123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411 |
- /**
- * llama.cpp - git 465219b9143ac01db0990bbcb0a081ef72ec2008
- *
- * MIT License
- *
- * Copyright (c) 2023 Georgi Gerganov
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in all
- * copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
- * SOFTWARE.
- */
- #include "ggml-backend.h"
- #include "ggml-alloc.h"
- #include <assert.h>
- #include <stdarg.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #define UNUSED GGML_UNUSED
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- // backend buffer
- ggml_backend_buffer_t ggml_backend_buffer_init(
- struct ggml_backend * backend,
- struct ggml_backend_buffer_i iface,
- ggml_backend_buffer_context_t context,
- size_t size) {
- ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
- GGML_ASSERT(iface.get_base != NULL);
- (*buffer) = (struct ggml_backend_buffer) {
- /* .interface = */ iface,
- /* .backend = */ backend,
- /* .context = */ context,
- /* .size = */ size,
- };
- return buffer;
- }
- void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
- if (buffer->iface.free_buffer != NULL) {
- buffer->iface.free_buffer(buffer);
- }
- free(buffer);
- }
- size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
- return ggml_backend_get_alignment(buffer->backend);
- }
- void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
- return buffer->iface.get_base(buffer);
- }
- size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
- return buffer->size;
- }
- size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
- if (buffer->iface.get_alloc_size) {
- return buffer->iface.get_alloc_size(buffer, tensor);
- }
- return ggml_nbytes(tensor);
- }
- void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
- if (buffer->iface.init_tensor) {
- buffer->iface.init_tensor(buffer, tensor);
- }
- }
- void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
- if (buffer->iface.free_tensor) {
- buffer->iface.free_tensor(buffer, tensor);
- }
- }
- // backend
- ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) {
- return tensor->buffer->backend;
- }
- const char * ggml_backend_name(ggml_backend_t backend) {
- return backend->iface.get_name(backend);
- }
- void ggml_backend_free(ggml_backend_t backend) {
- backend->iface.free(backend);
- }
- ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
- return backend->iface.alloc_buffer(backend, size);
- }
- size_t ggml_backend_get_alignment(ggml_backend_t backend) {
- return backend->iface.get_alignment(backend);
- }
- void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
- }
- void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
- }
- void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
- ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor));
- }
- void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
- ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor));
- }
- void ggml_backend_synchronize(ggml_backend_t backend) {
- backend->iface.synchronize(backend);
- }
- ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- return backend->iface.graph_plan_create(backend, cgraph);
- }
- void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- backend->iface.graph_plan_free(backend, plan);
- }
- void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- backend->iface.graph_plan_compute(backend, plan);
- }
- void ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- backend->iface.graph_compute(backend, cgraph);
- }
- bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
- return backend->iface.supports_op(backend, op);
- }
- // backend copy
- static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
- if (a->type != b->type) {
- return false;
- }
- for (int i = 0; i < GGML_MAX_DIMS; i++) {
- if (a->ne[i] != b->ne[i]) {
- return false;
- }
- if (a->nb[i] != b->nb[i]) {
- return false;
- }
- }
- return true;
- }
- void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
- //printf("src: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", src->name, (int)src->ne[0], (int)src->ne[1], (int)src->ne[2], (int)src->ne[3], (int)src->nb[0], (int)src->nb[1], (int)src->nb[2], (int)src->nb[3]);
- //printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
- GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
- // printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
- if (src == dst) {
- return;
- }
- // TODO: allow backends to support copy to/from same backend
- if (ggml_get_backend(dst)->iface.cpy_tensor_from != NULL) {
- ggml_get_backend(dst)->iface.cpy_tensor_from(ggml_get_backend(dst)->context, src, dst);
- } else if (ggml_get_backend(src)->iface.cpy_tensor_to != NULL) {
- ggml_get_backend(src)->iface.cpy_tensor_to(ggml_get_backend(src)->context, src, dst);
- } else {
- // shouldn't be hit when copying from/to CPU
- #ifndef NDEBUG
- fprintf(stderr, "ggml_backend_tensor_copy: neither cpy_tensor_from nor cpy_tensor_to are implemented for backends %s and %s, falling back to get/set\n", ggml_backend_name(src->buffer->backend), ggml_backend_name(dst->buffer->backend));
- #endif
- size_t nbytes = ggml_nbytes(src);
- void * data = malloc(nbytes);
- ggml_backend_tensor_get(src, data, 0, nbytes);
- ggml_backend_tensor_set(dst, data, 0, nbytes);
- free(data);
- }
- }
- // backend CPU
- struct ggml_backend_cpu_context {
- int n_threads;
- void * work_data;
- size_t work_size;
- };
- static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
- return "CPU";
- UNUSED(backend);
- }
- static void ggml_backend_cpu_free(ggml_backend_t backend) {
- struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
- free(cpu_ctx->work_data);
- free(cpu_ctx);
- free(backend);
- }
- static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
- return (void *)buffer->context;
- }
- static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- free(buffer->context);
- UNUSED(buffer);
- }
- static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
- /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
- /* .get_base = */ ggml_backend_cpu_buffer_get_base,
- /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
- /* .init_tensor = */ NULL, // no initialization required
- /* .free_tensor = */ NULL, // no cleanup required
- };
- // for buffers from ptr, free is not called
- static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
- /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
- /* .get_base = */ ggml_backend_cpu_buffer_get_base,
- /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
- /* .init_tensor = */ NULL,
- /* .free_tensor = */ NULL,
- };
- static const size_t TENSOR_ALIGNMENT = 64; // should be enough for AVX 512
- static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backend, size_t size) {
- size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
- void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
- return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size);
- }
- static size_t ggml_backend_cpu_get_alignment(ggml_backend_t backend) {
- return TENSOR_ALIGNMENT;
- UNUSED(backend);
- }
- static void ggml_backend_cpu_set_tensor_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
- GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
- memcpy((char *)tensor->data + offset, data, size);
- UNUSED(backend);
- }
- static void ggml_backend_cpu_get_tensor_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
- GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
- memcpy(data, (const char *)tensor->data + offset, size);
- UNUSED(backend);
- }
- static void ggml_backend_cpu_synchronize(ggml_backend_t backend) {
- UNUSED(backend);
- }
- static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
- ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
- UNUSED(backend);
- }
- static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
- // for a backend such as CUDA that can queue async calls, it is ok to do this asynchronously, but it may not be the case for other backends
- ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src));
- UNUSED(backend);
- }
- struct ggml_backend_plan_cpu {
- struct ggml_cplan cplan;
- struct ggml_cgraph cgraph;
- };
- static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
- struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
- cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
- cpu_plan->cgraph = *cgraph;
- if (cpu_plan->cplan.work_size > 0) {
- cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
- }
- return cpu_plan;
- }
- static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
- free(cpu_plan->cplan.work_data);
- free(cpu_plan);
- UNUSED(backend);
- }
- static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
- struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
- ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
- UNUSED(backend);
- }
- static void ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
- struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
- struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
- if (cpu_ctx->work_size < cplan.work_size) {
- // TODO: may be faster to free and use malloc to avoid the copy
- cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
- cpu_ctx->work_size = cplan.work_size;
- }
- cplan.work_data = cpu_ctx->work_data;
- ggml_graph_compute(cgraph, &cplan);
- }
- static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
- return true;
- UNUSED(backend);
- UNUSED(op);
- }
- static struct ggml_backend_i cpu_backend_i = {
- /* .get_name = */ ggml_backend_cpu_name,
- /* .free = */ ggml_backend_cpu_free,
- /* .alloc_buffer = */ ggml_backend_cpu_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cpu_get_alignment,
- /* .set_tensor_async = */ ggml_backend_cpu_set_tensor_async,
- /* .get_tensor_async = */ ggml_backend_cpu_get_tensor_async,
- /* .synchronize = */ ggml_backend_cpu_synchronize,
- /* .cpy_tensor_from = */ ggml_backend_cpu_cpy_tensor_from,
- /* .cpy_tensor_to = */ ggml_backend_cpu_cpy_tensor_to,
- /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
- /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
- /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
- /* .graph_compute = */ ggml_backend_cpu_graph_compute,
- /* .supports_op = */ ggml_backend_cpu_supports_op,
- };
- ggml_backend_t ggml_backend_cpu_init(void) {
- struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
- ctx->n_threads = GGML_DEFAULT_N_THREADS;
- ctx->work_data = NULL;
- ctx->work_size = 0;
- ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
- *cpu_backend = (struct ggml_backend) {
- /* .interface = */ cpu_backend_i,
- /* .context = */ ctx
- };
- return cpu_backend;
- }
- bool ggml_backend_is_cpu(ggml_backend_t backend) {
- return backend->iface.get_name == ggml_backend_cpu_name;
- }
- void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
- GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
- struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
- ctx->n_threads = n_threads;
- }
- ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) {
- return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size);
- }
|