convert_llama_adapter.go 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. package convert
  2. import (
  3. "cmp"
  4. "strings"
  5. "github.com/pdevine/tensor"
  6. "github.com/pdevine/tensor/native"
  7. "github.com/ollama/ollama/llm"
  8. )
  9. type llamaAdapter struct {
  10. AdapterParameters
  11. NumAttentionHeads uint32 `json:"num_attention_heads"`
  12. NumKeyValueHeads uint32 `json:"num_key_value_heads"`
  13. }
  14. var _ AdapterConverter = (*llamaAdapter)(nil)
  15. func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
  16. kv := p.AdapterParameters.KV()
  17. kv["general.architecture"] = "llama"
  18. kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
  19. kv["llama.attention.head_count_kv"] = baseKV["llama.attention.head_count_kv"]
  20. p.NumAttentionHeads = baseKV["llama.attention.head_count"].(uint32)
  21. return kv
  22. }
  23. func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
  24. var out []llm.Tensor
  25. for _, t := range ts {
  26. shape := t.Shape()
  27. if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
  28. (strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
  29. shape[0], shape[1] = shape[1], shape[0]
  30. t.SetRepacker(p.repackAndTranspose)
  31. } else {
  32. t.SetRepacker(p.repack)
  33. }
  34. out = append(out, llm.Tensor{
  35. Name: t.Name(),
  36. Kind: t.Kind(),
  37. Shape: shape,
  38. WriterTo: t,
  39. })
  40. }
  41. return out
  42. }
  43. func (p *llamaAdapter) Replacements() []string {
  44. return []string{
  45. "base_model.model.", "",
  46. "model.layers", "blk",
  47. "self_attn.q_proj", "attn_q",
  48. "self_attn.k_proj", "attn_k",
  49. "self_attn.v_proj", "attn_v",
  50. "self_attn.o_proj", "attn_output",
  51. "mlp.gate_proj", "ffn_gate",
  52. "mlp.down_proj", "ffn_down",
  53. "mlp.up_proj", "ffn_up",
  54. "lora_A.weight", "weight.lora_a",
  55. "lora_B.weight", "weight.lora_b",
  56. "lora_a", "weight.lora_a",
  57. "lora_b", "weight.lora_b",
  58. }
  59. }
  60. func (p *llamaAdapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
  61. dims := []int{int(shape[1]), int(shape[0])}
  62. var heads uint32
  63. if strings.HasSuffix(name, "attn_q.weight.lora_a") {
  64. heads = p.NumAttentionHeads
  65. } else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
  66. heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
  67. } else {
  68. return data, nil
  69. }
  70. n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
  71. if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
  72. return nil, err
  73. }
  74. if err := n.T(0, 2, 1, 3); err != nil {
  75. return nil, err
  76. }
  77. if err := n.Reshape(dims...); err != nil {
  78. return nil, err
  79. }
  80. if err := n.Transpose(); err != nil {
  81. return nil, err
  82. }
  83. ts, err := native.SelectF32(n, 1)
  84. if err != nil {
  85. return nil, err
  86. }
  87. var f32s []float32
  88. for _, t := range ts {
  89. f32s = append(f32s, t...)
  90. }
  91. return f32s, nil
  92. }
  93. func (p *llamaAdapter) repackAndTranspose(name string, data []float32, shape []uint64) ([]float32, error) {
  94. dims := []int{int(shape[1]), int(shape[0])}
  95. n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
  96. var heads uint32
  97. if strings.HasSuffix(name, "attn_q.weight.lora_a") {
  98. heads = p.NumAttentionHeads
  99. } else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
  100. heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
  101. }
  102. if heads > 0 {
  103. if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
  104. return nil, err
  105. }
  106. if err := n.T(0, 2, 1, 3); err != nil {
  107. return nil, err
  108. }
  109. if err := n.Reshape(dims...); err != nil {
  110. return nil, err
  111. }
  112. if err := n.Transpose(); err != nil {
  113. return nil, err
  114. }
  115. }
  116. if err := n.T(1, 0); err != nil {
  117. return nil, err
  118. }
  119. if err := n.Reshape(dims...); err != nil {
  120. return nil, err
  121. }
  122. if err := n.Transpose(); err != nil {
  123. return nil, err
  124. }
  125. ts, err := native.SelectF32(n, 1)
  126. if err != nil {
  127. return nil, err
  128. }
  129. var f32s []float32
  130. for _, t := range ts {
  131. f32s = append(f32s, t...)
  132. }
  133. return f32s, nil
  134. }