int(shape[0]))
- n, err := n.Add(ones)
- if err != nil {
- return nil, err
- }
- ts, err := native.SelectF32(n, 0)
- if err != nil {
- return nil, err
- }
- var f32s []float32
- for _, t := range ts {
- f32s = append(f32s, t...)
- }
- return f32s, nil
- }
|