12345678910111213141516171819202122232425262728293031323334353637383940414243 |
- package convert
- import (
- "github.com/ollama/ollama/llm"
- )
- type gemma2Model struct {
- gemmaModel
- SlidingWindow uint32 `json:"sliding_window"`
- AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
- FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
- }
- func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
- kv := p.ModelParameters.KV(t)
- kv["general.architecture"] = "gemma2"
- kv["gemma2.context_length"] = p.MaxPositionEmbeddings
- kv["gemma2.embedding_length"] = p.HiddenSize
- kv["gemma2.block_count"] = p.HiddenLayers
- kv["gemma2.feed_forward_length"] = p.IntermediateSize
- kv["gemma2.attention.head_count"] = p.NumAttentionHeads
- kv["gemma2.attention.head_count_kv"] = p.NumKeyValueHeads
- kv["gemma2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
- kv["gemma2.attention.key_length"] = p.HeadDim
- kv["gemma2.attention.value_length"] = p.HeadDim
- kv["gemma2.attention.sliding_window"] = p.SlidingWindow
- kv["gemma2.attn_logit_softcapping"] = p.AttentionLogitSoftcap
- kv["gemma2.final_logit_softcapping"] = p.FinalLogitSoftcap
- kv["tokenizer.ggml.eot_token_id"] = uint32(107)
- kv["tokenizer.ggml.middle_token_id"] = uint32(68)
- kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
- kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
- return kv
- }
- func (p *gemma2Model) Replacements() []string {
- return append(
- p.gemmaModel.Replacements(),
- "post_attention_layernorm", "post_attention_norm",
- "pre_feedforward_layernorm", "ffn_norm",
- "post_feedforward_layernorm", "post_ffw_norm",
- )
- }
|