123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- package convert
- import (
- "cmp"
- "strings"
- "github.com/pdevine/tensor"
- "github.com/pdevine/tensor/native"
- "github.com/ollama/ollama/llm"
- )
- type llamaAdapter struct {
- AdapterParameters
- NumAttentionHeads uint32 `json:"num_attention_heads"`
- NumKeyValueHeads uint32 `json:"num_key_value_heads"`
- }
- var _ AdapterConverter = (*llamaAdapter)(nil)
- func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
- kv := p.AdapterParameters.KV()
- kv["general.architecture"] = "llama"
- kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
- kv["llama.attention.head_count_kv"] = baseKV["llama.attention.head_count_kv"]
- p.NumAttentionHeads = baseKV["llama.attention.head_count"].(uint32)
- return kv
- }
- func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
- var out []llm.Tensor
- for _, t := range ts {
- shape := t.Shape()
- if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
- (strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
- shape[0], shape[1] = shape[1], shape[0]
- t.SetRepacker(p.repackAndTranspose)
- } else {
- t.SetRepacker(p.repack)
- }
- out = append(out, llm.Tensor{
- Name: t.Name(),
- Kind: t.Kind(),
- Shape: shape,
- WriterTo: t,
- })
- }
- return out
- }
- func (p *llamaAdapter) Replacements() []string {
- return []string{
- "base_model.model.", "",
- "model.layers", "blk",
- "self_attn.q_proj", "attn_q",
- "self_attn.k_proj", "attn_k",
- "self_attn.v_proj", "attn_v",
- "self_attn.o_proj", "attn_output",
- "mlp.gate_proj", "ffn_gate",
- "mlp.down_proj", "ffn_down",
- "mlp.up_proj", "ffn_up",
- "lora_A.weight", "weight.lora_a",
- "lora_B.weight", "weight.lora_b",
- "lora_a", "weight.lora_a",
- "lora_b", "weight.lora_b",
- }
- }
- func (p *llamaAdapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
- dims := []int{int(shape[1]), int(shape[0])}
- var heads uint32
- if strings.HasSuffix(name, "attn_q.weight.lora_a") {
- heads = p.NumAttentionHeads
- } else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
- heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
- } else {
- return data, nil
- }
- n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
- if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
- return nil, err
- }
- if err := n.T(0, 2, 1, 3); err != nil {
- return nil, err
- }
- if err := n.Reshape(dims...); err != nil {
- return nil, err
- }
- if err := n.Transpose(); err != nil {
- return nil, err
- }
- ts, err := native.SelectF32(n, 1)
- if err != nil {
- return nil, err
- }
- var f32s []float32
- for _, t := range ts {
- f32s = append(f32s, t...)
- }
- return f32s, nil
- }
- func (p *llamaAdapter) repackAndTranspose(name string, data []float32, shape []uint64) ([]float32, error) {
- dims := []int{int(shape[1]), int(shape[0])}
- n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
- var heads uint32
- if strings.HasSuffix(name, "attn_q.weight.lora_a") {
- heads = p.NumAttentionHeads
- } else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
- heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
- }
- if heads > 0 {
- if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
- return nil, err
- }
- if err := n.T(0, 2, 1, 3); err != nil {
- return nil, err
- }
- if err := n.Reshape(dims...); err != nil {
- return nil, err
- }
- if err := n.Transpose(); err != nil {
- return nil, err
- }
- }
- if err := n.T(1, 0); err != nil {
- return nil, err
- }
- if err := n.Reshape(dims...); err != nil {
- return nil, err
- }
- if err := n.Transpose(); err != nil {
- return nil, err
- }
- ts, err := native.SelectF32(n, 1)
- if err != nil {
- return nil, err
- }
- var f32s []float32
- for _, t := range ts {
- f32s = append(f32s, t...)
- }
- return f32s, nil
- }
|