123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620 |
- /**
- * llama.cpp - git 465219b9143ac01db0990bbcb0a081ef72ec2008
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "ggml-alloc.h"
- #include "ggml-backend.h"
- #include "ggml.h"
- #include <assert.h>
- #include <stdarg.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #define UNUSED(x) (void)(x)
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- #define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
- //#define GGML_ALLOCATOR_DEBUG
- //#define AT_PRINTF printf
- #define AT_PRINTF(...) ((void)0)
- struct hash_node {
- struct ggml_tensor * t;
- int n_children;
- int n_views;
- };
- static size_t hash(void * p) {
- return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
- }
- static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
- size_t h = hash(t);
- // linear probing
- size_t i = h;
- while (hash_table[i].t != NULL) {
- if (hash_table[i].t == t) {
- return &hash_table[i];
- }
- i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
- if (i == h) {
- // hash table is full
- GGML_ASSERT(false);
- }
- }
- hash_table[i].t = t;
- return &hash_table[i];
- }
- // TODO: GGML_PAD ?
- static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
- assert(alignment && !(alignment & (alignment - 1))); // power of 2
- size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
- return offset + align;
- }
- struct free_block {
- void * addr;
- size_t size;
- };
- #define MAX_FREE_BLOCKS 256
- struct ggml_allocr {
- struct ggml_backend_buffer * buffer;
- bool buffer_owned;
- void * data;
- size_t alignment;
- int n_free_blocks;
- struct free_block free_blocks[MAX_FREE_BLOCKS];
- struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
- size_t max_size;
- bool measure;
- int parse_seq[GGML_MAX_CONCUR];
- int parse_seq_len;
- #ifdef GGML_ALLOCATOR_DEBUG
- struct ggml_tensor * allocated_tensors[1024];
- #endif
- };
- #ifdef GGML_ALLOCATOR_DEBUG
- static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
- for (int i = 0; i < 1024; i++) {
- if (alloc->allocated_tensors[i] == NULL) {
- alloc->allocated_tensors[i] = tensor;
- return;
- }
- }
- GGML_ASSERT(!"out of allocated_tensors");
- }
- static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
- for (int i = 0; i < 1024; i++) {
- if (alloc->allocated_tensors[i] == tensor ||
- (alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
- alloc->allocated_tensors[i] = NULL;
- return;
- }
- }
- printf("tried to free tensor %s not found\n", tensor->name);
- GGML_ASSERT(!"tensor not found");
- }
- #endif
- // check if a tensor is allocated by this buffer
- static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) {
- return tensor->buffer == alloc->buffer;
- }
- static bool ggml_is_view(struct ggml_tensor * t) {
- return t->view_src != NULL;
- }
- void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
- GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
- GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
- size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor);
- size = aligned_offset(NULL, size, alloc->alignment);
- AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
- size_t max_avail = 0;
- // find the best fitting free block besides the last block
- int best_fit_block = -1;
- size_t best_fit_size = SIZE_MAX;
- for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
- struct free_block * block = &alloc->free_blocks[i];
- max_avail = MAX(max_avail, block->size);
- if (block->size >= size && block->size <= best_fit_size) {
- best_fit_block = i;
- best_fit_size = block->size;
- }
- }
- AT_PRINTF("block %d\n", best_fit_block);
- if (best_fit_block == -1) {
- // the last block is our last resort
- struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
- max_avail = MAX(max_avail, block->size);
- if (block->size >= size) {
- best_fit_block = alloc->n_free_blocks - 1;
- } else {
- fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
- __func__, size, max_avail);
- GGML_ASSERT(!"not enough space in the buffer");
- return;
- }
- }
- struct free_block * block = &alloc->free_blocks[best_fit_block];
- void * addr = block->addr;
- block->addr = (char*)block->addr + size;
- block->size -= size;
- if (block->size == 0) {
- // remove block if empty
- alloc->n_free_blocks--;
- for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
- alloc->free_blocks[j] = alloc->free_blocks[j+1];
- }
- }
- tensor->data = addr;
- AT_PRINTF("%s: allocated data at %p\n", __func__, tensor->data);
- tensor->buffer = alloc->buffer;
- ggml_backend_buffer_init_tensor(alloc->buffer, tensor);
- #ifdef GGML_ALLOCATOR_DEBUG
- add_allocated_tensor(alloc, tensor);
- size_t cur_max = (char*)addr - (char*)alloc->data + size;
- if (cur_max > alloc->max_size) {
- printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
- for (int i = 0; i < 1024; i++) {
- if (alloc->allocated_tensors[i]) {
- printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
- }
- }
- printf("\n");
- }
- #endif
- alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
- }
- // this is a very naive implementation, but for our case the number of free blocks should be very small
- static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
- if (ggml_allocr_is_own(alloc, tensor) == false) {
- // the tensor was not allocated in this buffer
- // this can happen because the graph allocator will try to free weights and other tensors from different buffers
- // the easiest way to deal with this is just to ignore it
- AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer);
- return;
- }
- void * ptr = tensor->data;
- size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor);
- size = aligned_offset(NULL, size, alloc->alignment);
- AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
- ggml_backend_buffer_free_tensor(alloc->buffer, tensor);
- #ifdef GGML_ALLOCATOR_DEBUG
- remove_allocated_tensor(alloc, tensor);
- #endif
- // see if we can merge with an existing block
- for (int i = 0; i < alloc->n_free_blocks; i++) {
- struct free_block * block = &alloc->free_blocks[i];
- // check if ptr is at the end of the block
- if ((char*)block->addr + block->size == ptr) {
- block->size += size;
- // check if we can merge with the next block
- if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
- block->size += alloc->free_blocks[i+1].size;
- alloc->n_free_blocks--;
- for (int j = i+1; j < alloc->n_free_blocks; j++) {
- alloc->free_blocks[j] = alloc->free_blocks[j+1];
- }
- }
- return;
- }
- // check if ptr is at the beginning of the block
- if ((char*)ptr + size == block->addr) {
- block->addr = ptr;
- block->size += size;
- // check if we can merge with the previous block
- if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
- alloc->free_blocks[i-1].size += block->size;
- alloc->n_free_blocks--;
- for (int j = i; j < alloc->n_free_blocks; j++) {
- alloc->free_blocks[j] = alloc->free_blocks[j+1];
- }
- }
- return;
- }
- }
- // otherwise, add a new block
- GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
- // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
- int insert_pos = 0;
- while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
- insert_pos++;
- }
- // shift all blocks from insert_pos onward to make room for the new block
- for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
- alloc->free_blocks[i] = alloc->free_blocks[i-1];
- }
- // insert the new block
- alloc->free_blocks[insert_pos].addr = ptr;
- alloc->free_blocks[insert_pos].size = size;
- alloc->n_free_blocks++;
- }
- void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) {
- for (int i = 0; i < n; i++) {
- alloc->parse_seq[i] = list[i];
- }
- alloc->parse_seq_len = n;
- }
- void ggml_allocr_reset(struct ggml_allocr * alloc) {
- alloc->n_free_blocks = 1;
- size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
- alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
- alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
- }
- struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
- struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(NULL, data, size);
- struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr));
- *alloc = (struct ggml_allocr){
- /*.buffer = */ buffer,
- /*.buffer_owned = */ true,
- /*.base = */ ggml_backend_buffer_get_base(buffer),
- /*.alignment = */ alignment,
- /*.n_free_blocks = */ 0,
- /*.free_blocks = */ {{0}},
- /*.hash_table = */ {{0}},
- /*.max_size = */ 0,
- /*.measure = */ false,
- /*.parse_seq = */ {0},
- /*.parse_seq_len = */ 0,
- #ifdef GGML_ALLOCATOR_DEBUG
- /*.allocated_tensors = */ {0},
- #endif
- };
- ggml_allocr_reset(alloc);
- return alloc;
- }
- struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
- struct ggml_allocr * alloc = ggml_allocr_new((void *)0x1000, (size_t)-0x1001, alignment);
- alloc->measure = true;
- return alloc;
- }
- struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
- struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr));
- *alloc = (struct ggml_allocr){
- /*.buffer = */ buffer,
- /*.buffer_owned = */ false,
- /*.base = */ ggml_backend_buffer_get_base(buffer),
- /*.alignment = */ ggml_backend_buffer_get_alignment(buffer),
- /*.n_free_blocks = */ 0,
- /*.free_blocks = */ {{0}},
- /*.hash_table = */ {{0}},
- /*.max_size = */ 0,
- /*.measure = */ false,
- /*.parse_seq = */ {0},
- /*.parse_seq_len = */ 0,
- #ifdef GGML_ALLOCATOR_DEBUG
- /*.allocated_tensors = */ {0},
- #endif
- };
- ggml_allocr_reset(alloc);
- return alloc;
- }
- void ggml_allocr_free(struct ggml_allocr * alloc) {
- if (alloc->buffer_owned) {
- ggml_backend_buffer_free(alloc->buffer);
- }
- free(alloc);
- }
- bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
- return alloc->measure;
- }
- //////////// compute graph allocator
- static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
- if (a->type != b->type) {
- return false;
- }
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- if (a->ne[i] != b->ne[i]) {
- return false;
- }
- if (a->nb[i] != b->nb[i]) {
- return false;
- }
- }
- return true;
- }
- static bool ggml_op_can_inplace(enum ggml_op op) {
- switch (op) {
- case GGML_OP_SCALE:
- case GGML_OP_DIAG_MASK_ZERO:
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_ADD:
- case GGML_OP_ADD1:
- case GGML_OP_SUB:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_SQR:
- case GGML_OP_SQRT:
- case GGML_OP_LOG:
- case GGML_OP_UNARY:
- case GGML_OP_ROPE:
- case GGML_OP_RMS_NORM:
- case GGML_OP_SOFT_MAX:
- return true;
- default:
- return false;
- }
- }
- static void init_view(struct ggml_allocr * alloc, struct ggml_tensor * view) {
- assert(view->view_src != NULL && view->view_src->data != NULL);
- view->backend = view->view_src->backend;
- view->buffer = view->view_src->buffer;
- view->data = (char *)view->view_src->data + view->view_offs;
- // FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
- // due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
- assert(ggml_allocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend);
- ggml_backend_buffer_init_tensor(alloc->buffer, view);
- }
- static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
- struct hash_node * ht = alloc->hash_table;
- if (node->data == NULL) {
- if (ggml_is_view(node)) {
- init_view(alloc, node);
- } else {
- // see if we can reuse a parent's buffer (inplace)
- if (ggml_op_can_inplace(node->op)) {
- for (int i = 0; i < GGML_MAX_SRC; i++) {
- struct ggml_tensor * parent = node->src[i];
- if (parent == NULL) {
- break;
- }
- // if the node's data is external, then we cannot re-use it
- if (ggml_allocr_is_own(alloc, parent) == false) {
- AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
- continue;
- }
- struct hash_node * p_hn = hash_get(ht, parent);
- if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
- if (ggml_is_view(parent)) {
- struct ggml_tensor * view_src = parent->view_src;
- struct hash_node * view_src_hn = hash_get(ht, view_src);
- if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
- // TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
- // the parent's data that it will need later (same layout requirement). the problem is that then
- // we cannot free the tensor because the original address of the allocation is lost.
- // adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
- // for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
- AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
- node->view_src = view_src;
- view_src_hn->n_views += 1;
- init_view(alloc, node);
- return;
- }
- }
- else {
- AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
- node->view_src = parent;
- p_hn->n_views += 1;
- init_view(alloc, node);
- return;
- }
- }
- }
- }
- ggml_allocr_alloc(alloc, node);
- }
- }
- }
- size_t ggml_allocr_alloc_graph_n(
- struct ggml_allocr * alloc,
- struct ggml_cgraph ** graphs, int n_graphs,
- struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
- // reset hash table
- struct hash_node * ht = alloc->hash_table;
- memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
- // count number of children and views
- for (int g = 0; g < n_graphs; g++) {
- struct ggml_cgraph * gf = graphs[g];
- for (int i = 0; i < gf->n_nodes; i++) {
- struct ggml_tensor * node = gf->nodes[i];
- if (ggml_is_view(node)) {
- struct ggml_tensor * view_src = node->view_src;
- hash_get(ht, view_src)->n_views += 1;
- if (node->buffer == NULL && node->data != NULL) {
- // view of a pre-allocated tensor, didn't call init_view() yet
- init_view(alloc, node);
- }
- }
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * parent = node->src[j];
- if (parent == NULL) {
- break;
- }
- hash_get(ht, parent)->n_children += 1;
- if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) {
- init_view(alloc, parent);
- }
- }
- }
- }
- // allocate tensors
- for (int g = 0; g < n_graphs; g++) {
- struct ggml_cgraph * gf = graphs[g];
- AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
- // graph inputs are allocated first to ensure that they are not overwritten by each other
- if (inputs != NULL && inputs[g] != NULL) {
- for (int i = 0; inputs[g][i] != NULL; i++) {
- struct ggml_tensor * input = inputs[g][i];
- AT_PRINTF("input: %s\n", input->name);
- allocate_node(alloc, input);
- }
- }
- // if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
- int last_barrier_pos = 0;
- int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes;
- for (int ind = 0; ind < n_nodes; ind++) {
- // allocate a node if there is no parse_seq or this is not a barrier
- if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) {
- int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind;
- struct ggml_tensor * node = gf->nodes[i];
- // allocate parents (leafs)
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * parent = node->src[j];
- if (parent == NULL) {
- break;
- }
- allocate_node(alloc, parent);
- }
- // allocate node
- allocate_node(alloc, node);
- AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * parent = node->src[j];
- if (parent == NULL) {
- break;
- }
- AT_PRINTF("%s", parent->name);
- if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
- AT_PRINTF(", ");
- }
- }
- AT_PRINTF("\n");
- }
- // update parents
- // update immediately if there is no parse_seq
- // update only at barriers if there is parse_seq
- if ((alloc->parse_seq_len == 0) || alloc->parse_seq[ind] == -1) {
- int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
- int update_end = alloc->parse_seq_len ? ind : ind + 1;
- for (int i = update_start; i < update_end; i++) {
- int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i;
- struct ggml_tensor * node = gf->nodes[node_i];
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- struct ggml_tensor * parent = node->src[j];
- if (parent == NULL) {
- break;
- }
- struct hash_node * p_hn = hash_get(ht, parent);
- p_hn->n_children -= 1;
- //AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
- if (p_hn->n_children == 0 && p_hn->n_views == 0) {
- if (ggml_is_view(parent)) {
- struct ggml_tensor * view_src = parent->view_src;
- struct hash_node * view_src_hn = hash_get(ht, view_src);
- view_src_hn->n_views -= 1;
- AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
- if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
- ggml_allocr_free_tensor(alloc, view_src);
- }
- }
- else {
- if (parent->data != node->data) {
- ggml_allocr_free_tensor(alloc, parent);
- }
- }
- }
- }
- }
- AT_PRINTF("\n");
- if (alloc->parse_seq_len) {
- last_barrier_pos = ind + 1;
- }
- }
- }
- // free graph outputs here that wouldn't be freed otherwise because they have no children
- if (outputs != NULL && outputs[g] != NULL) {
- for (int i = 0; outputs[g][i] != NULL; i++) {
- struct ggml_tensor * output = outputs[g][i];
- AT_PRINTF("output: %s\n", output->name);
- ggml_allocr_free_tensor(alloc, output);
- }
- }
- }
- return alloc->max_size;
- }
- size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
- return ggml_allocr_alloc_graph_n(alloc, &graph, 1, NULL, NULL);
- }
- size_t ggml_allocr_max_size(struct ggml_allocr * alloc) {
- return alloc->max_size;
- }
|