convert_gemma.go 2.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
  1. package convert
  2. import (
  3. "strings"
  4. "github.com/pdevine/tensor"
  5. "github.com/pdevine/tensor/native"
  6. "github.com/ollama/ollama/llm"
  7. )
  8. type gemmaModel struct {
  9. ModelParameters
  10. MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
  11. HiddenSize uint32 `json:"hidden_size"`
  12. HiddenLayers uint32 `json:"num_hidden_layers"`
  13. IntermediateSize uint32 `json:"intermediate_size"`
  14. NumAttentionHeads uint32 `json:"num_attention_heads"`
  15. NumKeyValueHeads uint32 `json:"num_key_value_heads"`
  16. RMSNormEPS float32 `json:"rms_norm_eps"`
  17. HeadDim uint32 `json:"head_dim"`
  18. }
  19. var _ ModelConverter = (*gemmaModel)(nil)
  20. func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
  21. kv := p.ModelParameters.KV(t)
  22. kv["general.architecture"] = "gemma"
  23. kv["gemma.context_length"] = p.MaxPositionEmbeddings
  24. kv["gemma.embedding_length"] = p.HiddenSize
  25. kv["gemma.block_count"] = p.HiddenLayers
  26. kv["gemma.feed_forward_length"] = p.IntermediateSize
  27. kv["gemma.attention.head_count"] = p.NumAttentionHeads
  28. kv["gemma.attention.head_count_kv"] = p.NumKeyValueHeads
  29. kv["gemma.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
  30. kv["gemma.attention.key_length"] = p.HeadDim
  31. kv["gemma.attention.value_length"] = p.HeadDim
  32. kv["tokenizer.ggml.eot_token_id"] = uint32(107)
  33. kv["tokenizer.ggml.middle_token_id"] = uint32(68)
  34. kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
  35. kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
  36. return kv
  37. }
  38. func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
  39. var out []llm.Tensor
  40. for _, t := range ts {
  41. if strings.HasSuffix(t.Name(), "_norm.weight") {
  42. t.SetRepacker(p.addOne)
  43. }
  44. out = append(out, llm.Tensor{
  45. Name: t.Name(),
  46. Kind: t.Kind(),
  47. Shape: t.Shape(),
  48. WriterTo: t,
  49. })
  50. }
  51. return out
  52. }
  53. func (p *gemmaModel) Replacements() []string {
  54. return []string{
  55. "model.embed_tokens", "token_embd",
  56. "model.norm", "output_norm",
  57. "model.layers", "blk",
  58. "input_layernorm", "attn_norm",
  59. "self_attn.q_proj", "attn_q",
  60. "self_attn.k_proj", "attn_k",
  61. "self_attn.v_proj", "attn_v",
  62. "self_attn.o_proj", "attn_output",
  63. "mlp.gate_proj", "ffn_gate",
  64. "mlp.down_proj", "ffn_down",
  65. "mlp.up_proj", "ffn_up",
  66. "post_attention_layernorm", "ffn_norm",
  67. }
  68. }
  69. func (*gemmaModel) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
  70. n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
  71. ones := tensor.Ones(tensor.Float32, int(shape[0]))
  72. n, err := n.Add(ones)
  73. if err != nil {
  74. return nil, err
  75. }
  76. ts, err := native.SelectF32(n, 0)
  77. if err != nil {
  78. return nil, err
  79. }
  80. var f32s []float32
  81. for _, t := range ts {
  82. f32s = append(f32s, t...)
  83. }
  84. return f32s, nil
  85. }