llama.cpp 369 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942
  1. /**
  2. * llama.cpp - git 465219b9143ac01db0990bbcb0a081ef72ec2008
  3. *
  4. * MIT License
  5. *
  6. * Copyright (c) 2023 Georgi Gerganov
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in all
  16. * copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  24. * SOFTWARE.
  25. */
  26. #define LLAMA_API_INTERNAL
  27. #include "llama.h"
  28. #include "unicode.h"
  29. #include "ggml.h"
  30. #include "ggml-alloc.h"
  31. #ifdef GGML_USE_CUBLAS
  32. # include "ggml-cuda.h"
  33. #elif defined(GGML_USE_CLBLAST)
  34. # include "ggml-opencl.h"
  35. #endif
  36. #ifdef GGML_USE_METAL
  37. # include "ggml-metal.h"
  38. #endif
  39. #ifdef GGML_USE_MPI
  40. # include "ggml-mpi.h"
  41. #endif
  42. #ifdef GGML_USE_K_QUANTS
  43. # ifndef QK_K
  44. # ifdef GGML_QKK_64
  45. # define QK_K 64
  46. # else
  47. # define QK_K 256
  48. # endif
  49. # endif
  50. #endif
  51. #ifdef __has_include
  52. #if __has_include(<unistd.h>)
  53. #include <unistd.h>
  54. #if defined(_POSIX_MAPPED_FILES)
  55. #include <sys/mman.h>
  56. #endif
  57. #if defined(_POSIX_MEMLOCK_RANGE)
  58. #include <sys/resource.h>
  59. #endif
  60. #endif
  61. #endif
  62. #if defined(_WIN32)
  63. #define WIN32_LEAN_AND_MEAN
  64. #ifndef NOMINMAX
  65. #define NOMINMAX
  66. #endif
  67. #include <windows.h>
  68. #include <io.h>
  69. #include <stdio.h> // for _fseeki64
  70. #endif
  71. #include <algorithm>
  72. #include <array>
  73. #include <cassert>
  74. #include <cinttypes>
  75. #include <climits>
  76. #include <cstdarg>
  77. #include <cstddef>
  78. #include <cstdint>
  79. #include <cstdio>
  80. #include <cstring>
  81. #include <ctime>
  82. #include <fstream>
  83. #include <initializer_list>
  84. #include <map>
  85. #include <memory>
  86. #include <mutex>
  87. #include <numeric>
  88. #include <queue>
  89. #include <random>
  90. #include <regex>
  91. #include <sstream>
  92. #include <thread>
  93. #include <unordered_map>
  94. #include <set>
  95. #include <forward_list>
  96. #if defined(_MSC_VER)
  97. #pragma warning(disable: 4244 4267) // possible loss of data
  98. #endif
  99. #ifdef __GNUC__
  100. #ifdef __MINGW32__
  101. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  102. #else
  103. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  104. #endif
  105. #else
  106. #define LLAMA_ATTRIBUTE_FORMAT(...)
  107. #endif
  108. //
  109. // logging
  110. //
  111. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  112. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  113. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  114. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  115. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  116. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  117. //
  118. // helpers
  119. //
  120. static size_t utf8_len(char src) {
  121. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  122. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  123. return lookup[highbits];
  124. }
  125. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  126. std::string result;
  127. for (size_t pos = 0; ; pos += search.length()) {
  128. auto new_pos = s.find(search, pos);
  129. if (new_pos == std::string::npos) {
  130. result += s.substr(pos, s.size() - pos);
  131. break;
  132. }
  133. result += s.substr(pos, new_pos - pos) + replace;
  134. pos = new_pos;
  135. }
  136. s = std::move(result);
  137. }
  138. static bool is_float_close(float a, float b, float abs_tol) {
  139. // Check for non-negative tolerance
  140. if (abs_tol < 0.0) {
  141. throw std::invalid_argument("Tolerance must be non-negative");
  142. }
  143. // Exact equality check
  144. if (a == b) {
  145. return true;
  146. }
  147. // Check for infinities
  148. if (std::isinf(a) || std::isinf(b)) {
  149. return false;
  150. }
  151. // Regular comparison using the provided absolute tolerance
  152. return std::fabs(b - a) <= abs_tol;
  153. }
  154. #ifdef GGML_USE_CPU_HBM
  155. #include <hbwmalloc.h>
  156. #endif
  157. static void zeros(std::ofstream & file, size_t n) {
  158. char zero = 0;
  159. for (size_t i = 0; i < n; ++i) {
  160. file.write(&zero, 1);
  161. }
  162. }
  163. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  164. static std::string format(const char * fmt, ...) {
  165. va_list ap;
  166. va_list ap2;
  167. va_start(ap, fmt);
  168. va_copy(ap2, ap);
  169. int size = vsnprintf(NULL, 0, fmt, ap);
  170. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  171. std::vector<char> buf(size + 1);
  172. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  173. GGML_ASSERT(size2 == size);
  174. va_end(ap2);
  175. va_end(ap);
  176. return std::string(buf.data(), size);
  177. }
  178. //
  179. // gguf constants (sync with gguf.py)
  180. //
  181. enum llm_arch {
  182. LLM_ARCH_LLAMA,
  183. LLM_ARCH_FALCON,
  184. LLM_ARCH_BAICHUAN,
  185. LLM_ARCH_GPT2,
  186. LLM_ARCH_GPTJ,
  187. LLM_ARCH_GPTNEOX,
  188. LLM_ARCH_MPT,
  189. LLM_ARCH_STARCODER,
  190. LLM_ARCH_PERSIMMON,
  191. LLM_ARCH_REFACT,
  192. LLM_ARCH_BLOOM,
  193. LLM_ARCH_UNKNOWN,
  194. };
  195. static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
  196. { LLM_ARCH_LLAMA, "llama" },
  197. { LLM_ARCH_FALCON, "falcon" },
  198. { LLM_ARCH_GPT2, "gpt2" },
  199. { LLM_ARCH_GPTJ, "gptj" },
  200. { LLM_ARCH_GPTNEOX, "gptneox" },
  201. { LLM_ARCH_MPT, "mpt" },
  202. { LLM_ARCH_BAICHUAN, "baichuan" },
  203. { LLM_ARCH_STARCODER, "starcoder" },
  204. { LLM_ARCH_PERSIMMON, "persimmon" },
  205. { LLM_ARCH_REFACT, "refact" },
  206. { LLM_ARCH_BLOOM, "bloom" },
  207. };
  208. enum llm_kv {
  209. LLM_KV_GENERAL_ARCHITECTURE,
  210. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  211. LLM_KV_GENERAL_ALIGNMENT,
  212. LLM_KV_GENERAL_NAME,
  213. LLM_KV_GENERAL_AUTHOR,
  214. LLM_KV_GENERAL_URL,
  215. LLM_KV_GENERAL_DESCRIPTION,
  216. LLM_KV_GENERAL_LICENSE,
  217. LLM_KV_GENERAL_SOURCE_URL,
  218. LLM_KV_GENERAL_SOURCE_HF_REPO,
  219. LLM_KV_CONTEXT_LENGTH,
  220. LLM_KV_EMBEDDING_LENGTH,
  221. LLM_KV_BLOCK_COUNT,
  222. LLM_KV_FEED_FORWARD_LENGTH,
  223. LLM_KV_USE_PARALLEL_RESIDUAL,
  224. LLM_KV_TENSOR_DATA_LAYOUT,
  225. LLM_KV_ATTENTION_HEAD_COUNT,
  226. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  227. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  228. LLM_KV_ATTENTION_CLAMP_KQV,
  229. LLM_KV_ATTENTION_LAYERNORM_EPS,
  230. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  231. LLM_KV_ROPE_DIMENSION_COUNT,
  232. LLM_KV_ROPE_FREQ_BASE,
  233. LLM_KV_ROPE_SCALE_LINEAR,
  234. LLM_KV_TOKENIZER_MODEL,
  235. LLM_KV_TOKENIZER_LIST,
  236. LLM_KV_TOKENIZER_TOKEN_TYPE,
  237. LLM_KV_TOKENIZER_SCORES,
  238. LLM_KV_TOKENIZER_MERGES,
  239. LLM_KV_TOKENIZER_BOS_ID,
  240. LLM_KV_TOKENIZER_EOS_ID,
  241. LLM_KV_TOKENIZER_UNK_ID,
  242. LLM_KV_TOKENIZER_SEP_ID,
  243. LLM_KV_TOKENIZER_PAD_ID,
  244. LLM_KV_TOKENIZER_HF_JSON,
  245. LLM_KV_TOKENIZER_RWKV,
  246. };
  247. static std::map<llm_kv, std::string> LLM_KV_NAMES = {
  248. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  249. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  250. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  251. { LLM_KV_GENERAL_NAME, "general.name" },
  252. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  253. { LLM_KV_GENERAL_URL, "general.url" },
  254. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  255. { LLM_KV_GENERAL_LICENSE, "general.license" },
  256. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  257. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  258. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  259. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  260. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  261. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  262. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  263. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  264. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  265. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  266. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  267. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  268. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  269. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  270. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  271. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  272. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  273. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  274. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  275. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  276. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  277. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  278. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  279. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  280. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  281. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  282. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  283. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  284. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  285. };
  286. struct LLM_KV {
  287. LLM_KV(llm_arch arch) : arch(arch) {}
  288. llm_arch arch;
  289. std::string operator()(llm_kv kv) const {
  290. return ::format(LLM_KV_NAMES[kv].c_str(), LLM_ARCH_NAMES[arch].c_str());
  291. }
  292. };
  293. enum llm_tensor {
  294. LLM_TENSOR_TOKEN_EMBD,
  295. LLM_TENSOR_TOKEN_EMBD_NORM,
  296. LLM_TENSOR_POS_EMBD,
  297. LLM_TENSOR_OUTPUT,
  298. LLM_TENSOR_OUTPUT_NORM,
  299. LLM_TENSOR_ROPE_FREQS,
  300. LLM_TENSOR_ATTN_Q,
  301. LLM_TENSOR_ATTN_K,
  302. LLM_TENSOR_ATTN_V,
  303. LLM_TENSOR_ATTN_QKV,
  304. LLM_TENSOR_ATTN_OUT,
  305. LLM_TENSOR_ATTN_NORM,
  306. LLM_TENSOR_ATTN_NORM_2,
  307. LLM_TENSOR_ATTN_ROT_EMBD,
  308. LLM_TENSOR_FFN_GATE,
  309. LLM_TENSOR_FFN_DOWN,
  310. LLM_TENSOR_FFN_UP,
  311. LLM_TENSOR_FFN_NORM,
  312. LLM_TENSOR_ATTN_Q_NORM,
  313. LLM_TENSOR_ATTN_K_NORM,
  314. };
  315. static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  316. {
  317. LLM_ARCH_LLAMA,
  318. {
  319. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  320. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  321. { LLM_TENSOR_OUTPUT, "output" },
  322. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  323. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  324. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  325. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  326. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  327. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  328. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  329. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  330. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  331. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  332. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  333. },
  334. },
  335. {
  336. LLM_ARCH_BAICHUAN,
  337. {
  338. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  339. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  340. { LLM_TENSOR_OUTPUT, "output" },
  341. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  342. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  343. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  344. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  345. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  346. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  347. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  348. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  349. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  350. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  351. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  352. },
  353. },
  354. {
  355. LLM_ARCH_FALCON,
  356. {
  357. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  358. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  359. { LLM_TENSOR_OUTPUT, "output" },
  360. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  361. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  362. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  363. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  364. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  365. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  366. },
  367. },
  368. {
  369. LLM_ARCH_GPT2,
  370. {
  371. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  372. },
  373. },
  374. {
  375. LLM_ARCH_GPTJ,
  376. {
  377. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  378. },
  379. },
  380. {
  381. LLM_ARCH_GPTNEOX,
  382. {
  383. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  384. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  385. { LLM_TENSOR_OUTPUT, "output" },
  386. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  387. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  388. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  389. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  390. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  391. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  392. },
  393. },
  394. {
  395. LLM_ARCH_PERSIMMON,
  396. {
  397. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  398. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  399. { LLM_TENSOR_OUTPUT, "output"},
  400. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  401. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  402. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  403. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  404. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  405. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  406. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  407. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  408. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  409. },
  410. },
  411. {
  412. LLM_ARCH_MPT,
  413. {
  414. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  415. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  416. { LLM_TENSOR_OUTPUT, "output" },
  417. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  418. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  419. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  420. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  421. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  422. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  423. },
  424. },
  425. {
  426. LLM_ARCH_STARCODER,
  427. {
  428. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  429. { LLM_TENSOR_POS_EMBD, "position_embd" },
  430. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  431. { LLM_TENSOR_OUTPUT, "output" },
  432. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  433. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  434. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  435. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  436. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  437. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  438. },
  439. },
  440. {
  441. LLM_ARCH_REFACT,
  442. {
  443. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  444. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  445. { LLM_TENSOR_OUTPUT, "output" },
  446. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  447. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  448. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  449. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  450. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  451. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  452. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  453. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  454. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  455. },
  456. },
  457. {
  458. LLM_ARCH_BLOOM,
  459. {
  460. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  461. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  462. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  463. { LLM_TENSOR_OUTPUT, "output" },
  464. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  465. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  466. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  467. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  468. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  469. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  470. },
  471. },
  472. {
  473. LLM_ARCH_UNKNOWN,
  474. {
  475. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  476. },
  477. },
  478. };
  479. static llm_arch llm_arch_from_string(const std::string & name) {
  480. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  481. if (kv.second == name) {
  482. return kv.first;
  483. }
  484. }
  485. return LLM_ARCH_UNKNOWN;
  486. }
  487. // helper to handle gguf constants
  488. // usage:
  489. //
  490. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  491. //
  492. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  493. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  494. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  495. //
  496. struct LLM_TN {
  497. LLM_TN(llm_arch arch) : arch(arch) {}
  498. llm_arch arch;
  499. std::string operator()(llm_tensor tensor) const {
  500. return LLM_TENSOR_NAMES[arch].at(tensor);
  501. }
  502. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  503. return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix;
  504. }
  505. std::string operator()(llm_tensor tensor, int bid) const {
  506. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid);
  507. }
  508. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  509. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
  510. }
  511. };
  512. //
  513. // gguf helpers
  514. //
  515. #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
  516. do { \
  517. const std::string skey(key); \
  518. const int kid = gguf_find_key(ctx, skey.c_str()); \
  519. if (kid >= 0) { \
  520. enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
  521. if (ktype != (type)) { \
  522. throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \
  523. } \
  524. (dst) = func(ctx, kid); \
  525. } else if (req) { \
  526. throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \
  527. } \
  528. } while (0)
  529. //
  530. // ggml helpers
  531. //
  532. static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
  533. struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
  534. if (plan.work_size > 0) {
  535. buf.resize(plan.work_size);
  536. plan.work_data = buf.data();
  537. }
  538. ggml_graph_compute(graph, &plan);
  539. }
  540. //
  541. // llama helpers
  542. //
  543. #ifdef GGML_USE_CUBLAS
  544. # define llama_host_malloc(n) ggml_cuda_host_malloc(n)
  545. # define llama_host_free(data) ggml_cuda_host_free(data)
  546. #elif GGML_USE_METAL
  547. # define llama_host_malloc(n) ggml_metal_host_malloc(n)
  548. # define llama_host_free(data) ggml_metal_host_free(data)
  549. #elif GGML_USE_CPU_HBM
  550. # define llama_host_malloc(n) hbw_malloc(n)
  551. # define llama_host_free(data) if (data != NULL) hbw_free(data)
  552. #else
  553. # define llama_host_malloc(n) malloc(n)
  554. # define llama_host_free(data) free(data)
  555. #endif
  556. #if defined(_WIN32)
  557. static std::string llama_format_win_err(DWORD err) {
  558. LPSTR buf;
  559. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  560. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  561. if (!size) {
  562. return "FormatMessageA failed";
  563. }
  564. std::string ret(buf, size);
  565. LocalFree(buf);
  566. return ret;
  567. }
  568. #endif
  569. struct llama_buffer {
  570. void * data = NULL;
  571. size_t size = 0;
  572. // fallback to malloc / free
  573. // useful in cases where CUDA can try to allocate PINNED memory
  574. bool fallback = false;
  575. void resize(size_t n) {
  576. llama_host_free(data);
  577. data = llama_host_malloc(n);
  578. if (!data) {
  579. fallback = true;
  580. data = malloc(n);
  581. } else {
  582. fallback = false;
  583. }
  584. GGML_ASSERT(data);
  585. size = n;
  586. }
  587. ~llama_buffer() {
  588. if (data) {
  589. if (fallback) { // NOLINT
  590. free(data);
  591. } else {
  592. llama_host_free(data);
  593. }
  594. }
  595. data = NULL;
  596. }
  597. };
  598. struct llama_file {
  599. // use FILE * so we don't have to re-open the file to mmap
  600. FILE * fp;
  601. size_t size;
  602. llama_file(const char * fname, const char * mode) {
  603. fp = std::fopen(fname, mode);
  604. if (fp == NULL) {
  605. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  606. }
  607. seek(0, SEEK_END);
  608. size = tell();
  609. seek(0, SEEK_SET);
  610. }
  611. size_t tell() const {
  612. #ifdef _WIN32
  613. __int64 ret = _ftelli64(fp);
  614. #else
  615. long ret = std::ftell(fp);
  616. #endif
  617. GGML_ASSERT(ret != -1); // this really shouldn't fail
  618. return (size_t) ret;
  619. }
  620. void seek(size_t offset, int whence) const {
  621. #ifdef _WIN32
  622. int ret = _fseeki64(fp, (__int64) offset, whence);
  623. #else
  624. int ret = std::fseek(fp, (long) offset, whence);
  625. #endif
  626. GGML_ASSERT(ret == 0); // same
  627. }
  628. void read_raw(void * ptr, size_t len) const {
  629. if (len == 0) {
  630. return;
  631. }
  632. errno = 0;
  633. std::size_t ret = std::fread(ptr, len, 1, fp);
  634. if (ferror(fp)) {
  635. throw std::runtime_error(format("read error: %s", strerror(errno)));
  636. }
  637. if (ret != 1) {
  638. throw std::runtime_error(std::string("unexpectedly reached end of file"));
  639. }
  640. }
  641. uint32_t read_u32() const {
  642. uint32_t ret;
  643. read_raw(&ret, sizeof(ret));
  644. return ret;
  645. }
  646. void write_raw(const void * ptr, size_t len) const {
  647. if (len == 0) {
  648. return;
  649. }
  650. errno = 0;
  651. size_t ret = std::fwrite(ptr, len, 1, fp);
  652. if (ret != 1) {
  653. throw std::runtime_error(format("write error: %s", strerror(errno)));
  654. }
  655. }
  656. void write_u32(std::uint32_t val) const {
  657. write_raw(&val, sizeof(val));
  658. }
  659. ~llama_file() {
  660. if (fp) {
  661. std::fclose(fp);
  662. }
  663. }
  664. };
  665. struct llama_mmap {
  666. void * addr;
  667. size_t size;
  668. llama_mmap(const llama_mmap &) = delete;
  669. #ifdef _POSIX_MAPPED_FILES
  670. static constexpr bool SUPPORTED = true;
  671. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  672. size = file->size;
  673. int fd = fileno(file->fp);
  674. int flags = MAP_SHARED;
  675. // prefetch/readahead impairs performance on NUMA systems
  676. if (numa) { prefetch = 0; }
  677. #ifdef __linux__
  678. if (prefetch) { flags |= MAP_POPULATE; }
  679. #endif
  680. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  681. if (addr == MAP_FAILED) {
  682. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  683. }
  684. if (prefetch > 0) {
  685. // Advise the kernel to preload the mapped memory
  686. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  687. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  688. strerror(errno));
  689. }
  690. }
  691. if (numa) {
  692. // advise the kernel not to use readahead
  693. // (because the next page might not belong on the same node)
  694. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  695. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  696. strerror(errno));
  697. }
  698. }
  699. }
  700. ~llama_mmap() {
  701. munmap(addr, size);
  702. }
  703. #elif defined(_WIN32)
  704. static constexpr bool SUPPORTED = true;
  705. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  706. (void) numa;
  707. size = file->size;
  708. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  709. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  710. DWORD error = GetLastError();
  711. if (hMapping == NULL) {
  712. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  713. }
  714. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  715. error = GetLastError();
  716. CloseHandle(hMapping);
  717. if (addr == NULL) {
  718. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  719. }
  720. if (prefetch) {
  721. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  722. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  723. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  724. // may fail on pre-Windows 8 systems
  725. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  726. if (pPrefetchVirtualMemory) {
  727. // advise the kernel to preload the mapped memory
  728. WIN32_MEMORY_RANGE_ENTRY range;
  729. range.VirtualAddress = addr;
  730. range.NumberOfBytes = (SIZE_T)size;
  731. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  732. fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
  733. llama_format_win_err(GetLastError()).c_str());
  734. }
  735. }
  736. }
  737. }
  738. ~llama_mmap() {
  739. if (!UnmapViewOfFile(addr)) {
  740. fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
  741. llama_format_win_err(GetLastError()).c_str());
  742. }
  743. }
  744. #else
  745. static constexpr bool SUPPORTED = false;
  746. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  747. (void) file;
  748. (void) prefetch;
  749. (void) numa;
  750. throw std::runtime_error(std::string("mmap not supported"));
  751. }
  752. #endif
  753. };
  754. // Represents some region of memory being locked using mlock or VirtualLock;
  755. // will automatically unlock on destruction.
  756. struct llama_mlock {
  757. void * addr = NULL;
  758. size_t size = 0;
  759. bool failed_already = false;
  760. llama_mlock() {}
  761. llama_mlock(const llama_mlock &) = delete;
  762. ~llama_mlock() {
  763. if (size) {
  764. raw_unlock(addr, size);
  765. }
  766. }
  767. void init(void * ptr) {
  768. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  769. addr = ptr;
  770. }
  771. void grow_to(size_t target_size) {
  772. GGML_ASSERT(addr);
  773. if (failed_already) {
  774. return;
  775. }
  776. size_t granularity = lock_granularity();
  777. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  778. if (target_size > size) {
  779. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  780. size = target_size;
  781. } else {
  782. failed_already = true;
  783. }
  784. }
  785. }
  786. #ifdef _POSIX_MEMLOCK_RANGE
  787. static constexpr bool SUPPORTED = true;
  788. static size_t lock_granularity() {
  789. return (size_t) sysconf(_SC_PAGESIZE);
  790. }
  791. #ifdef __APPLE__
  792. #define MLOCK_SUGGESTION \
  793. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  794. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
  795. #else
  796. #define MLOCK_SUGGESTION \
  797. "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
  798. #endif
  799. bool raw_lock(const void * addr, size_t size) const {
  800. if (!mlock(addr, size)) {
  801. return true;
  802. }
  803. char* errmsg = std::strerror(errno);
  804. bool suggest = (errno == ENOMEM);
  805. // Check if the resource limit is fine after all
  806. struct rlimit lock_limit;
  807. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  808. suggest = false;
  809. }
  810. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  811. suggest = false;
  812. }
  813. fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  814. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  815. return false;
  816. }
  817. #undef MLOCK_SUGGESTION
  818. static void raw_unlock(void * addr, size_t size) {
  819. if (munlock(addr, size)) {
  820. fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
  821. }
  822. }
  823. #elif defined(_WIN32)
  824. static constexpr bool SUPPORTED = true;
  825. static size_t lock_granularity() {
  826. SYSTEM_INFO si;
  827. GetSystemInfo(&si);
  828. return (size_t) si.dwPageSize;
  829. }
  830. bool raw_lock(void * ptr, size_t len) const {
  831. for (int tries = 1; ; tries++) {
  832. if (VirtualLock(ptr, len)) {
  833. return true;
  834. }
  835. if (tries == 2) {
  836. fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  837. len, size, llama_format_win_err(GetLastError()).c_str());
  838. return false;
  839. }
  840. // It failed but this was only the first try; increase the working
  841. // set size and try again.
  842. SIZE_T min_ws_size, max_ws_size;
  843. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  844. fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
  845. llama_format_win_err(GetLastError()).c_str());
  846. return false;
  847. }
  848. // Per MSDN: "The maximum number of pages that a process can lock
  849. // is equal to the number of pages in its minimum working set minus
  850. // a small overhead."
  851. // Hopefully a megabyte is enough overhead:
  852. size_t increment = len + 1048576;
  853. // The minimum must be <= the maximum, so we need to increase both:
  854. min_ws_size += increment;
  855. max_ws_size += increment;
  856. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  857. fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
  858. llama_format_win_err(GetLastError()).c_str());
  859. return false;
  860. }
  861. }
  862. }
  863. static void raw_unlock(void * ptr, size_t len) {
  864. if (!VirtualUnlock(ptr, len)) {
  865. fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
  866. llama_format_win_err(GetLastError()).c_str());
  867. }
  868. }
  869. #else
  870. static constexpr bool SUPPORTED = false;
  871. static size_t lock_granularity() {
  872. return (size_t) 65536;
  873. }
  874. bool raw_lock(const void * addr, size_t len) const {
  875. fprintf(stderr, "warning: mlock not supported on this system\n");
  876. return false;
  877. }
  878. static void raw_unlock(const void * addr, size_t len) {}
  879. #endif
  880. };
  881. typedef void (*offload_func_t)(struct ggml_tensor * tensor);
  882. static void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
  883. (void) tensor;
  884. }
  885. static std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) {
  886. std::vector<char> result(8, 0);
  887. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  888. if (n_tokens < 0) {
  889. result.resize(-n_tokens);
  890. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  891. GGML_ASSERT(check == -n_tokens);
  892. } else {
  893. result.resize(n_tokens);
  894. }
  895. return std::string(result.data(), result.size());
  896. }
  897. //
  898. // globals
  899. //
  900. struct llama_state {
  901. // We save the log callback globally
  902. ggml_log_callback log_callback = llama_log_callback_default;
  903. void * log_callback_user_data = nullptr;
  904. };
  905. static llama_state g_state;
  906. // available llama models
  907. enum e_model {
  908. MODEL_UNKNOWN,
  909. MODEL_1B,
  910. MODEL_3B,
  911. MODEL_7B,
  912. MODEL_8B,
  913. MODEL_13B,
  914. MODEL_15B,
  915. MODEL_30B,
  916. MODEL_34B,
  917. MODEL_40B,
  918. MODEL_65B,
  919. MODEL_70B,
  920. };
  921. static const size_t kB = 1024;
  922. static const size_t MB = 1024*kB;
  923. static const size_t GB = 1024*MB;
  924. struct llama_hparams {
  925. bool vocab_only;
  926. uint32_t n_vocab;
  927. uint32_t n_ctx_train; // context size the model was trained on
  928. uint32_t n_embd;
  929. uint32_t n_head;
  930. uint32_t n_head_kv;
  931. uint32_t n_layer;
  932. uint32_t n_rot;
  933. uint32_t n_ff;
  934. float f_norm_eps;
  935. float f_norm_rms_eps;
  936. float rope_freq_base_train;
  937. float rope_freq_scale_train;
  938. float f_clamp_kqv;
  939. float f_max_alibi_bias;
  940. bool operator!=(const llama_hparams & other) const {
  941. if (this->vocab_only != other.vocab_only) return true;
  942. if (this->n_vocab != other.n_vocab) return true;
  943. if (this->n_ctx_train != other.n_ctx_train) return true;
  944. if (this->n_embd != other.n_embd) return true;
  945. if (this->n_head != other.n_head) return true;
  946. if (this->n_head_kv != other.n_head_kv) return true;
  947. if (this->n_layer != other.n_layer) return true;
  948. if (this->n_rot != other.n_rot) return true;
  949. if (this->n_ff != other.n_ff) return true;
  950. const float EPSILON = 1e-9;
  951. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  952. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  953. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  954. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  955. return false;
  956. }
  957. uint32_t n_gqa() const {
  958. return n_head/n_head_kv;
  959. }
  960. uint32_t n_embd_head() const {
  961. return n_embd/n_head;
  962. }
  963. uint32_t n_embd_gqa() const {
  964. return n_embd/n_gqa();
  965. }
  966. };
  967. struct llama_cparams {
  968. uint32_t n_ctx; // context size used during inference
  969. uint32_t n_batch;
  970. uint32_t n_threads; // number of threads to use for generation
  971. uint32_t n_threads_batch; // number of threads to use for batch processing
  972. float rope_freq_base;
  973. float rope_freq_scale;
  974. bool mul_mat_q;
  975. };
  976. struct llama_layer {
  977. // normalization
  978. struct ggml_tensor * attn_norm;
  979. struct ggml_tensor * attn_norm_b;
  980. struct ggml_tensor * attn_norm_2;
  981. struct ggml_tensor * attn_norm_2_b;
  982. struct ggml_tensor * attn_q_norm;
  983. struct ggml_tensor * attn_q_norm_b;
  984. struct ggml_tensor * attn_k_norm;
  985. struct ggml_tensor * attn_k_norm_b;
  986. // attention
  987. struct ggml_tensor * wq;
  988. struct ggml_tensor * wk;
  989. struct ggml_tensor * wv;
  990. struct ggml_tensor * wo;
  991. struct ggml_tensor * wqkv;
  992. // attention bias
  993. struct ggml_tensor * bo;
  994. struct ggml_tensor * bqkv;
  995. // normalization
  996. struct ggml_tensor * ffn_norm;
  997. struct ggml_tensor * ffn_norm_b;
  998. // ff
  999. struct ggml_tensor * w1; // ffn_gate
  1000. struct ggml_tensor * w2; // ffn_down
  1001. struct ggml_tensor * w3; // ffn_up
  1002. // ff bias
  1003. struct ggml_tensor * b2; // ffn_down
  1004. struct ggml_tensor * b3; // ffn_up
  1005. };
  1006. struct llama_kv_cell {
  1007. llama_pos pos = -1;
  1008. llama_pos delta = 0;
  1009. std::set<llama_seq_id> seq_id;
  1010. bool has_seq_id(const llama_seq_id & id) const {
  1011. return seq_id.find(id) != seq_id.end();
  1012. }
  1013. };
  1014. // ring-buffer of cached KV data
  1015. struct llama_kv_cache {
  1016. bool has_shift = false;
  1017. // Note: The value of head isn't only used to optimize searching
  1018. // for a free KV slot. llama_decode_internal also uses it, so it
  1019. // cannot be freely changed after a slot has been allocated.
  1020. uint32_t head = 0;
  1021. uint32_t size = 0;
  1022. // computed before each graph build
  1023. uint32_t n = 0;
  1024. std::vector<llama_kv_cell> cells;
  1025. struct ggml_tensor * k = NULL;
  1026. struct ggml_tensor * v = NULL;
  1027. struct ggml_context * ctx = NULL;
  1028. llama_buffer buf;
  1029. ~llama_kv_cache() {
  1030. if (ctx) {
  1031. ggml_free(ctx);
  1032. }
  1033. #ifdef GGML_USE_CUBLAS
  1034. ggml_cuda_free_data(k);
  1035. ggml_cuda_free_data(v);
  1036. #endif // GGML_USE_CUBLAS
  1037. }
  1038. };
  1039. struct llama_vocab {
  1040. using id = int32_t;
  1041. using token = std::string;
  1042. using ttype = llama_token_type;
  1043. struct token_data {
  1044. token text;
  1045. float score;
  1046. ttype type;
  1047. };
  1048. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1049. std::unordered_map<token, id> token_to_id;
  1050. std::vector<token_data> id_to_token;
  1051. std::unordered_map<token, id> special_tokens_cache;
  1052. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1053. // default LLaMA special tokens
  1054. id special_bos_id = 1;
  1055. id special_eos_id = 2;
  1056. id special_unk_id = 0;
  1057. id special_sep_id = -1;
  1058. id special_pad_id = -1;
  1059. id linefeed_id = 13;
  1060. id special_prefix_id = 32007;
  1061. id special_middle_id = 32009;
  1062. id special_suffix_id = 32008;
  1063. id special_eot_id = 32010;
  1064. int find_bpe_rank(std::string token_left, std::string token_right) const {
  1065. replace_all(token_left, " ", "\u0120");
  1066. replace_all(token_left, "\n", "\u010A");
  1067. replace_all(token_right, " ", "\u0120");
  1068. replace_all(token_right, "\n", "\u010A");
  1069. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1070. if (it == bpe_ranks.end()) {
  1071. return -1;
  1072. }
  1073. return it->second;
  1074. }
  1075. };
  1076. struct llama_model {
  1077. e_model type = MODEL_UNKNOWN;
  1078. llm_arch arch = LLM_ARCH_UNKNOWN;
  1079. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1080. std::string name = "n/a";
  1081. llama_hparams hparams = {};
  1082. llama_vocab vocab;
  1083. struct ggml_tensor * tok_embeddings;
  1084. struct ggml_tensor * pos_embeddings;
  1085. struct ggml_tensor * tok_norm;
  1086. struct ggml_tensor * tok_norm_b;
  1087. struct ggml_tensor * output_norm;
  1088. struct ggml_tensor * output_norm_b;
  1089. struct ggml_tensor * output;
  1090. std::vector<llama_layer> layers;
  1091. int n_gpu_layers;
  1092. // context
  1093. struct ggml_context * ctx = NULL;
  1094. // the model memory buffer
  1095. llama_buffer buf;
  1096. // model memory mapped file
  1097. std::unique_ptr<llama_mmap> mapping;
  1098. // objects representing data potentially being locked in memory
  1099. llama_mlock mlock_buf;
  1100. llama_mlock mlock_mmap;
  1101. // for quantize-stats only
  1102. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1103. int64_t t_load_us = 0;
  1104. int64_t t_start_us = 0;
  1105. ~llama_model() {
  1106. if (ctx) {
  1107. ggml_free(ctx);
  1108. }
  1109. #ifdef GGML_USE_CUBLAS
  1110. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  1111. ggml_cuda_free_data(tensors_by_name[i].second);
  1112. }
  1113. ggml_cuda_free_scratch();
  1114. #elif defined(GGML_USE_CLBLAST)
  1115. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  1116. ggml_cl_free_data(tensors_by_name[i].second);
  1117. }
  1118. #endif
  1119. }
  1120. };
  1121. struct llama_context {
  1122. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1123. ~llama_context() {
  1124. #ifdef GGML_USE_METAL
  1125. if (ctx_metal) {
  1126. ggml_metal_free(ctx_metal);
  1127. }
  1128. #endif
  1129. if (alloc) {
  1130. ggml_allocr_free(alloc);
  1131. }
  1132. }
  1133. llama_cparams cparams;
  1134. const llama_model & model;
  1135. // key + value cache for the self attention
  1136. struct llama_kv_cache kv_self;
  1137. std::mt19937 rng;
  1138. bool has_evaluated_once = false;
  1139. int64_t t_start_us;
  1140. int64_t t_load_us;
  1141. int64_t t_sample_us = 0;
  1142. int64_t t_p_eval_us = 0;
  1143. int64_t t_eval_us = 0;
  1144. int32_t n_sample = 0; // number of tokens sampled
  1145. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1146. int32_t n_eval = 0; // number of eval calls
  1147. // decode output (2-dimensional array: [n_tokens][n_vocab])
  1148. std::vector<float> logits;
  1149. bool logits_all = false;
  1150. // input embedding (1-dimensional array: [n_embd])
  1151. std::vector<float> embedding;
  1152. // reusable buffer for `struct ggml_graph_plan.work_data`
  1153. std::vector<uint8_t> work_buffer;
  1154. // memory buffers used to evaluate the model
  1155. llama_buffer buf_compute;
  1156. llama_buffer buf_alloc;
  1157. ggml_allocr * alloc = NULL;
  1158. #ifdef GGML_USE_METAL
  1159. ggml_metal_context * ctx_metal = NULL;
  1160. #endif
  1161. #ifdef GGML_USE_MPI
  1162. ggml_mpi_context * ctx_mpi = NULL;
  1163. #endif
  1164. };
  1165. //
  1166. // kv cache helpers
  1167. //
  1168. static bool llama_kv_cache_init(
  1169. const struct llama_hparams & hparams,
  1170. struct llama_kv_cache & cache,
  1171. ggml_type wtype,
  1172. uint32_t n_ctx,
  1173. int n_gpu_layers) {
  1174. const uint32_t n_embd = hparams.n_embd_gqa();
  1175. const uint32_t n_layer = hparams.n_layer;
  1176. const int64_t n_mem = n_layer*n_ctx;
  1177. const int64_t n_elements = n_embd*n_mem;
  1178. cache.has_shift = false;
  1179. cache.head = 0;
  1180. cache.size = n_ctx;
  1181. cache.cells.clear();
  1182. cache.cells.resize(n_ctx);
  1183. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*ggml_tensor_overhead());
  1184. memset(cache.buf.data, 0, cache.buf.size);
  1185. struct ggml_init_params params;
  1186. params.mem_size = cache.buf.size;
  1187. params.mem_buffer = cache.buf.data;
  1188. params.no_alloc = false;
  1189. cache.ctx = ggml_init(params);
  1190. if (!cache.ctx) {
  1191. LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
  1192. return false;
  1193. }
  1194. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1195. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1196. ggml_set_name(cache.k, "cache_k");
  1197. ggml_set_name(cache.v, "cache_v");
  1198. (void) n_gpu_layers;
  1199. #ifdef GGML_USE_CUBLAS
  1200. size_t vram_kv_cache = 0;
  1201. if (n_gpu_layers > (int)n_layer + 1) {
  1202. ggml_cuda_assign_buffers_no_scratch(cache.v);
  1203. LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
  1204. vram_kv_cache += ggml_nbytes(cache.v);
  1205. }
  1206. if (n_gpu_layers > (int)n_layer + 2) {
  1207. ggml_cuda_assign_buffers_no_scratch(cache.k);
  1208. LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
  1209. vram_kv_cache += ggml_nbytes(cache.k);
  1210. }
  1211. if (vram_kv_cache > 0) {
  1212. LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0);
  1213. }
  1214. #endif // GGML_USE_CUBLAS
  1215. return true;
  1216. }
  1217. // find an empty slot of size "n_tokens" in the cache
  1218. // updates the cache head
  1219. // Note: On success, it's important that cache.head points
  1220. // to the first cell of the slot.
  1221. static bool llama_kv_cache_find_slot(
  1222. struct llama_kv_cache & cache,
  1223. const struct llama_batch & batch) {
  1224. const uint32_t n_ctx = cache.size;
  1225. const uint32_t n_tokens = batch.n_tokens;
  1226. if (n_tokens > n_ctx) {
  1227. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  1228. return false;
  1229. }
  1230. uint32_t n_tested = 0;
  1231. while (true) {
  1232. if (cache.head + n_tokens > n_ctx) {
  1233. n_tested += n_ctx - cache.head;
  1234. cache.head = 0;
  1235. continue;
  1236. }
  1237. bool found = true;
  1238. for (uint32_t i = 0; i < n_tokens; i++) {
  1239. if (cache.cells[cache.head + i].pos >= 0) {
  1240. found = false;
  1241. cache.head += i + 1;
  1242. n_tested += i + 1;
  1243. break;
  1244. }
  1245. }
  1246. if (found) {
  1247. break;
  1248. }
  1249. if (n_tested >= n_ctx) {
  1250. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  1251. return false;
  1252. }
  1253. }
  1254. for (uint32_t i = 0; i < n_tokens; i++) {
  1255. cache.cells[cache.head + i].pos = batch.pos[i];
  1256. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  1257. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  1258. }
  1259. }
  1260. return true;
  1261. }
  1262. // find how many cells are currently in use
  1263. static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  1264. for (uint32_t i = cache.size - 1; i > 0; --i) {
  1265. if (cache.cells[i].pos >= 0 && !cache.cells[i].seq_id.empty()) {
  1266. return i + 1;
  1267. }
  1268. }
  1269. return 0;
  1270. }
  1271. static void llama_kv_cache_tokens_rm(struct llama_kv_cache & cache, int32_t c0, int32_t c1) {
  1272. if (c0 < 0) c0 = 0;
  1273. if (c1 < 0) c1 = cache.size;
  1274. for (int32_t i = c0; i < c1; ++i) {
  1275. cache.cells[i].pos = -1;
  1276. cache.cells[i].seq_id.clear();
  1277. }
  1278. // Searching for a free slot can start here since we know it will be empty.
  1279. cache.head = uint32_t(c0);
  1280. }
  1281. static void llama_kv_cache_seq_rm(
  1282. struct llama_kv_cache & cache,
  1283. llama_seq_id seq_id,
  1284. llama_pos p0,
  1285. llama_pos p1) {
  1286. uint32_t new_head = cache.size;
  1287. if (p0 < 0) p0 = 0;
  1288. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1289. for (uint32_t i = 0; i < cache.size; ++i) {
  1290. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1291. cache.cells[i].seq_id.erase(seq_id);
  1292. if (cache.cells[i].seq_id.empty()) {
  1293. cache.cells[i].pos = -1;
  1294. if (new_head == cache.size) new_head = i;
  1295. }
  1296. }
  1297. }
  1298. // If we freed up a slot, set head to it so searching can start there.
  1299. if (new_head != cache.size) cache.head = new_head;
  1300. }
  1301. static void llama_kv_cache_seq_cp(
  1302. struct llama_kv_cache & cache,
  1303. llama_seq_id seq_id_src,
  1304. llama_seq_id seq_id_dst,
  1305. llama_pos p0,
  1306. llama_pos p1) {
  1307. if (p0 < 0) p0 = 0;
  1308. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1309. cache.head = 0;
  1310. for (uint32_t i = 0; i < cache.size; ++i) {
  1311. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1312. cache.cells[i].seq_id.insert(seq_id_dst);
  1313. }
  1314. }
  1315. }
  1316. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  1317. uint32_t new_head = cache.size;
  1318. for (uint32_t i = 0; i < cache.size; ++i) {
  1319. if (!cache.cells[i].has_seq_id(seq_id)) {
  1320. cache.cells[i].pos = -1;
  1321. cache.cells[i].seq_id.clear();
  1322. if (new_head == cache.size) new_head = i;
  1323. } else {
  1324. cache.cells[i].seq_id.clear();
  1325. cache.cells[i].seq_id.insert(seq_id);
  1326. }
  1327. }
  1328. // If we freed up a slot, set head to it so searching can start there.
  1329. if (new_head != cache.size) cache.head = new_head;
  1330. }
  1331. static void llama_kv_cache_seq_shift(
  1332. struct llama_kv_cache & cache,
  1333. llama_seq_id seq_id,
  1334. llama_pos p0,
  1335. llama_pos p1,
  1336. llama_pos delta) {
  1337. uint32_t new_head = cache.size;
  1338. if (p0 < 0) p0 = 0;
  1339. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1340. for (uint32_t i = 0; i < cache.size; ++i) {
  1341. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1342. cache.cells[i].pos += delta;
  1343. if (cache.cells[i].pos < 0) {
  1344. cache.cells[i].pos = -1;
  1345. cache.cells[i].seq_id.clear();
  1346. if (new_head == cache.size) new_head = i;
  1347. } else {
  1348. cache.has_shift = true;
  1349. cache.cells[i].delta = delta;
  1350. }
  1351. }
  1352. }
  1353. // If we freed up a slot, set head to it so searching can start there.
  1354. // Otherwise we just start the next search from the beginning.
  1355. cache.head = new_head != cache.size ? new_head : 0;
  1356. }
  1357. //
  1358. // model loading and saving
  1359. //
  1360. enum llama_fver {
  1361. GGUF_FILE_VERSION_V1 = 1,
  1362. GGUF_FILE_VERSION_V2 = 2,
  1363. };
  1364. static const char * llama_file_version_name(llama_fver version) {
  1365. switch (version) {
  1366. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  1367. case GGUF_FILE_VERSION_V2: return "GGUF V2 (latest)";
  1368. }
  1369. return "unknown";
  1370. }
  1371. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  1372. char buf[256];
  1373. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  1374. for (size_t i = 1; i < ne.size(); i++) {
  1375. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  1376. }
  1377. return buf;
  1378. }
  1379. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  1380. char buf[256];
  1381. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  1382. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  1383. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  1384. }
  1385. return buf;
  1386. }
  1387. struct llama_model_loader {
  1388. int n_kv = 0;
  1389. int n_tensors = 0;
  1390. int n_created = 0;
  1391. int64_t n_elements = 0;
  1392. size_t n_bytes = 0;
  1393. bool use_mmap = false;
  1394. llama_file file;
  1395. llama_ftype ftype;
  1396. llama_fver fver;
  1397. std::unique_ptr<llama_mmap> mapping;
  1398. struct gguf_context * ctx_gguf = NULL;
  1399. struct ggml_context * ctx_meta = NULL;
  1400. llama_model_loader(const std::string & fname, bool use_mmap) : file(fname.c_str(), "rb") {
  1401. struct gguf_init_params params = {
  1402. /*.no_alloc = */ true,
  1403. /*.ctx = */ &ctx_meta,
  1404. };
  1405. ctx_gguf = gguf_init_from_file(fname.c_str(), params);
  1406. if (!ctx_gguf) {
  1407. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  1408. }
  1409. n_kv = gguf_get_n_kv(ctx_gguf);
  1410. n_tensors = gguf_get_n_tensors(ctx_gguf);
  1411. fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
  1412. for (int i = 0; i < n_tensors; i++) {
  1413. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1414. struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
  1415. n_elements += ggml_nelements(t);
  1416. n_bytes += ggml_nbytes(t);
  1417. }
  1418. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  1419. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  1420. // determine file type based on the number of tensors for each quantization and print meta data
  1421. // TODO: make optional
  1422. {
  1423. std::map<enum ggml_type, uint32_t> n_type;
  1424. uint32_t n_type_max = 0;
  1425. enum ggml_type type_max = GGML_TYPE_F32;
  1426. for (int i = 0; i < n_tensors; i++) {
  1427. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1428. struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, name);
  1429. n_type[meta->type]++;
  1430. if (n_type_max < n_type[meta->type]) {
  1431. n_type_max = n_type[meta->type];
  1432. type_max = meta->type;
  1433. }
  1434. LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, name, ggml_type_name(meta->type), llama_format_tensor_shape(meta).c_str());
  1435. }
  1436. switch (type_max) {
  1437. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  1438. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  1439. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  1440. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  1441. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  1442. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  1443. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  1444. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  1445. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  1446. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  1447. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  1448. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  1449. default:
  1450. {
  1451. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  1452. ftype = LLAMA_FTYPE_ALL_F32;
  1453. } break;
  1454. }
  1455. // this is a way to mark that we have "guessed" the file type
  1456. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  1457. {
  1458. const int kid = gguf_find_key(ctx_gguf, "general.file_type");
  1459. if (kid >= 0) {
  1460. ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
  1461. }
  1462. }
  1463. for (int i = 0; i < n_kv; i++) {
  1464. const char * name = gguf_get_key(ctx_gguf, i);
  1465. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1466. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-8s\n", __func__, i, name, gguf_type_name(type));
  1467. }
  1468. // print type counts
  1469. for (auto & kv : n_type) {
  1470. if (kv.second == 0) {
  1471. continue;
  1472. }
  1473. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  1474. }
  1475. }
  1476. if (!llama_mmap::SUPPORTED) {
  1477. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  1478. use_mmap = false;
  1479. }
  1480. this->use_mmap = use_mmap;
  1481. }
  1482. ~llama_model_loader() {
  1483. if (ctx_gguf) {
  1484. gguf_free(ctx_gguf);
  1485. }
  1486. if (ctx_meta) {
  1487. ggml_free(ctx_meta);
  1488. }
  1489. }
  1490. std::string get_arch_name() const {
  1491. const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
  1492. std::string arch_name;
  1493. GGUF_GET_KEY(ctx_gguf, arch_name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_ARCHITECTURE));
  1494. return arch_name;
  1495. }
  1496. enum llm_arch get_arch() const {
  1497. const std::string arch_name = get_arch_name();
  1498. return llm_arch_from_string(arch_name);
  1499. }
  1500. const char * get_tensor_name(int i) const {
  1501. return gguf_get_tensor_name(ctx_gguf, i);
  1502. }
  1503. struct ggml_tensor * get_tensor_meta(int i) const {
  1504. return ggml_get_tensor(ctx_meta, get_tensor_name(i));
  1505. }
  1506. void calc_sizes(size_t & ctx_size_p, size_t & mmapped_size_p) const {
  1507. ctx_size_p = 0;
  1508. mmapped_size_p = 0;
  1509. for (int i = 0; i < n_tensors; i++) {
  1510. struct ggml_tensor * meta = get_tensor_meta(i);
  1511. ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  1512. (use_mmap ? mmapped_size_p : ctx_size_p) += ggml_nbytes_pad(meta);
  1513. }
  1514. }
  1515. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend_type backend) {
  1516. if (backend != GGML_BACKEND_CPU) {
  1517. ggml_set_no_alloc(ctx, true);
  1518. }
  1519. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
  1520. tensor->backend = backend; // TODO: ggml_set_backend
  1521. ggml_set_name(tensor, ggml_get_name(meta));
  1522. if (backend != GGML_BACKEND_CPU) {
  1523. ggml_set_no_alloc(ctx, use_mmap);
  1524. }
  1525. n_created++;
  1526. return tensor;
  1527. }
  1528. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, ggml_backend_type backend) {
  1529. struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
  1530. if (cur == NULL) {
  1531. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  1532. }
  1533. {
  1534. bool is_ok = true;
  1535. for (size_t i = 0; i < ne.size(); ++i) {
  1536. if (ne[i] != cur->ne[i]) {
  1537. is_ok = false;
  1538. break;
  1539. }
  1540. }
  1541. if (!is_ok) {
  1542. throw std::runtime_error(
  1543. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  1544. __func__, name.c_str(),
  1545. llama_format_tensor_shape(ne).c_str(),
  1546. llama_format_tensor_shape(cur).c_str()));
  1547. }
  1548. }
  1549. return create_tensor_for(ctx, cur, backend);
  1550. }
  1551. void done_getting_tensors() const {
  1552. if (n_created != n_tensors) {
  1553. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  1554. }
  1555. }
  1556. size_t file_offset(const char * name) const {
  1557. const int idx = gguf_find_tensor(ctx_gguf, name);
  1558. if (idx < 0) {
  1559. throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
  1560. }
  1561. return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
  1562. }
  1563. void load_data_for(struct ggml_tensor * cur) const {
  1564. const size_t offs = file_offset(ggml_get_name(cur));
  1565. if (use_mmap) {
  1566. cur->data = (uint8_t *) mapping->addr + offs;
  1567. } else {
  1568. file.seek(offs, SEEK_SET);
  1569. file.read_raw(cur->data, ggml_nbytes(cur));
  1570. }
  1571. }
  1572. void load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  1573. size_t size_data = 0;
  1574. size_t size_lock = 0;
  1575. size_t size_pref = 0; // prefetch
  1576. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1577. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1578. size_data += ggml_nbytes(cur);
  1579. if (cur->backend == GGML_BACKEND_CPU) {
  1580. size_pref += ggml_nbytes(cur);
  1581. }
  1582. }
  1583. if (use_mmap) {
  1584. mapping.reset(new llama_mmap(&file, size_pref, ggml_is_numa()));
  1585. if (lmlock) {
  1586. lmlock->init(mapping->addr);
  1587. }
  1588. }
  1589. size_t done_size = 0;
  1590. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1591. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1592. GGML_ASSERT(cur); // unused tensors should have been caught by load_data already
  1593. if (progress_callback) {
  1594. progress_callback((float) done_size / size_data, progress_callback_user_data);
  1595. }
  1596. // allocate temp buffer if not using mmap
  1597. if (!use_mmap && cur->data == NULL) {
  1598. GGML_ASSERT(cur->backend != GGML_BACKEND_CPU);
  1599. #ifdef GGML_USE_CPU_HBM
  1600. cur->data = (uint8_t*)hbw_malloc(ggml_nbytes(cur));
  1601. #else
  1602. cur->data = (uint8_t*)malloc(ggml_nbytes(cur));
  1603. #endif
  1604. }
  1605. load_data_for(cur);
  1606. switch (cur->backend) {
  1607. case GGML_BACKEND_CPU:
  1608. if (use_mmap && lmlock) {
  1609. size_lock += ggml_nbytes(cur);
  1610. lmlock->grow_to(size_lock);
  1611. }
  1612. break;
  1613. #ifdef GGML_USE_CUBLAS
  1614. case GGML_BACKEND_GPU:
  1615. case GGML_BACKEND_GPU_SPLIT:
  1616. // old code:
  1617. //ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
  1618. // TODO: test if this works !!
  1619. ggml_cuda_transform_tensor(cur->data, cur);
  1620. if (!use_mmap) {
  1621. free(cur->data);
  1622. }
  1623. break;
  1624. #elif defined(GGML_USE_CLBLAST)
  1625. case GGML_BACKEND_GPU:
  1626. ggml_cl_transform_tensor(cur->data, cur);
  1627. if (!use_mmap) {
  1628. free(cur->data);
  1629. }
  1630. break;
  1631. #endif
  1632. default:
  1633. continue;
  1634. }
  1635. done_size += ggml_nbytes(cur);
  1636. }
  1637. }
  1638. };
  1639. //
  1640. // load LLaMA models
  1641. //
  1642. static std::string llama_model_arch_name(llm_arch arch) {
  1643. auto it = LLM_ARCH_NAMES.find(arch);
  1644. if (it == LLM_ARCH_NAMES.end()) {
  1645. return "unknown";
  1646. }
  1647. return it->second;
  1648. }
  1649. static std::string llama_model_ftype_name(llama_ftype ftype) {
  1650. if (ftype & LLAMA_FTYPE_GUESSED) {
  1651. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  1652. }
  1653. switch (ftype) {
  1654. case LLAMA_FTYPE_ALL_F32: return "all F32";
  1655. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  1656. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  1657. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  1658. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  1659. return "mostly Q4_1, some F16";
  1660. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  1661. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  1662. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  1663. // K-quants
  1664. case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
  1665. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
  1666. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
  1667. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
  1668. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
  1669. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
  1670. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
  1671. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
  1672. case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
  1673. default: return "unknown, may not work";
  1674. }
  1675. }
  1676. static const char * llama_model_type_name(e_model type) {
  1677. switch (type) {
  1678. case MODEL_1B: return "1B";
  1679. case MODEL_3B: return "3B";
  1680. case MODEL_7B: return "7B";
  1681. case MODEL_8B: return "8B";
  1682. case MODEL_13B: return "13B";
  1683. case MODEL_15B: return "15B";
  1684. case MODEL_30B: return "30B";
  1685. case MODEL_34B: return "34B";
  1686. case MODEL_40B: return "40B";
  1687. case MODEL_65B: return "65B";
  1688. case MODEL_70B: return "70B";
  1689. default: return "?B";
  1690. }
  1691. }
  1692. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  1693. model.arch = ml.get_arch();
  1694. if (model.arch == LLM_ARCH_UNKNOWN) {
  1695. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  1696. }
  1697. }
  1698. static void llm_load_hparams(
  1699. llama_model_loader & ml,
  1700. llama_model & model) {
  1701. struct gguf_context * ctx = ml.ctx_gguf;
  1702. const auto kv = LLM_KV(model.arch);
  1703. auto & hparams = model.hparams;
  1704. // get general kv
  1705. GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
  1706. // get hparams kv
  1707. GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST));
  1708. GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH));
  1709. GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
  1710. GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
  1711. GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
  1712. GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
  1713. // n_head_kv is optional, default to n_head
  1714. hparams.n_head_kv = hparams.n_head;
  1715. GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
  1716. // rope_freq_base (optional)
  1717. hparams.rope_freq_base_train = 10000.0f;
  1718. GGUF_GET_KEY(ctx, hparams.rope_freq_base_train, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
  1719. // rope_freq_scale (inverse of the kv) is optional
  1720. float ropescale = 1.0f;
  1721. GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
  1722. hparams.rope_freq_scale_train = 1.0f/ropescale;
  1723. // sanity check for n_rot (optional)
  1724. {
  1725. hparams.n_rot = hparams.n_embd / hparams.n_head;
  1726. GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
  1727. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  1728. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  1729. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  1730. }
  1731. }
  1732. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  1733. // gpt-j n_rot = rotary_dim
  1734. }
  1735. // arch-specific KVs
  1736. switch (model.arch) {
  1737. case LLM_ARCH_LLAMA:
  1738. {
  1739. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1740. switch (hparams.n_layer) {
  1741. case 26: model.type = e_model::MODEL_3B; break;
  1742. case 32: model.type = e_model::MODEL_7B; break;
  1743. case 40: model.type = e_model::MODEL_13B; break;
  1744. case 48: model.type = e_model::MODEL_34B; break;
  1745. case 60: model.type = e_model::MODEL_30B; break;
  1746. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  1747. default: model.type = e_model::MODEL_UNKNOWN;
  1748. }
  1749. } break;
  1750. case LLM_ARCH_FALCON:
  1751. {
  1752. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1753. switch (hparams.n_layer) {
  1754. case 32: model.type = e_model::MODEL_7B; break;
  1755. case 60: model.type = e_model::MODEL_40B; break;
  1756. default: model.type = e_model::MODEL_UNKNOWN;
  1757. }
  1758. } break;
  1759. case LLM_ARCH_BAICHUAN:
  1760. {
  1761. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1762. switch (hparams.n_layer) {
  1763. case 32: model.type = e_model::MODEL_7B; break;
  1764. case 40: model.type = e_model::MODEL_13B; break;
  1765. default: model.type = e_model::MODEL_UNKNOWN;
  1766. }
  1767. } break;
  1768. case LLM_ARCH_STARCODER:
  1769. {
  1770. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1771. switch (hparams.n_layer) {
  1772. case 24: model.type = e_model::MODEL_1B; break;
  1773. case 36: model.type = e_model::MODEL_3B; break;
  1774. case 42: model.type = e_model::MODEL_7B; break;
  1775. case 40: model.type = e_model::MODEL_15B; break;
  1776. default: model.type = e_model::MODEL_UNKNOWN;
  1777. }
  1778. } break;
  1779. case LLM_ARCH_PERSIMMON:
  1780. {
  1781. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1782. switch (hparams.n_layer) {
  1783. case 36: model.type = e_model::MODEL_8B; break;
  1784. default: model.type = e_model::MODEL_UNKNOWN;
  1785. }
  1786. } break;
  1787. case LLM_ARCH_REFACT:
  1788. {
  1789. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1790. switch (hparams.n_layer) {
  1791. case 32: model.type = e_model::MODEL_1B; break;
  1792. default: model.type = e_model::MODEL_UNKNOWN;
  1793. }
  1794. } break;
  1795. case LLM_ARCH_BLOOM:
  1796. {
  1797. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1798. switch (hparams.n_layer) {
  1799. case 24: model.type = e_model::MODEL_1B; break;
  1800. case 30:
  1801. switch (hparams.n_embd) {
  1802. case 2560: model.type = e_model::MODEL_3B; break;
  1803. case 4096: model.type = e_model::MODEL_7B; break;
  1804. } break;
  1805. }
  1806. } break;
  1807. case LLM_ARCH_MPT:
  1808. {
  1809. hparams.f_clamp_kqv = 0.0f;
  1810. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1811. GGUF_GET_KEY(ctx, hparams.f_clamp_kqv, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_CLAMP_KQV));
  1812. GGUF_GET_KEY(ctx, hparams.f_max_alibi_bias, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_MAX_ALIBI_BIAS));
  1813. switch (hparams.n_layer) {
  1814. case 32: model.type = e_model::MODEL_7B; break;
  1815. case 48: model.type = e_model::MODEL_30B; break;
  1816. default: model.type = e_model::MODEL_UNKNOWN;
  1817. }
  1818. } break;
  1819. default: (void)0;
  1820. }
  1821. model.ftype = ml.ftype;
  1822. }
  1823. // TODO: This should probably be in llama.h
  1824. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false);
  1825. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  1826. static void llm_load_vocab(
  1827. llama_model_loader & ml,
  1828. llama_model & model) {
  1829. auto & vocab = model.vocab;
  1830. struct gguf_context * ctx = ml.ctx_gguf;
  1831. const auto kv = LLM_KV(model.arch);
  1832. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  1833. if (token_idx == -1) {
  1834. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  1835. }
  1836. const float * scores = nullptr;
  1837. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  1838. if (score_idx != -1) {
  1839. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  1840. }
  1841. const int * toktypes = nullptr;
  1842. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  1843. if (toktype_idx != -1) {
  1844. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  1845. }
  1846. // determine vocab type
  1847. {
  1848. std::string tokenizer_name;
  1849. GGUF_GET_KEY(ctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
  1850. if (tokenizer_name == "llama") {
  1851. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1852. // default special tokens
  1853. vocab.special_bos_id = 1;
  1854. vocab.special_eos_id = 2;
  1855. vocab.special_unk_id = 0;
  1856. vocab.special_sep_id = -1;
  1857. vocab.special_pad_id = -1;
  1858. } else if (tokenizer_name == "gpt2") {
  1859. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  1860. // read bpe merges and populate bpe ranks
  1861. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  1862. if (merges_keyidx == -1) {
  1863. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  1864. }
  1865. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  1866. for (int i = 0; i < n_merges; i++) {
  1867. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  1868. GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
  1869. std::string first;
  1870. std::string second;
  1871. const size_t pos = word.find(' ', 1);
  1872. if (pos != std::string::npos) {
  1873. first = word.substr(0, pos);
  1874. second = word.substr(pos + 1);
  1875. }
  1876. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  1877. }
  1878. // default special tokens
  1879. vocab.special_bos_id = 11;
  1880. vocab.special_eos_id = 11;
  1881. vocab.special_unk_id = -1;
  1882. vocab.special_sep_id = -1;
  1883. vocab.special_pad_id = -1;
  1884. } else {
  1885. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  1886. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  1887. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1888. }
  1889. }
  1890. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  1891. vocab.id_to_token.resize(n_vocab);
  1892. for (uint32_t i = 0; i < n_vocab; i++) {
  1893. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  1894. GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
  1895. vocab.token_to_id[word] = i;
  1896. auto & token_data = vocab.id_to_token[i];
  1897. token_data.text = std::move(word);
  1898. token_data.score = scores ? scores[i] : 0.0f;
  1899. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  1900. }
  1901. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  1902. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  1903. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  1904. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  1905. } else {
  1906. vocab.linefeed_id = llama_tokenize_internal(vocab, "\u010A", false)[0];
  1907. }
  1908. // special tokens
  1909. GGUF_GET_KEY(ctx, vocab.special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
  1910. GGUF_GET_KEY(ctx, vocab.special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
  1911. GGUF_GET_KEY(ctx, vocab.special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
  1912. GGUF_GET_KEY(ctx, vocab.special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
  1913. GGUF_GET_KEY(ctx, vocab.special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
  1914. // build special tokens cache
  1915. {
  1916. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  1917. // and will always be correctly labeled in 'added_tokens.json' etc.
  1918. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  1919. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  1920. // are special tokens.
  1921. // From testing, this appears to corelate 1:1 with special tokens.
  1922. //
  1923. // Counting special tokens and verifying in only one direction
  1924. // is sufficient to detect difference in those two sets.
  1925. //
  1926. uint32_t special_tokens_count_by_type = 0;
  1927. uint32_t special_tokens_count_from_verification = 0;
  1928. bool special_tokens_definition_mismatch = false;
  1929. for (const auto & t : vocab.token_to_id) {
  1930. const auto & token = t.first;
  1931. const auto & id = t.second;
  1932. // Count all non-normal tokens in the vocab while iterating
  1933. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  1934. special_tokens_count_by_type++;
  1935. }
  1936. // Skip single character tokens
  1937. if (token.length() > 1) {
  1938. bool is_tokenizable = false;
  1939. // Split token string representation in two, in all possible ways
  1940. // and check if both halves can be matched to a valid token
  1941. for (unsigned i = 1; i < token.length();) {
  1942. const auto left = token.substr(0, i);
  1943. const auto right = token.substr(i);
  1944. // check if we didnt partition in the middle of a utf sequence
  1945. auto utf = utf8_len(left.at(left.length() - 1));
  1946. if (utf == 1) {
  1947. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  1948. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  1949. is_tokenizable = true;
  1950. break;
  1951. }
  1952. i++;
  1953. } else {
  1954. // skip over the rest of multibyte utf sequence
  1955. i += utf - 1;
  1956. }
  1957. }
  1958. if (!is_tokenizable) {
  1959. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  1960. // it's faster to re-filter them here, since there are way less candidates now
  1961. // Calculate a total "utf" length of a token string representation
  1962. size_t utf8_str_len = 0;
  1963. for (unsigned i = 0; i < token.length();) {
  1964. utf8_str_len++;
  1965. i += utf8_len(token.at(i));
  1966. }
  1967. // And skip the ones which are one character
  1968. if (utf8_str_len > 1) {
  1969. // At this point what we have left are special tokens only
  1970. vocab.special_tokens_cache[token] = id;
  1971. // Count manually found special tokens
  1972. special_tokens_count_from_verification++;
  1973. // If this manually found special token is not marked as such, flag a mismatch
  1974. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  1975. special_tokens_definition_mismatch = true;
  1976. }
  1977. }
  1978. }
  1979. }
  1980. }
  1981. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  1982. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  1983. __func__,
  1984. special_tokens_count_from_verification, vocab.id_to_token.size(),
  1985. special_tokens_count_by_type, vocab.id_to_token.size()
  1986. );
  1987. } else {
  1988. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  1989. __func__,
  1990. special_tokens_count_from_verification, vocab.id_to_token.size()
  1991. );
  1992. }
  1993. }
  1994. }
  1995. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  1996. const auto & hparams = model.hparams;
  1997. const auto & vocab = model.vocab;
  1998. // hparams
  1999. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  2000. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str());
  2001. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix
  2002. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  2003. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  2004. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  2005. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  2006. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  2007. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  2008. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  2009. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
  2010. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  2011. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  2012. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  2013. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  2014. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  2015. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  2016. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  2017. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  2018. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  2019. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  2020. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  2021. if (ml.n_bytes < GB) {
  2022. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  2023. } else {
  2024. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  2025. }
  2026. // general kv
  2027. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  2028. // special tokens
  2029. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  2030. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  2031. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  2032. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  2033. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  2034. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  2035. }
  2036. static void llm_load_tensors(
  2037. llama_model_loader & ml,
  2038. llama_model & model,
  2039. int n_gpu_layers,
  2040. int main_gpu,
  2041. const float * tensor_split,
  2042. bool use_mlock,
  2043. llama_progress_callback progress_callback,
  2044. void * progress_callback_user_data) {
  2045. model.t_start_us = ggml_time_us();
  2046. auto & ctx = model.ctx;
  2047. auto & hparams = model.hparams;
  2048. model.n_gpu_layers = n_gpu_layers;
  2049. size_t ctx_size;
  2050. size_t mmapped_size;
  2051. ml.calc_sizes(ctx_size, mmapped_size);
  2052. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
  2053. // create the ggml context
  2054. {
  2055. model.buf.resize(ctx_size);
  2056. if (use_mlock) {
  2057. model.mlock_buf.init (model.buf.data);
  2058. model.mlock_buf.grow_to(model.buf.size);
  2059. }
  2060. struct ggml_init_params params = {
  2061. /*.mem_size =*/ model.buf.size,
  2062. /*.mem_buffer =*/ model.buf.data,
  2063. /*.no_alloc =*/ ml.use_mmap,
  2064. };
  2065. model.ctx = ggml_init(params);
  2066. if (!model.ctx) {
  2067. throw std::runtime_error(format("ggml_init() failed"));
  2068. }
  2069. }
  2070. (void) main_gpu;
  2071. #ifdef GGML_USE_CUBLAS
  2072. LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__);
  2073. ggml_cuda_set_main_device(main_gpu);
  2074. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  2075. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
  2076. #elif defined(GGML_USE_CLBLAST)
  2077. LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
  2078. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  2079. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
  2080. #else
  2081. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
  2082. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
  2083. #endif
  2084. // prepare memory for the weights
  2085. size_t vram_weights = 0;
  2086. {
  2087. const int64_t n_embd = hparams.n_embd;
  2088. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2089. const int64_t n_layer = hparams.n_layer;
  2090. const int64_t n_vocab = hparams.n_vocab;
  2091. const auto tn = LLM_TN(model.arch);
  2092. switch (model.arch) {
  2093. case LLM_ARCH_LLAMA:
  2094. case LLM_ARCH_REFACT:
  2095. {
  2096. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2097. // output
  2098. {
  2099. ggml_backend_type backend_norm;
  2100. ggml_backend_type backend_output;
  2101. if (n_gpu_layers > int(n_layer)) {
  2102. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2103. // on Windows however this is detrimental unless everything is on the GPU
  2104. #ifndef _WIN32
  2105. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2106. #else
  2107. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2108. #endif // _WIN32
  2109. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2110. } else {
  2111. backend_norm = GGML_BACKEND_CPU;
  2112. backend_output = GGML_BACKEND_CPU;
  2113. }
  2114. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2115. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2116. if (backend_norm == GGML_BACKEND_GPU) {
  2117. vram_weights += ggml_nbytes(model.output_norm);
  2118. }
  2119. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2120. vram_weights += ggml_nbytes(model.output);
  2121. }
  2122. }
  2123. const uint32_t n_ff = hparams.n_ff;
  2124. const int i_gpu_start = n_layer - n_gpu_layers;
  2125. model.layers.resize(n_layer);
  2126. for (uint32_t i = 0; i < n_layer; ++i) {
  2127. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2128. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2129. auto & layer = model.layers[i];
  2130. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2131. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  2132. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2133. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2134. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2135. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2136. layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  2137. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2138. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2139. if (backend == GGML_BACKEND_GPU) {
  2140. vram_weights +=
  2141. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  2142. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  2143. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  2144. }
  2145. }
  2146. } break;
  2147. case LLM_ARCH_BAICHUAN:
  2148. {
  2149. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2150. {
  2151. ggml_backend_type backend_norm;
  2152. ggml_backend_type backend_output;
  2153. if (n_gpu_layers > int(n_layer)) {
  2154. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2155. // on Windows however this is detrimental unless everything is on the GPU
  2156. #ifndef _WIN32
  2157. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2158. #else
  2159. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2160. #endif // _WIN32
  2161. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2162. } else {
  2163. backend_norm = GGML_BACKEND_CPU;
  2164. backend_output = GGML_BACKEND_CPU;
  2165. }
  2166. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2167. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2168. if (backend_norm == GGML_BACKEND_GPU) {
  2169. vram_weights += ggml_nbytes(model.output_norm);
  2170. }
  2171. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2172. vram_weights += ggml_nbytes(model.output);
  2173. }
  2174. }
  2175. const uint32_t n_ff = hparams.n_ff;
  2176. const int i_gpu_start = n_layer - n_gpu_layers;
  2177. model.layers.resize(n_layer);
  2178. for (uint32_t i = 0; i < n_layer; ++i) {
  2179. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2180. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2181. auto & layer = model.layers[i];
  2182. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2183. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  2184. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2185. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  2186. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2187. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2188. layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  2189. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2190. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2191. if (backend == GGML_BACKEND_GPU) {
  2192. vram_weights +=
  2193. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  2194. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  2195. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  2196. }
  2197. }
  2198. } break;
  2199. case LLM_ARCH_FALCON:
  2200. {
  2201. // TODO: CPU-only for now
  2202. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2203. // output
  2204. {
  2205. ggml_backend_type backend_norm;
  2206. ggml_backend_type backend_output;
  2207. if (n_gpu_layers > int(n_layer)) {
  2208. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2209. // on Windows however this is detrimental unless everything is on the GPU
  2210. #ifndef _WIN32
  2211. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2212. #else
  2213. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2214. #endif // _WIN32
  2215. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2216. } else {
  2217. backend_norm = GGML_BACKEND_CPU;
  2218. backend_output = GGML_BACKEND_CPU;
  2219. }
  2220. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2221. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2222. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2223. if (backend_norm == GGML_BACKEND_GPU) {
  2224. vram_weights += ggml_nbytes(model.output_norm);
  2225. vram_weights += ggml_nbytes(model.output_norm_b);
  2226. }
  2227. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2228. vram_weights += ggml_nbytes(model.output);
  2229. }
  2230. }
  2231. const uint32_t n_ff = hparams.n_ff;
  2232. const int i_gpu_start = n_layer - n_gpu_layers;
  2233. model.layers.resize(n_layer);
  2234. for (uint32_t i = 0; i < n_layer; ++i) {
  2235. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2236. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2237. auto & layer = model.layers[i];
  2238. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2239. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2240. if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
  2241. layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend);
  2242. layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend);
  2243. if (backend == GGML_BACKEND_GPU) {
  2244. vram_weights += ggml_nbytes(layer.attn_norm_2);
  2245. vram_weights += ggml_nbytes(layer.attn_norm_2_b);
  2246. }
  2247. }
  2248. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2249. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2250. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2251. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2252. if (backend == GGML_BACKEND_GPU) {
  2253. vram_weights +=
  2254. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2255. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) +
  2256. ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  2257. }
  2258. }
  2259. } break;
  2260. case LLM_ARCH_STARCODER:
  2261. {
  2262. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2263. model.pos_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU);
  2264. // output
  2265. {
  2266. ggml_backend_type backend_norm;
  2267. ggml_backend_type backend_output;
  2268. if (n_gpu_layers > int(n_layer)) {
  2269. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2270. // on Windows however this is detrimental unless everything is on the GPU
  2271. #ifndef _WIN32
  2272. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2273. #else
  2274. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2275. #endif // _WIN32
  2276. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2277. } else {
  2278. backend_norm = GGML_BACKEND_CPU;
  2279. backend_output = GGML_BACKEND_CPU;
  2280. }
  2281. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2282. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2283. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2284. if (backend_norm == GGML_BACKEND_GPU) {
  2285. vram_weights += ggml_nbytes(model.output_norm);
  2286. vram_weights += ggml_nbytes(model.output_norm_b);
  2287. }
  2288. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2289. vram_weights += ggml_nbytes(model.output);
  2290. }
  2291. }
  2292. const uint32_t n_ff = hparams.n_ff;
  2293. const int i_gpu_start = n_layer - n_gpu_layers;
  2294. model.layers.resize(n_layer);
  2295. for (uint32_t i = 0; i < n_layer; ++i) {
  2296. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2297. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2298. auto & layer = model.layers[i];
  2299. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2300. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2301. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2302. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
  2303. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2304. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
  2305. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2306. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2307. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2308. layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
  2309. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2310. layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
  2311. if (backend == GGML_BACKEND_GPU) {
  2312. vram_weights +=
  2313. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2314. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
  2315. ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
  2316. ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
  2317. ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2) +
  2318. ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3);
  2319. }
  2320. }
  2321. } break;
  2322. case LLM_ARCH_PERSIMMON:
  2323. {
  2324. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2325. {
  2326. ggml_backend_type backend_norm;
  2327. ggml_backend_type backend_output;
  2328. if (n_gpu_layers > int(n_layer)) {
  2329. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2330. // on Windows however this is detrimental unless everything is on the GPU
  2331. #ifndef _WIN32
  2332. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2333. #else
  2334. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2335. #endif // _WIN32
  2336. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2337. } else {
  2338. backend_norm = GGML_BACKEND_CPU;
  2339. backend_output = GGML_BACKEND_CPU;
  2340. }
  2341. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2342. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2343. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2344. if (backend_norm == GGML_BACKEND_GPU) {
  2345. vram_weights += ggml_nbytes(model.output_norm);
  2346. vram_weights += ggml_nbytes(model.output_norm_b);
  2347. }
  2348. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2349. vram_weights += ggml_nbytes(model.output);
  2350. }
  2351. }
  2352. const uint32_t n_ff = hparams.n_ff;
  2353. const int i_gpu_start = n_layer - n_gpu_layers;
  2354. model.layers.resize(n_layer);
  2355. for (uint32_t i = 0; i < n_layer; ++i) {
  2356. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2357. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT;
  2358. auto & layer = model.layers[i];
  2359. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2360. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2361. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2362. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
  2363. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2364. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
  2365. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2366. layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
  2367. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2368. layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
  2369. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2370. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2371. layer.attn_q_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64}, backend);
  2372. layer.attn_q_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64}, backend);
  2373. layer.attn_k_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64}, backend);
  2374. layer.attn_k_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}, backend);
  2375. }
  2376. } break;
  2377. case LLM_ARCH_BLOOM:
  2378. {
  2379. // TODO: CPU-only for now
  2380. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2381. model.tok_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, GGML_BACKEND_CPU);
  2382. model.tok_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, GGML_BACKEND_CPU);
  2383. // output
  2384. {
  2385. ggml_backend_type backend_norm;
  2386. ggml_backend_type backend_output;
  2387. if (n_gpu_layers > int(n_layer)) {
  2388. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2389. // on Windows however this is detrimental unless everything is on the GPU
  2390. #ifndef _WIN32
  2391. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2392. #else
  2393. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2394. #endif // _WIN32
  2395. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2396. } else {
  2397. backend_norm = GGML_BACKEND_CPU;
  2398. backend_output = GGML_BACKEND_CPU;
  2399. }
  2400. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2401. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  2402. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2403. if (backend_norm == GGML_BACKEND_GPU) {
  2404. vram_weights += ggml_nbytes(model.output_norm);
  2405. vram_weights += ggml_nbytes(model.output_norm_b);
  2406. }
  2407. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2408. vram_weights += ggml_nbytes(model.output);
  2409. }
  2410. }
  2411. const uint32_t n_ff = hparams.n_ff;
  2412. const int i_gpu_start = n_layer - n_gpu_layers;
  2413. model.layers.resize(n_layer);
  2414. for (uint32_t i = 0; i < n_layer; ++i) {
  2415. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2416. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2417. auto & layer = model.layers[i];
  2418. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2419. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  2420. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2421. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
  2422. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2423. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
  2424. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2425. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  2426. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  2427. layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
  2428. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2429. layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
  2430. if (backend == GGML_BACKEND_GPU) {
  2431. vram_weights +=
  2432. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  2433. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
  2434. ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
  2435. ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
  2436. ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3) +
  2437. ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2);
  2438. }
  2439. }
  2440. } break;
  2441. case LLM_ARCH_MPT:
  2442. {
  2443. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  2444. // output
  2445. {
  2446. ggml_backend_type backend_norm;
  2447. ggml_backend_type backend_output;
  2448. if (n_gpu_layers > int(n_layer)) {
  2449. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  2450. // on Windows however this is detrimental unless everything is on the GPU
  2451. #ifndef _WIN32
  2452. backend_norm = LLAMA_BACKEND_OFFLOAD;
  2453. #else
  2454. backend_norm = n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  2455. #endif // _WIN32
  2456. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  2457. } else {
  2458. backend_norm = GGML_BACKEND_CPU;
  2459. backend_output = GGML_BACKEND_CPU;
  2460. }
  2461. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  2462. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  2463. if (backend_norm == GGML_BACKEND_GPU) {
  2464. vram_weights += ggml_nbytes(model.output_norm);
  2465. }
  2466. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  2467. vram_weights += ggml_nbytes(model.output);
  2468. }
  2469. }
  2470. const uint32_t n_ff = hparams.n_ff;
  2471. const int i_gpu_start = n_layer - n_gpu_layers;
  2472. model.layers.resize(n_layer);
  2473. for (uint32_t i = 0; i < n_layer; ++i) {
  2474. const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  2475. const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  2476. auto & layer = model.layers[i];
  2477. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  2478. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  2479. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  2480. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  2481. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  2482. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  2483. if (backend == GGML_BACKEND_GPU) {
  2484. vram_weights +=
  2485. ggml_nbytes(layer.attn_norm) +
  2486. ggml_nbytes(layer.wqkv) +
  2487. ggml_nbytes(layer.wo) +
  2488. ggml_nbytes(layer.ffn_norm) +
  2489. ggml_nbytes(layer.w2) +
  2490. ggml_nbytes(layer.w3);
  2491. }
  2492. }
  2493. } break;
  2494. default:
  2495. throw std::runtime_error("unknown architecture");
  2496. }
  2497. }
  2498. ml.done_getting_tensors();
  2499. // print memory requirements
  2500. {
  2501. // this is the total memory required to run the inference
  2502. size_t mem_required =
  2503. ctx_size +
  2504. mmapped_size - vram_weights; // weights in VRAM not in memory
  2505. LLAMA_LOG_INFO("%s: mem required = %7.2f MB\n", __func__, mem_required / 1024.0 / 1024.0);
  2506. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  2507. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  2508. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  2509. if (n_gpu_layers > (int) hparams.n_layer) {
  2510. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  2511. }
  2512. #ifdef GGML_USE_CUBLAS
  2513. const int max_backend_supported_layers = hparams.n_layer + 3;
  2514. const int max_offloadable_layers = hparams.n_layer + 3;
  2515. #elif defined(GGML_USE_CLBLAST)
  2516. const int max_backend_supported_layers = hparams.n_layer + 1;
  2517. const int max_offloadable_layers = hparams.n_layer + 1;
  2518. #endif // GGML_USE_CUBLAS
  2519. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  2520. LLAMA_LOG_INFO("%s: VRAM used: %.2f MB\n", __func__, vram_weights / 1024.0 / 1024.0);
  2521. #else
  2522. (void) n_gpu_layers;
  2523. #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  2524. }
  2525. // populate `tensors_by_name`
  2526. for (int i = 0; i < ml.n_tensors; ++i) {
  2527. struct ggml_tensor * cur = ggml_get_tensor(ctx, ml.get_tensor_name(i));
  2528. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  2529. }
  2530. (void) tensor_split;
  2531. #ifdef GGML_USE_CUBLAS
  2532. {
  2533. ggml_cuda_set_tensor_split(tensor_split);
  2534. }
  2535. #endif
  2536. ml.load_all_data(ctx, progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
  2537. if (progress_callback) {
  2538. progress_callback(1.0f, progress_callback_user_data);
  2539. }
  2540. model.mapping = std::move(ml.mapping);
  2541. // loading time will be recalculate after the first eval, so
  2542. // we take page faults deferred by mmap() into consideration
  2543. model.t_load_us = ggml_time_us() - model.t_start_us;
  2544. }
  2545. static bool llama_model_load(
  2546. const std::string & fname,
  2547. llama_model & model,
  2548. int n_gpu_layers,
  2549. int main_gpu,
  2550. const float * tensor_split,
  2551. bool use_mmap,
  2552. bool use_mlock,
  2553. bool vocab_only,
  2554. llama_progress_callback progress_callback,
  2555. void *progress_callback_user_data) {
  2556. try {
  2557. llama_model_loader ml(fname, use_mmap);
  2558. model.hparams.vocab_only = vocab_only;
  2559. llm_load_arch (ml, model);
  2560. llm_load_hparams(ml, model);
  2561. llm_load_vocab (ml, model);
  2562. llm_load_print_meta(ml, model);
  2563. if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  2564. throw std::runtime_error("vocab size mismatch");
  2565. }
  2566. if (vocab_only) {
  2567. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  2568. return true;
  2569. }
  2570. llm_load_tensors(
  2571. ml, model, n_gpu_layers,
  2572. main_gpu, tensor_split,
  2573. use_mlock, progress_callback, progress_callback_user_data);
  2574. } catch (const std::exception & err) {
  2575. LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
  2576. return false;
  2577. }
  2578. return true;
  2579. }
  2580. static struct ggml_cgraph * llm_build_llama(
  2581. llama_context & lctx,
  2582. const llama_batch & batch) {
  2583. const auto & model = lctx.model;
  2584. const auto & hparams = model.hparams;
  2585. const auto & cparams = lctx.cparams;
  2586. const auto & kv_self = lctx.kv_self;
  2587. GGML_ASSERT(!!kv_self.ctx);
  2588. const int64_t n_embd = hparams.n_embd;
  2589. const int64_t n_layer = hparams.n_layer;
  2590. const int64_t n_ctx = cparams.n_ctx;
  2591. const int64_t n_head = hparams.n_head;
  2592. const int64_t n_head_kv = hparams.n_head_kv;
  2593. const int64_t n_embd_head = hparams.n_embd_head();
  2594. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2595. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2596. const float freq_base = cparams.rope_freq_base;
  2597. const float freq_scale = cparams.rope_freq_scale;
  2598. const float norm_rms_eps = hparams.f_norm_rms_eps;
  2599. const int n_gpu_layers = model.n_gpu_layers;
  2600. const int32_t n_tokens = batch.n_tokens;
  2601. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  2602. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  2603. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  2604. //printf("n_kv = %d\n", n_kv);
  2605. auto & buf_compute = lctx.buf_compute;
  2606. struct ggml_init_params params = {
  2607. /*.mem_size =*/ buf_compute.size,
  2608. /*.mem_buffer =*/ buf_compute.data,
  2609. /*.no_alloc =*/ true,
  2610. };
  2611. struct ggml_context * ctx0 = ggml_init(params);
  2612. ggml_cgraph * gf = ggml_new_graph(ctx0);
  2613. struct ggml_tensor * cur;
  2614. struct ggml_tensor * inpL;
  2615. if (batch.token) {
  2616. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2617. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  2618. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2619. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  2620. }
  2621. ggml_set_name(inp_tokens, "inp_tokens");
  2622. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  2623. } else {
  2624. #ifdef GGML_USE_MPI
  2625. GGML_ASSERT(false && "not implemented");
  2626. #endif
  2627. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  2628. ggml_allocr_alloc(lctx.alloc, inpL);
  2629. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2630. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  2631. }
  2632. }
  2633. const int i_gpu_start = n_layer - n_gpu_layers;
  2634. (void) i_gpu_start;
  2635. // offload functions set the tensor output backend to GPU
  2636. // tensors are GPU-accelerated if any input or the output has been offloaded
  2637. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  2638. offload_func_t offload_func_kq = llama_nop;
  2639. offload_func_t offload_func_v = llama_nop;
  2640. #ifdef GGML_USE_CUBLAS
  2641. if (n_gpu_layers > n_layer) {
  2642. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  2643. }
  2644. if (n_gpu_layers > n_layer + 1) {
  2645. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  2646. }
  2647. if (n_gpu_layers > n_layer + 2) {
  2648. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  2649. }
  2650. #endif // GGML_USE_CUBLAS
  2651. // KQ_scale
  2652. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  2653. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  2654. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  2655. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2656. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
  2657. }
  2658. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2659. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  2660. offload_func_kq(KQ_mask);
  2661. ggml_set_name(KQ_mask, "KQ_mask");
  2662. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  2663. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2664. float * data = (float *) KQ_mask->data;
  2665. memset(data, 0, ggml_nbytes(KQ_mask));
  2666. for (int h = 0; h < 1; ++h) {
  2667. for (int j = 0; j < n_tokens; ++j) {
  2668. const llama_pos pos = batch.pos[j];
  2669. const llama_seq_id seq_id = batch.seq_id[j][0];
  2670. for (int i = 0; i < n_kv; ++i) {
  2671. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  2672. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  2673. }
  2674. }
  2675. }
  2676. }
  2677. }
  2678. // KQ_pos - contains the positions
  2679. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2680. offload_func_kq(KQ_pos);
  2681. ggml_set_name(KQ_pos, "KQ_pos");
  2682. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  2683. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2684. int * data = (int *) KQ_pos->data;
  2685. for (int i = 0; i < n_tokens; ++i) {
  2686. data[i] = batch.pos[i];
  2687. }
  2688. }
  2689. // shift the entire K-cache if needed
  2690. if (do_rope_shift) {
  2691. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  2692. offload_func_kq(K_shift);
  2693. ggml_set_name(K_shift, "K_shift");
  2694. ggml_allocr_alloc(lctx.alloc, K_shift);
  2695. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2696. int * data = (int *) K_shift->data;
  2697. for (int i = 0; i < n_ctx; ++i) {
  2698. data[i] = kv_self.cells[i].delta;
  2699. }
  2700. }
  2701. for (int il = 0; il < n_layer; ++il) {
  2702. struct ggml_tensor * tmp =
  2703. ggml_rope_custom_inplace(ctx0,
  2704. ggml_view_3d(ctx0, kv_self.k,
  2705. n_embd_head, n_head_kv, n_ctx,
  2706. ggml_element_size(kv_self.k)*n_embd_head,
  2707. ggml_element_size(kv_self.k)*n_embd_gqa,
  2708. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
  2709. K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
  2710. offload_func_kq(tmp);
  2711. ggml_build_forward_expand(gf, tmp);
  2712. }
  2713. }
  2714. for (int il = 0; il < n_layer; ++il) {
  2715. ggml_format_name(inpL, "layer_inp_%d", il);
  2716. offload_func_t offload_func = llama_nop;
  2717. #ifdef GGML_USE_CUBLAS
  2718. if (il >= i_gpu_start) {
  2719. offload_func = ggml_cuda_assign_buffers_no_alloc;
  2720. }
  2721. #endif // GGML_USE_CUBLAS
  2722. struct ggml_tensor * inpSA = inpL;
  2723. // norm
  2724. {
  2725. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  2726. offload_func(cur);
  2727. ggml_set_name(cur, "rms_norm_0");
  2728. // cur = cur*attn_norm(broadcasted)
  2729. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  2730. offload_func(cur);
  2731. ggml_set_name(cur, "attention_norm_0");
  2732. }
  2733. // self-attention
  2734. {
  2735. // compute Q and K and RoPE them
  2736. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  2737. offload_func_kq(tmpk);
  2738. ggml_set_name(tmpk, "tmpk");
  2739. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  2740. offload_func_kq(tmpq);
  2741. ggml_set_name(tmpq, "tmpq");
  2742. struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  2743. offload_func_kq(Kcur);
  2744. ggml_set_name(Kcur, "Kcur");
  2745. struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  2746. offload_func_kq(Qcur);
  2747. ggml_set_name(Qcur, "Qcur");
  2748. // store key and value to memory
  2749. {
  2750. // compute the transposed [n_tokens, n_embd] V matrix
  2751. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  2752. offload_func_v(tmpv);
  2753. ggml_set_name(tmpv, "tmpv");
  2754. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  2755. offload_func_v(Vcur);
  2756. ggml_set_name(Vcur, "Vcur");
  2757. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  2758. offload_func_kq(k);
  2759. ggml_set_name(k, "k");
  2760. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  2761. ( n_ctx)*ggml_element_size(kv_self.v),
  2762. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  2763. offload_func_v(v);
  2764. ggml_set_name(v, "v");
  2765. // important: storing RoPE-ed version of K in the KV cache!
  2766. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  2767. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  2768. }
  2769. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  2770. offload_func_kq(Q);
  2771. ggml_set_name(Q, "Q");
  2772. struct ggml_tensor * K =
  2773. ggml_view_3d(ctx0, kv_self.k,
  2774. n_embd_head, n_kv, n_head_kv,
  2775. ggml_element_size(kv_self.k)*n_embd_gqa,
  2776. ggml_element_size(kv_self.k)*n_embd_head,
  2777. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  2778. offload_func_kq(K);
  2779. ggml_set_name(K, "K");
  2780. // K * Q
  2781. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  2782. offload_func_kq(KQ);
  2783. ggml_set_name(KQ, "KQ");
  2784. // KQ_scaled = KQ / sqrt(n_embd_head)
  2785. // KQ_scaled shape [n_kv, n_tokens, n_head, 1]
  2786. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  2787. offload_func_kq(KQ_scaled);
  2788. ggml_set_name(KQ_scaled, "KQ_scaled");
  2789. // KQ_masked = mask_past(KQ_scaled)
  2790. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  2791. offload_func_kq(KQ_masked);
  2792. ggml_set_name(KQ_masked, "KQ_masked");
  2793. // KQ = soft_max(KQ_masked)
  2794. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  2795. offload_func_v(KQ_soft_max);
  2796. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  2797. // split cached V into n_head heads
  2798. struct ggml_tensor * V =
  2799. ggml_view_3d(ctx0, kv_self.v,
  2800. n_kv, n_embd_head, n_head_kv,
  2801. ggml_element_size(kv_self.v)*n_ctx,
  2802. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  2803. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  2804. offload_func_v(V);
  2805. ggml_set_name(V, "V");
  2806. #if 1
  2807. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  2808. offload_func_v(KQV);
  2809. ggml_set_name(KQV, "KQV");
  2810. #else
  2811. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  2812. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  2813. // is there a better way?
  2814. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head));
  2815. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  2816. #endif
  2817. // KQV_merged = KQV.permute(0, 2, 1, 3)
  2818. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  2819. offload_func_v(KQV_merged);
  2820. ggml_set_name(KQV_merged, "KQV_merged");
  2821. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  2822. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  2823. offload_func_v(cur);
  2824. ggml_set_name(cur, "KQV_merged_contiguous");
  2825. // projection (no bias)
  2826. cur = ggml_mul_mat(ctx0,
  2827. model.layers[il].wo,
  2828. cur);
  2829. offload_func(cur);
  2830. ggml_set_name(cur, "result_wo");
  2831. }
  2832. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  2833. offload_func(inpFF);
  2834. ggml_set_name(inpFF, "inpFF");
  2835. // feed-forward network
  2836. {
  2837. // norm
  2838. {
  2839. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  2840. offload_func(cur);
  2841. ggml_set_name(cur, "rms_norm_1");
  2842. // cur = cur*ffn_norm(broadcasted)
  2843. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  2844. offload_func(cur);
  2845. ggml_set_name(cur, "ffn_norm");
  2846. }
  2847. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  2848. model.layers[il].w3,
  2849. cur);
  2850. offload_func(tmp);
  2851. ggml_set_name(tmp, "result_w3");
  2852. cur = ggml_mul_mat(ctx0,
  2853. model.layers[il].w1,
  2854. cur);
  2855. offload_func(cur);
  2856. ggml_set_name(cur, "result_w1");
  2857. // SILU activation
  2858. cur = ggml_silu(ctx0, cur);
  2859. offload_func(cur);
  2860. ggml_set_name(cur, "silu");
  2861. cur = ggml_mul(ctx0, cur, tmp);
  2862. offload_func(cur);
  2863. ggml_set_name(cur, "silu_x_result_w3");
  2864. cur = ggml_mul_mat(ctx0,
  2865. model.layers[il].w2,
  2866. cur);
  2867. offload_func(cur);
  2868. ggml_set_name(cur, "result_w2");
  2869. }
  2870. cur = ggml_add(ctx0, cur, inpFF);
  2871. offload_func(cur);
  2872. ggml_set_name(cur, "inpFF_+_result_w2");
  2873. // input for next layer
  2874. inpL = cur;
  2875. }
  2876. cur = inpL;
  2877. // norm
  2878. {
  2879. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  2880. offload_func_nr(cur);
  2881. ggml_set_name(cur, "rms_norm_2");
  2882. // cur = cur*norm(broadcasted)
  2883. cur = ggml_mul(ctx0, cur, model.output_norm);
  2884. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  2885. ggml_set_name(cur, "result_norm");
  2886. }
  2887. // lm_head
  2888. cur = ggml_mul_mat(ctx0, model.output, cur);
  2889. ggml_set_name(cur, "result_output");
  2890. ggml_build_forward_expand(gf, cur);
  2891. ggml_free(ctx0);
  2892. return gf;
  2893. }
  2894. static struct ggml_cgraph * llm_build_baichaun(
  2895. llama_context & lctx,
  2896. const llama_batch & batch) {
  2897. const auto & model = lctx.model;
  2898. const auto & hparams = model.hparams;
  2899. const auto & cparams = lctx.cparams;
  2900. const auto & kv_self = lctx.kv_self;
  2901. GGML_ASSERT(!!kv_self.ctx);
  2902. const int64_t n_embd = hparams.n_embd;
  2903. const int64_t n_layer = hparams.n_layer;
  2904. const int64_t n_ctx = cparams.n_ctx;
  2905. const int64_t n_head = hparams.n_head;
  2906. const int64_t n_head_kv = hparams.n_head_kv;
  2907. const int64_t n_embd_head = hparams.n_embd_head();
  2908. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2909. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2910. const float freq_base = cparams.rope_freq_base;
  2911. const float freq_scale = cparams.rope_freq_scale;
  2912. const float norm_rms_eps = hparams.f_norm_rms_eps;
  2913. const int n_gpu_layers = model.n_gpu_layers;
  2914. const int32_t n_tokens = batch.n_tokens;
  2915. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  2916. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  2917. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  2918. auto & buf_compute = lctx.buf_compute;
  2919. struct ggml_init_params params = {
  2920. /*.mem_size =*/ buf_compute.size,
  2921. /*.mem_buffer =*/ buf_compute.data,
  2922. /*.no_alloc =*/ true,
  2923. };
  2924. struct ggml_context * ctx0 = ggml_init(params);
  2925. ggml_cgraph * gf = ggml_new_graph(ctx0);
  2926. struct ggml_tensor * cur;
  2927. struct ggml_tensor * inpL;
  2928. if (batch.token) {
  2929. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2930. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  2931. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2932. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  2933. }
  2934. ggml_set_name(inp_tokens, "inp_tokens");
  2935. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  2936. } else {
  2937. #ifdef GGML_USE_MPI
  2938. GGML_ASSERT(false && "not implemented");
  2939. #endif
  2940. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  2941. ggml_allocr_alloc(lctx.alloc, inpL);
  2942. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2943. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  2944. }
  2945. }
  2946. const int i_gpu_start = n_layer - n_gpu_layers;
  2947. (void) i_gpu_start;
  2948. // offload functions set the tensor output backend to GPU
  2949. // tensors are GPU-accelerated if any input or the output has been offloaded
  2950. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  2951. offload_func_t offload_func_kq = llama_nop;
  2952. offload_func_t offload_func_v = llama_nop;
  2953. #ifdef GGML_USE_CUBLAS
  2954. if (n_gpu_layers > n_layer) {
  2955. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  2956. }
  2957. if (n_gpu_layers > n_layer + 1) {
  2958. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  2959. }
  2960. if (n_gpu_layers > n_layer + 2) {
  2961. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  2962. }
  2963. #endif // GGML_USE_CUBLAS
  2964. // KQ_scale
  2965. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  2966. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  2967. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  2968. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2969. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  2970. }
  2971. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  2972. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  2973. offload_func_kq(KQ_mask);
  2974. ggml_set_name(KQ_mask, "KQ_mask");
  2975. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  2976. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2977. float * data = (float *) KQ_mask->data;
  2978. memset(data, 0, ggml_nbytes(KQ_mask));
  2979. for (int h = 0; h < 1; ++h) {
  2980. for (int j = 0; j < n_tokens; ++j) {
  2981. const llama_pos pos = batch.pos[j];
  2982. const llama_seq_id seq_id = batch.seq_id[j][0];
  2983. for (int i = 0; i < n_kv; ++i) {
  2984. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  2985. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  2986. }
  2987. }
  2988. }
  2989. }
  2990. }
  2991. // KQ_pos - contains the positions
  2992. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  2993. offload_func_kq(KQ_pos);
  2994. ggml_set_name(KQ_pos, "KQ_pos");
  2995. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  2996. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2997. int * data = (int *) KQ_pos->data;
  2998. for (int i = 0; i < n_tokens; ++i) {
  2999. data[i] = batch.pos[i];
  3000. }
  3001. }
  3002. // shift the entire K-cache if needed
  3003. if (do_rope_shift) {
  3004. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  3005. offload_func_kq(K_shift);
  3006. ggml_set_name(K_shift, "K_shift");
  3007. ggml_allocr_alloc(lctx.alloc, K_shift);
  3008. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3009. int * data = (int *) K_shift->data;
  3010. for (int i = 0; i < n_ctx; ++i) {
  3011. data[i] = kv_self.cells[i].delta;
  3012. }
  3013. }
  3014. for (int il = 0; il < n_layer; ++il) {
  3015. struct ggml_tensor * tmp =
  3016. ggml_rope_custom_inplace(ctx0,
  3017. ggml_view_3d(ctx0, kv_self.k,
  3018. n_embd_head, n_head_kv, n_ctx,
  3019. ggml_element_size(kv_self.k)*n_embd_head,
  3020. ggml_element_size(kv_self.k)*n_embd_gqa,
  3021. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
  3022. K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
  3023. offload_func_kq(tmp);
  3024. ggml_build_forward_expand(gf, tmp);
  3025. }
  3026. }
  3027. for (int il = 0; il < n_layer; ++il) {
  3028. ggml_format_name(inpL, "layer_inp_%d", il);
  3029. offload_func_t offload_func = llama_nop;
  3030. #ifdef GGML_USE_CUBLAS
  3031. if (il >= i_gpu_start) {
  3032. offload_func = ggml_cuda_assign_buffers_no_alloc;
  3033. }
  3034. #endif // GGML_USE_CUBLAS
  3035. struct ggml_tensor * inpSA = inpL;
  3036. // norm
  3037. {
  3038. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  3039. offload_func(cur);
  3040. ggml_set_name(cur, "rms_norm_0");
  3041. // cur = cur*attn_norm(broadcasted)
  3042. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  3043. offload_func(cur);
  3044. ggml_set_name(cur, "attention_norm_0");
  3045. }
  3046. // self-attention
  3047. {
  3048. // compute Q and K and RoPE them
  3049. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  3050. offload_func_kq(tmpk);
  3051. ggml_set_name(tmpk, "tmpk");
  3052. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  3053. offload_func_kq(tmpq);
  3054. ggml_set_name(tmpq, "tmpq");
  3055. struct ggml_tensor * Kcur;
  3056. struct ggml_tensor * Qcur;
  3057. switch (model.type) {
  3058. case MODEL_7B:
  3059. Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  3060. Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
  3061. break;
  3062. case MODEL_13B:
  3063. Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, n_tokens);
  3064. Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, n_tokens);
  3065. break;
  3066. default:
  3067. GGML_ASSERT(false);
  3068. }
  3069. offload_func_kq(Kcur);
  3070. ggml_set_name(Kcur, "Kcur");
  3071. offload_func_kq(Qcur);
  3072. ggml_set_name(Qcur, "Qcur");
  3073. // store key and value to memory
  3074. {
  3075. // compute the transposed [n_tokens, n_embd] V matrix
  3076. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  3077. offload_func_v(tmpv);
  3078. ggml_set_name(tmpv, "tmpv");
  3079. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  3080. offload_func_v(Vcur);
  3081. ggml_set_name(Vcur, "Vcur");
  3082. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3083. offload_func_kq(k);
  3084. ggml_set_name(k, "k");
  3085. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3086. ( n_ctx)*ggml_element_size(kv_self.v),
  3087. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3088. offload_func_v(v);
  3089. ggml_set_name(v, "v");
  3090. // important: storing RoPE-ed version of K in the KV cache!
  3091. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3092. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3093. }
  3094. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  3095. offload_func_kq(Q);
  3096. ggml_set_name(Q, "Q");
  3097. struct ggml_tensor * K =
  3098. ggml_view_3d(ctx0, kv_self.k,
  3099. n_embd_head, n_kv, n_head_kv,
  3100. ggml_element_size(kv_self.k)*n_embd_gqa,
  3101. ggml_element_size(kv_self.k)*n_embd_head,
  3102. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3103. offload_func_kq(K);
  3104. ggml_set_name(K, "K");
  3105. // K * Q
  3106. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3107. offload_func_kq(KQ);
  3108. ggml_set_name(KQ, "KQ");
  3109. // KQ_scaled = KQ / sqrt(n_embd_head)
  3110. // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
  3111. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  3112. offload_func_kq(KQ_scaled);
  3113. ggml_set_name(KQ_scaled, "KQ_scaled");
  3114. struct ggml_tensor * KQ_masked;
  3115. struct ggml_tensor * KQ_scaled_alibi;
  3116. switch (model.type) {
  3117. case MODEL_7B:
  3118. KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  3119. break;
  3120. case MODEL_13B:
  3121. // TODO: replace with ggml_add()
  3122. KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8);
  3123. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  3124. KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  3125. break;
  3126. default:
  3127. GGML_ASSERT(false);
  3128. }
  3129. // KQ = soft_max(KQ_masked)
  3130. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  3131. offload_func_v(KQ_soft_max);
  3132. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3133. // split cached V into n_head heads
  3134. struct ggml_tensor * V =
  3135. ggml_view_3d(ctx0, kv_self.v,
  3136. n_kv, n_embd_head, n_head_kv,
  3137. ggml_element_size(kv_self.v)*n_ctx,
  3138. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3139. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3140. offload_func_v(V);
  3141. ggml_set_name(V, "V");
  3142. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3143. offload_func_v(KQV);
  3144. ggml_set_name(KQV, "KQV");
  3145. // KQV_merged = KQV.permute(0, 2, 1, 3)
  3146. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3147. offload_func_v(KQV_merged);
  3148. ggml_set_name(KQV_merged, "KQV_merged");
  3149. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  3150. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3151. offload_func_v(cur);
  3152. ggml_set_name(cur, "KQV_merged_contiguous");
  3153. // projection (no bias)
  3154. cur = ggml_mul_mat(ctx0,
  3155. model.layers[il].wo,
  3156. cur);
  3157. offload_func(cur);
  3158. ggml_set_name(cur, "result_wo");
  3159. }
  3160. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  3161. offload_func(inpFF);
  3162. ggml_set_name(inpFF, "inpFF");
  3163. // feed-forward network
  3164. {
  3165. // norm
  3166. {
  3167. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  3168. offload_func(cur);
  3169. ggml_set_name(cur, "rms_norm_1");
  3170. // cur = cur*ffn_norm(broadcasted)
  3171. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  3172. offload_func(cur);
  3173. ggml_set_name(cur, "ffn_norm");
  3174. }
  3175. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  3176. model.layers[il].w3,
  3177. cur);
  3178. offload_func(tmp);
  3179. ggml_set_name(tmp, "result_w3");
  3180. cur = ggml_mul_mat(ctx0,
  3181. model.layers[il].w1,
  3182. cur);
  3183. offload_func(cur);
  3184. ggml_set_name(cur, "result_w1");
  3185. // SILU activation
  3186. cur = ggml_silu(ctx0, cur);
  3187. offload_func(cur);
  3188. ggml_set_name(cur, "silu");
  3189. cur = ggml_mul(ctx0, cur, tmp);
  3190. offload_func(cur);
  3191. ggml_set_name(cur, "silu_x_result_w3");
  3192. cur = ggml_mul_mat(ctx0,
  3193. model.layers[il].w2,
  3194. cur);
  3195. offload_func(cur);
  3196. ggml_set_name(cur, "result_w2");
  3197. }
  3198. cur = ggml_add(ctx0, cur, inpFF);
  3199. offload_func(cur);
  3200. ggml_set_name(cur, "inpFF_+_result_w2");
  3201. // input for next layer
  3202. inpL = cur;
  3203. }
  3204. cur = inpL;
  3205. // norm
  3206. {
  3207. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  3208. offload_func_nr(cur);
  3209. ggml_set_name(cur, "rms_norm_2");
  3210. // cur = cur*norm(broadcasted)
  3211. cur = ggml_mul(ctx0, cur, model.output_norm);
  3212. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  3213. ggml_set_name(cur, "result_norm");
  3214. }
  3215. // lm_head
  3216. cur = ggml_mul_mat(ctx0, model.output, cur);
  3217. ggml_set_name(cur, "result_output");
  3218. ggml_build_forward_expand(gf, cur);
  3219. ggml_free(ctx0);
  3220. return gf;
  3221. }
  3222. static struct ggml_cgraph * llm_build_refact(
  3223. llama_context & lctx,
  3224. const llama_batch & batch) {
  3225. const auto & model = lctx.model;
  3226. const auto & hparams = model.hparams;
  3227. const auto & cparams = lctx.cparams;
  3228. const auto & kv_self = lctx.kv_self;
  3229. GGML_ASSERT(!!kv_self.ctx);
  3230. const int64_t n_embd = hparams.n_embd;
  3231. const int64_t n_layer = hparams.n_layer;
  3232. const int64_t n_ctx = cparams.n_ctx;
  3233. const int64_t n_head = hparams.n_head;
  3234. const int64_t n_head_kv = hparams.n_head_kv;
  3235. const int64_t n_embd_head = hparams.n_embd_head();
  3236. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3237. const float norm_rms_eps = hparams.f_norm_rms_eps;
  3238. const int n_gpu_layers = model.n_gpu_layers;
  3239. const int32_t n_tokens = batch.n_tokens;
  3240. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3241. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  3242. // printf("n_kv = %d\n", n_kv);
  3243. auto & buf_compute = lctx.buf_compute;
  3244. struct ggml_init_params params = {
  3245. /*.mem_size =*/ buf_compute.size,
  3246. /*.mem_buffer =*/ buf_compute.data,
  3247. /*.no_alloc =*/ true,
  3248. };
  3249. struct ggml_context * ctx0 = ggml_init(params);
  3250. ggml_cgraph * gf = ggml_new_graph(ctx0);
  3251. struct ggml_tensor * cur;
  3252. struct ggml_tensor * inpL;
  3253. if (batch.token) {
  3254. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3255. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  3256. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3257. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  3258. }
  3259. ggml_set_name(inp_tokens, "inp_tokens");
  3260. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  3261. } else {
  3262. #ifdef GGML_USE_MPI
  3263. GGML_ASSERT(false && "not implemented");
  3264. #endif
  3265. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  3266. ggml_allocr_alloc(lctx.alloc, inpL);
  3267. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3268. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  3269. }
  3270. }
  3271. const int i_gpu_start = n_layer - n_gpu_layers;
  3272. (void) i_gpu_start;
  3273. // offload functions set the tensor output backend to GPU
  3274. // tensors are GPU-accelerated if any input or the output has been offloaded
  3275. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  3276. offload_func_t offload_func_kq = llama_nop;
  3277. offload_func_t offload_func_v = llama_nop;
  3278. #ifdef GGML_USE_CUBLAS
  3279. if (n_gpu_layers > n_layer) {
  3280. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  3281. }
  3282. if (n_gpu_layers > n_layer + 1) {
  3283. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  3284. }
  3285. if (n_gpu_layers > n_layer + 2) {
  3286. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  3287. }
  3288. #endif // GGML_USE_CUBLAS
  3289. // KQ_scale
  3290. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3291. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  3292. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  3293. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3294. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
  3295. }
  3296. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3297. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3298. offload_func_kq(KQ_mask);
  3299. ggml_set_name(KQ_mask, "KQ_mask");
  3300. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  3301. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3302. float * data = (float *) KQ_mask->data;
  3303. memset(data, 0, ggml_nbytes(KQ_mask));
  3304. for (int h = 0; h < 1; ++h) {
  3305. for (int j = 0; j < n_tokens; ++j) {
  3306. const llama_pos pos = batch.pos[j];
  3307. const llama_seq_id seq_id = batch.seq_id[j][0];
  3308. for (int i = 0; i < n_kv; ++i) {
  3309. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  3310. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  3311. }
  3312. }
  3313. }
  3314. }
  3315. }
  3316. for (int il = 0; il < n_layer; ++il) {
  3317. ggml_format_name(inpL, "layer_inp_%d", il);
  3318. offload_func_t offload_func = llama_nop;
  3319. #ifdef GGML_USE_CUBLAS
  3320. if (il >= i_gpu_start) {
  3321. offload_func = ggml_cuda_assign_buffers_no_alloc;
  3322. }
  3323. #endif // GGML_USE_CUBLAS
  3324. struct ggml_tensor * inpSA = inpL;
  3325. // norm
  3326. {
  3327. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  3328. offload_func(cur);
  3329. ggml_set_name(cur, "rms_norm_0");
  3330. // cur = cur*attn_norm(broadcasted)
  3331. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  3332. offload_func(cur);
  3333. ggml_set_name(cur, "attention_norm_0");
  3334. }
  3335. // self-attention
  3336. {
  3337. // compute Q and K
  3338. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  3339. offload_func_kq(tmpk);
  3340. ggml_set_name(tmpk, "tmpk");
  3341. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  3342. offload_func_kq(tmpq);
  3343. ggml_set_name(tmpq, "tmpq");
  3344. struct ggml_tensor * Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens);
  3345. offload_func_kq(Kcur);
  3346. ggml_set_name(Kcur, "Kcur");
  3347. struct ggml_tensor * Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens);
  3348. offload_func_kq(Qcur);
  3349. ggml_set_name(Qcur, "Qcur");
  3350. // store key and value to memory
  3351. {
  3352. // compute the transposed [n_tokens, n_embd] V matrix
  3353. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  3354. offload_func_v(tmpv);
  3355. ggml_set_name(tmpv, "tmpv");
  3356. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  3357. offload_func_v(Vcur);
  3358. ggml_set_name(Vcur, "Vcur");
  3359. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3360. offload_func_kq(k);
  3361. ggml_set_name(k, "k");
  3362. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3363. ( n_ctx)*ggml_element_size(kv_self.v),
  3364. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3365. offload_func_v(v);
  3366. ggml_set_name(v, "v");
  3367. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3368. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3369. }
  3370. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  3371. offload_func_kq(Q);
  3372. ggml_set_name(Q, "Q");
  3373. struct ggml_tensor * K =
  3374. ggml_view_3d(ctx0, kv_self.k,
  3375. n_embd_head, n_kv, n_head_kv,
  3376. ggml_element_size(kv_self.k)*n_embd_gqa,
  3377. ggml_element_size(kv_self.k)*n_embd_head,
  3378. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3379. offload_func_kq(K);
  3380. ggml_set_name(K, "K");
  3381. // K * Q
  3382. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3383. offload_func_kq(KQ);
  3384. ggml_set_name(KQ, "KQ");
  3385. // KQ_scaled = KQ / sqrt(n_embd_head)
  3386. // KQ_scaled shape [n_kv, n_tokens, n_head, 1]
  3387. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  3388. offload_func_kq(KQ_scaled);
  3389. ggml_set_name(KQ_scaled, "KQ_scaled");
  3390. // KQ_masked = mask_past(KQ_scaled)
  3391. struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ 0, n_head, 8);
  3392. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  3393. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  3394. offload_func_kq(KQ_masked);
  3395. ggml_set_name(KQ_masked, "KQ_masked");
  3396. // KQ = soft_max(KQ_masked)
  3397. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  3398. offload_func_v(KQ_soft_max);
  3399. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3400. // split cached V into n_head heads
  3401. struct ggml_tensor * V =
  3402. ggml_view_3d(ctx0, kv_self.v,
  3403. n_kv, n_embd_head, n_head_kv,
  3404. ggml_element_size(kv_self.v)*n_ctx,
  3405. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3406. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3407. offload_func_v(V);
  3408. ggml_set_name(V, "V");
  3409. #if 1
  3410. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3411. offload_func_v(KQV);
  3412. ggml_set_name(KQV, "KQV");
  3413. #else
  3414. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  3415. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  3416. // is there a better way?
  3417. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_ctx, n_embd_head, n_head));
  3418. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  3419. #endif
  3420. // KQV_merged = KQV.permute(0, 2, 1, 3)
  3421. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3422. offload_func_v(KQV_merged);
  3423. ggml_set_name(KQV_merged, "KQV_merged");
  3424. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  3425. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3426. offload_func_v(cur);
  3427. ggml_set_name(cur, "KQV_merged_contiguous");
  3428. // projection (no bias)
  3429. cur = ggml_mul_mat(ctx0,
  3430. model.layers[il].wo,
  3431. cur);
  3432. offload_func(cur);
  3433. ggml_set_name(cur, "result_wo");
  3434. }
  3435. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  3436. offload_func(inpFF);
  3437. ggml_set_name(inpFF, "inpFF");
  3438. // feed-forward network
  3439. {
  3440. // norm
  3441. {
  3442. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  3443. offload_func(cur);
  3444. ggml_set_name(cur, "rms_norm_1");
  3445. // cur = cur*ffn_norm(broadcasted)
  3446. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  3447. offload_func(cur);
  3448. ggml_set_name(cur, "ffn_norm");
  3449. }
  3450. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  3451. model.layers[il].w3,
  3452. cur);
  3453. offload_func(tmp);
  3454. ggml_set_name(tmp, "result_w3");
  3455. cur = ggml_mul_mat(ctx0,
  3456. model.layers[il].w1,
  3457. cur);
  3458. offload_func(cur);
  3459. ggml_set_name(cur, "result_w1");
  3460. // SILU activation
  3461. cur = ggml_silu(ctx0, cur);
  3462. offload_func(cur);
  3463. ggml_set_name(cur, "silu");
  3464. cur = ggml_mul(ctx0, cur, tmp);
  3465. offload_func(cur);
  3466. ggml_set_name(cur, "silu_x_result_w3");
  3467. cur = ggml_mul_mat(ctx0,
  3468. model.layers[il].w2,
  3469. cur);
  3470. offload_func(cur);
  3471. ggml_set_name(cur, "result_w2");
  3472. }
  3473. cur = ggml_add(ctx0, cur, inpFF);
  3474. offload_func(cur);
  3475. ggml_set_name(cur, "inpFF_+_result_w2");
  3476. // input for next layer
  3477. inpL = cur;
  3478. }
  3479. cur = inpL;
  3480. // norm
  3481. {
  3482. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  3483. offload_func_nr(cur);
  3484. ggml_set_name(cur, "rms_norm_2");
  3485. // cur = cur*norm(broadcasted)
  3486. cur = ggml_mul(ctx0, cur, model.output_norm);
  3487. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  3488. ggml_set_name(cur, "result_norm");
  3489. }
  3490. // lm_head
  3491. cur = ggml_mul_mat(ctx0, model.output, cur);
  3492. ggml_set_name(cur, "result_output");
  3493. ggml_build_forward_expand(gf, cur);
  3494. ggml_free(ctx0);
  3495. return gf;
  3496. }
  3497. static struct ggml_cgraph * llm_build_falcon(
  3498. llama_context & lctx,
  3499. const llama_batch & batch) {
  3500. const auto & model = lctx.model;
  3501. const auto & hparams = model.hparams;
  3502. const auto & cparams = lctx.cparams;
  3503. const auto & kv_self = lctx.kv_self;
  3504. GGML_ASSERT(!!kv_self.ctx);
  3505. const int64_t n_embd = hparams.n_embd;
  3506. const int64_t n_layer = hparams.n_layer;
  3507. const int64_t n_ctx = cparams.n_ctx;
  3508. const int64_t n_head = hparams.n_head;
  3509. const int64_t n_head_kv = hparams.n_head_kv;
  3510. const int64_t n_embd_head = hparams.n_embd_head();
  3511. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3512. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3513. const float freq_base = cparams.rope_freq_base;
  3514. const float freq_scale = cparams.rope_freq_scale;
  3515. const float norm_eps = hparams.f_norm_eps;
  3516. const int n_gpu_layers = model.n_gpu_layers;
  3517. const int32_t n_tokens = batch.n_tokens;
  3518. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3519. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  3520. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  3521. //printf("kv_head = %d, n_kv = %d, n_tokens = %d, n_ctx = %d, is_measure = %d, has_shift = %d\n",
  3522. // kv_head, n_kv, n_tokens, n_ctx, ggml_allocr_is_measure(lctx.alloc), kv_self.has_shift);
  3523. auto & buf_compute = lctx.buf_compute;
  3524. struct ggml_init_params params = {
  3525. /*.mem_size =*/ buf_compute.size,
  3526. /*.mem_buffer =*/ buf_compute.data,
  3527. /*.no_alloc =*/ true,
  3528. };
  3529. struct ggml_context * ctx0 = ggml_init(params);
  3530. ggml_cgraph * gf = ggml_new_graph(ctx0);
  3531. struct ggml_tensor * cur;
  3532. struct ggml_tensor * inpL;
  3533. if (batch.token) {
  3534. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3535. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  3536. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3537. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  3538. }
  3539. ggml_set_name(inp_tokens, "inp_tokens");
  3540. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  3541. } else {
  3542. #ifdef GGML_USE_MPI
  3543. GGML_ASSERT(false && "not implemented");
  3544. #endif
  3545. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  3546. ggml_allocr_alloc(lctx.alloc, inpL);
  3547. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3548. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  3549. }
  3550. }
  3551. const int i_gpu_start = n_layer - n_gpu_layers;
  3552. (void) i_gpu_start;
  3553. // offload functions set the tensor output backend to GPU
  3554. // tensors are GPU-accelerated if any input or the output has been offloaded
  3555. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  3556. offload_func_t offload_func_kq = llama_nop;
  3557. offload_func_t offload_func_v = llama_nop;
  3558. #ifdef GGML_USE_CUBLAS
  3559. if (n_gpu_layers > n_layer) {
  3560. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  3561. }
  3562. if (n_gpu_layers > n_layer + 1) {
  3563. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  3564. }
  3565. if (n_gpu_layers > n_layer + 2) {
  3566. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  3567. }
  3568. #endif // GGML_USE_CUBLAS
  3569. // KQ_scale
  3570. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3571. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  3572. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  3573. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3574. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  3575. }
  3576. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3577. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3578. offload_func_kq(KQ_mask);
  3579. ggml_set_name(KQ_mask, "KQ_mask");
  3580. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  3581. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3582. float * data = (float *) KQ_mask->data;
  3583. memset(data, 0, ggml_nbytes(KQ_mask));
  3584. for (int h = 0; h < 1; ++h) {
  3585. for (int j = 0; j < n_tokens; ++j) {
  3586. const llama_pos pos = batch.pos[j];
  3587. const llama_seq_id seq_id = batch.seq_id[j][0];
  3588. for (int i = 0; i < n_kv; ++i) {
  3589. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  3590. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  3591. }
  3592. }
  3593. }
  3594. }
  3595. }
  3596. // KQ_pos - contains the positions
  3597. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3598. offload_func_kq(KQ_pos);
  3599. ggml_set_name(KQ_pos, "KQ_pos");
  3600. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  3601. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3602. int * data = (int *) KQ_pos->data;
  3603. for (int i = 0; i < n_tokens; ++i) {
  3604. data[i] = batch.pos[i];
  3605. }
  3606. }
  3607. // shift the entire K-cache if needed
  3608. if (do_rope_shift) {
  3609. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  3610. offload_func_kq(K_shift);
  3611. ggml_set_name(K_shift, "K_shift");
  3612. ggml_allocr_alloc(lctx.alloc, K_shift);
  3613. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3614. int * data = (int *) K_shift->data;
  3615. for (int i = 0; i < n_ctx; ++i) {
  3616. data[i] = kv_self.cells[i].delta;
  3617. }
  3618. }
  3619. for (int il = 0; il < n_layer; ++il) {
  3620. struct ggml_tensor * tmp =
  3621. ggml_rope_custom_inplace(ctx0,
  3622. ggml_view_3d(ctx0, kv_self.k,
  3623. n_embd_head, n_head_kv, n_ctx,
  3624. ggml_element_size(kv_self.k)*n_embd_head,
  3625. ggml_element_size(kv_self.k)*n_embd_gqa,
  3626. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il),
  3627. K_shift, n_embd_head, 2, 0, freq_base, freq_scale);
  3628. offload_func_kq(tmp);
  3629. ggml_build_forward_expand(gf, tmp);
  3630. }
  3631. }
  3632. for (int il = 0; il < n_layer; ++il) {
  3633. struct ggml_tensor * attn_norm;
  3634. offload_func_t offload_func = llama_nop;
  3635. #ifdef GGML_USE_CUBLAS
  3636. if (il >= i_gpu_start) {
  3637. offload_func = ggml_cuda_assign_buffers_no_alloc;
  3638. }
  3639. #endif // GGML_USE_CUBLAS
  3640. // self-attention
  3641. // TODO: refactor into common function (shared with LLaMA)
  3642. {
  3643. attn_norm = ggml_norm(ctx0, inpL, norm_eps);
  3644. offload_func(attn_norm);
  3645. attn_norm = ggml_add(ctx0,
  3646. ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm),
  3647. model.layers[il].attn_norm_b);
  3648. offload_func(attn_norm->src[0]);
  3649. offload_func(attn_norm);
  3650. if (model.layers[il].attn_norm_2) { // Falcon-40B
  3651. cur = ggml_norm(ctx0, inpL, norm_eps);
  3652. offload_func(cur);
  3653. cur = ggml_add(ctx0,
  3654. ggml_mul(ctx0, cur, model.layers[il].attn_norm_2),
  3655. model.layers[il].attn_norm_2_b);
  3656. offload_func(cur->src[0]);
  3657. offload_func(cur);
  3658. } else { // Falcon 7B
  3659. cur = attn_norm;
  3660. }
  3661. // compute QKV
  3662. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  3663. offload_func_kq(cur);
  3664. // Note that the strides for Kcur, Vcur are set up so that the
  3665. // resulting views are misaligned with the tensor's storage
  3666. // (by applying the K/V offset we shift the tensor's original
  3667. // view to stick out behind the viewed QKV tensor's allocated
  3668. // memory, so to say). This is ok because no actual accesses
  3669. // happen to that out-of-range memory, but it can require some
  3670. // trickery when trying to accurately dump these views for
  3671. // debugging.
  3672. const size_t wsize = ggml_type_size(cur->type);
  3673. // TODO: these 2 ggml_conts are technically not needed, but we add them until CUDA support for
  3674. // non-contiguous views is added for the rope operator
  3675. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_3d(
  3676. ctx0, cur, n_embd_head, n_head, n_tokens,
  3677. wsize * n_embd_head,
  3678. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  3679. 0));
  3680. offload_func_kq(tmpq);
  3681. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_3d(
  3682. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  3683. wsize * n_embd_head,
  3684. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  3685. wsize * n_embd_head * n_head));
  3686. offload_func_kq(tmpk);
  3687. struct ggml_tensor * tmpv = ggml_view_3d(
  3688. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  3689. wsize * n_embd_head,
  3690. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  3691. wsize * n_embd_head * (n_head + n_head_kv));
  3692. offload_func_v(tmpv);
  3693. // using mode = 2 for neox mode
  3694. struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, tmpq, KQ_pos, n_embd_head, 2, 0, freq_base, freq_scale);
  3695. offload_func_kq(Qcur);
  3696. struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, tmpk, KQ_pos, n_embd_head, 2, 0, freq_base, freq_scale);
  3697. offload_func_kq(Kcur);
  3698. {
  3699. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  3700. offload_func_v(Vcur);
  3701. offload_func_v(Vcur->src[0]->src[0]);
  3702. ggml_set_name(Vcur, "Vcur");
  3703. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3704. offload_func_kq(k);
  3705. ggml_set_name(k, "k");
  3706. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3707. ( n_ctx)*ggml_element_size(kv_self.v),
  3708. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3709. offload_func_v(v);
  3710. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3711. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3712. }
  3713. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  3714. offload_func_kq(Q);
  3715. ggml_set_name(Q, "Q");
  3716. struct ggml_tensor * K =
  3717. ggml_view_3d(ctx0, kv_self.k,
  3718. n_embd_head, n_kv, n_head_kv,
  3719. ggml_element_size(kv_self.k)*n_embd_gqa,
  3720. ggml_element_size(kv_self.k)*n_embd_head,
  3721. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3722. offload_func_kq(K);
  3723. ggml_set_name(K, "K");
  3724. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3725. offload_func_kq(KQ);
  3726. ggml_set_name(KQ, "KQ");
  3727. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  3728. offload_func_kq(KQ_scaled);
  3729. ggml_set_name(KQ_scaled, "KQ_scaled");
  3730. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  3731. offload_func_kq(KQ_masked);
  3732. ggml_set_name(KQ_masked, "KQ_masked");
  3733. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  3734. offload_func_v(KQ_soft_max);
  3735. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3736. struct ggml_tensor * V =
  3737. ggml_view_3d(ctx0, kv_self.v,
  3738. n_kv, n_embd_head, n_head_kv,
  3739. ggml_element_size(kv_self.v)*n_ctx,
  3740. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3741. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3742. offload_func_v(V);
  3743. ggml_set_name(V, "V");
  3744. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3745. offload_func_v(KQV);
  3746. ggml_set_name(KQV, "KQV");
  3747. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3748. offload_func_v(KQV_merged);
  3749. ggml_set_name(KQV_merged, "KQV_merged");
  3750. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3751. offload_func_v(cur);
  3752. ggml_set_name(cur, "KQV_merged_contiguous");
  3753. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  3754. offload_func(cur);
  3755. ggml_set_name(cur, "result_wo");
  3756. }
  3757. struct ggml_tensor * attn_out = cur;
  3758. // feed forward
  3759. {
  3760. struct ggml_tensor * inpFF = attn_norm;
  3761. cur = ggml_mul_mat(ctx0, model.layers[il].w3, inpFF);
  3762. offload_func(cur);
  3763. cur = ggml_gelu(ctx0, cur);
  3764. offload_func(cur);
  3765. cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
  3766. offload_func(cur);
  3767. }
  3768. cur = ggml_add(ctx0, cur, attn_out);
  3769. offload_func(cur);
  3770. cur = ggml_add(ctx0, cur, inpL);
  3771. offload_func(cur);
  3772. // input for next layer
  3773. inpL = cur;
  3774. }
  3775. cur = inpL;
  3776. // norm
  3777. {
  3778. cur = ggml_norm(ctx0, cur, norm_eps);
  3779. offload_func_nr(cur);
  3780. cur = ggml_add(ctx0,
  3781. ggml_mul(ctx0, cur, model.output_norm),
  3782. model.output_norm_b);
  3783. ggml_set_name(cur, "result_norm");
  3784. }
  3785. cur = ggml_mul_mat(ctx0, model.output, cur);
  3786. ggml_set_name(cur, "result_output");
  3787. ggml_build_forward_expand(gf, cur);
  3788. ggml_free(ctx0);
  3789. return gf;
  3790. }
  3791. static struct ggml_cgraph * llm_build_starcoder(
  3792. llama_context & lctx,
  3793. const llama_batch & batch) {
  3794. const auto & model = lctx.model;
  3795. const auto & hparams = model.hparams;
  3796. const auto & cparams = lctx.cparams;
  3797. const auto & kv_self = lctx.kv_self;
  3798. GGML_ASSERT(!!kv_self.ctx);
  3799. const int64_t n_embd = hparams.n_embd;
  3800. const int64_t n_layer = hparams.n_layer;
  3801. const int64_t n_ctx = cparams.n_ctx;
  3802. const int64_t n_head = hparams.n_head;
  3803. const int64_t n_head_kv = hparams.n_head_kv;
  3804. const int64_t n_embd_head = hparams.n_embd_head();
  3805. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3806. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3807. const float norm_eps = hparams.f_norm_eps;
  3808. const int32_t n_tokens = batch.n_tokens;
  3809. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  3810. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  3811. auto & buf_compute = lctx.buf_compute;
  3812. struct ggml_init_params params = {
  3813. /*.mem_size =*/ buf_compute.size,
  3814. /*.mem_buffer =*/ buf_compute.data,
  3815. /*.no_alloc =*/ true,
  3816. };
  3817. struct ggml_context * ctx0 = ggml_init(params);
  3818. ggml_cgraph * gf = ggml_new_graph(ctx0);
  3819. struct ggml_tensor * cur;
  3820. struct ggml_tensor * token;
  3821. struct ggml_tensor * position;
  3822. struct ggml_tensor * inpL;
  3823. if (batch.token) {
  3824. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3825. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  3826. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3827. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  3828. }
  3829. ggml_set_name(inp_tokens, "inp_tokens");
  3830. token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  3831. } else {
  3832. #ifdef GGML_USE_MPI
  3833. GGML_ASSERT(false && "not implemented");
  3834. #endif
  3835. token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  3836. ggml_allocr_alloc(lctx.alloc, token);
  3837. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3838. memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token));
  3839. }
  3840. }
  3841. {
  3842. // Compute position embeddings.
  3843. struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  3844. ggml_allocr_alloc(lctx.alloc, inp_positions);
  3845. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3846. for (int i = 0; i < n_tokens; ++i) {
  3847. ((int32_t *) inp_positions->data)[i] = batch.pos[i];
  3848. }
  3849. }
  3850. ggml_set_name(inp_positions, "inp_positions");
  3851. position = ggml_get_rows(ctx0, model.pos_embeddings, inp_positions);
  3852. }
  3853. // KQ_scale
  3854. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  3855. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  3856. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  3857. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3858. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  3859. }
  3860. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  3861. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  3862. ggml_set_name(KQ_mask, "KQ_mask");
  3863. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  3864. if (!ggml_allocr_is_measure(lctx.alloc)) {
  3865. float * data = (float *) KQ_mask->data;
  3866. memset(data, 0, ggml_nbytes(KQ_mask));
  3867. for (int h = 0; h < 1; ++h) {
  3868. for (int j = 0; j < n_tokens; ++j) {
  3869. const llama_pos pos = batch.pos[j];
  3870. const llama_seq_id seq_id = batch.seq_id[j][0];
  3871. for (int i = 0; i < n_kv; ++i) {
  3872. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  3873. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  3874. }
  3875. }
  3876. }
  3877. }
  3878. }
  3879. inpL = ggml_add(ctx0, token, position);
  3880. ggml_set_name(inpL, "inpL");
  3881. for (int il = 0; il < n_layer; ++il) {
  3882. {
  3883. // Norm
  3884. cur = ggml_norm(ctx0, inpL, norm_eps);
  3885. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
  3886. }
  3887. {
  3888. // Self Attention
  3889. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
  3890. struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd);
  3891. struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd);
  3892. struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa));
  3893. struct ggml_tensor * Qcur = tmpq;
  3894. struct ggml_tensor * Kcur = tmpk;
  3895. {
  3896. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  3897. ggml_set_name(Vcur, "Vcur");
  3898. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  3899. ggml_set_name(k, "k");
  3900. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  3901. ( n_ctx)*ggml_element_size(kv_self.v),
  3902. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  3903. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  3904. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  3905. }
  3906. struct ggml_tensor * Q =
  3907. ggml_permute(ctx0,
  3908. ggml_cpy(ctx0,
  3909. Qcur,
  3910. ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)),
  3911. 0, 2, 1, 3);
  3912. ggml_set_name(Q, "Q");
  3913. struct ggml_tensor * K =
  3914. ggml_view_3d(ctx0, kv_self.k,
  3915. n_embd_head, n_kv, n_head_kv,
  3916. ggml_element_size(kv_self.k)*n_embd_gqa,
  3917. ggml_element_size(kv_self.k)*n_embd_head,
  3918. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  3919. ggml_set_name(K, "K");
  3920. // K * Q
  3921. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  3922. ggml_set_name(KQ, "KQ");
  3923. // KQ_scaled = KQ / sqrt(n_embd_head)
  3924. // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
  3925. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  3926. ggml_set_name(KQ_scaled, "KQ_scaled");
  3927. // KQ_masked = mask_past(KQ_scaled)
  3928. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  3929. ggml_set_name(KQ_masked, "KQ_masked");
  3930. // KQ = soft_max(KQ_masked)
  3931. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  3932. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  3933. // split cached V into n_head heads
  3934. struct ggml_tensor * V =
  3935. ggml_view_3d(ctx0, kv_self.v,
  3936. n_kv, n_embd_head, n_head_kv,
  3937. ggml_element_size(kv_self.v)*n_ctx,
  3938. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  3939. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  3940. ggml_set_name(V, "V");
  3941. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  3942. ggml_set_name(KQV, "KQV");
  3943. // KQV_merged = KQV.permute(0, 2, 1, 3)
  3944. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  3945. ggml_set_name(KQV_merged, "KQV_merged");
  3946. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  3947. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  3948. ggml_set_name(cur, "KQV_merged_contiguous");
  3949. }
  3950. // Projection
  3951. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
  3952. // Add the input
  3953. cur = ggml_add(ctx0, cur, inpL);
  3954. struct ggml_tensor * inpFF = cur;
  3955. // FF
  3956. {
  3957. // Norm
  3958. {
  3959. cur = ggml_norm(ctx0, inpFF, norm_eps);
  3960. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
  3961. }
  3962. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
  3963. // GELU activation
  3964. cur = ggml_gelu(ctx0, cur);
  3965. // Projection
  3966. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
  3967. }
  3968. inpL = ggml_add(ctx0, cur, inpFF);
  3969. }
  3970. // Output Norm
  3971. {
  3972. cur = ggml_norm(ctx0, inpL, norm_eps);
  3973. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
  3974. }
  3975. ggml_set_name(cur, "result_norm");
  3976. cur = ggml_mul_mat(ctx0, model.output, cur);
  3977. ggml_set_name(cur, "result_output");
  3978. ggml_build_forward_expand(gf, cur);
  3979. ggml_free(ctx0);
  3980. return gf;
  3981. }
  3982. static struct ggml_cgraph * llm_build_persimmon(
  3983. llama_context & lctx,
  3984. const llama_batch & batch) {
  3985. const auto & model = lctx.model;
  3986. const auto & hparams = model.hparams;
  3987. const auto & kv_self = lctx.kv_self;
  3988. GGML_ASSERT(!!kv_self.ctx);
  3989. const auto & cparams = lctx.cparams;
  3990. const int64_t n_embd = hparams.n_embd;
  3991. const int64_t n_layer = hparams.n_layer;
  3992. const int64_t n_ctx = cparams.n_ctx;
  3993. const int64_t n_head_kv = hparams.n_head_kv;
  3994. const int64_t n_head = hparams.n_head;
  3995. const int64_t n_embd_head = hparams.n_embd_head();
  3996. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  3997. const size_t n_rot = n_embd_head / 2;
  3998. const float freq_base = cparams.rope_freq_base;
  3999. const float freq_scale = cparams.rope_freq_scale;
  4000. const float norm_eps = hparams.f_norm_eps;
  4001. const int n_gpu_layers = model.n_gpu_layers;
  4002. const int32_t n_tokens = batch.n_tokens;
  4003. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  4004. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  4005. const bool do_rope_shift = ggml_allocr_is_measure(lctx.alloc) || kv_self.has_shift;
  4006. auto & buf_compute = lctx.buf_compute;
  4007. struct ggml_init_params params = {
  4008. /*.mem_size =*/ buf_compute.size,
  4009. /*.mem_buffer =*/ buf_compute.data,
  4010. /*.no_alloc =*/ true,
  4011. };
  4012. struct ggml_context * ctx0 = ggml_init(params);
  4013. ggml_cgraph * gf = ggml_new_graph(ctx0);
  4014. struct ggml_tensor * cur;
  4015. struct ggml_tensor * inpL;
  4016. if (batch.token) {
  4017. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  4018. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  4019. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4020. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  4021. }
  4022. ggml_set_name(inp_tokens, "inp_tokens");
  4023. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  4024. } else {
  4025. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  4026. ggml_allocr_alloc(lctx.alloc, inpL);
  4027. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4028. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  4029. }
  4030. }
  4031. const int i_gpu_start = n_layer - n_gpu_layers;
  4032. (void) i_gpu_start;
  4033. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  4034. offload_func_t offload_func_kq = llama_nop;
  4035. offload_func_t offload_func_v = llama_nop;
  4036. // KQ_scale
  4037. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  4038. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  4039. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4040. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd_head)));
  4041. }
  4042. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  4043. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  4044. offload_func_kq(KQ_mask);
  4045. ggml_set_name(KQ_mask, "KQ_mask");
  4046. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  4047. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4048. float * data = (float *) KQ_mask->data;
  4049. memset(data, 0, ggml_nbytes(KQ_mask));
  4050. for (int h = 0; h < 1; ++h) {
  4051. for (int j = 0; j < n_tokens; ++j) {
  4052. const llama_pos pos = batch.pos[j];
  4053. const llama_seq_id seq_id = batch.seq_id[j][0];
  4054. for (int i = 0; i < n_kv; ++i) {
  4055. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  4056. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  4057. }
  4058. }
  4059. }
  4060. }
  4061. }
  4062. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  4063. offload_func_kq(KQ_pos);
  4064. ggml_set_name(KQ_pos, "KQ_pos");
  4065. ggml_allocr_alloc(lctx.alloc, KQ_pos);
  4066. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4067. int * data = (int *) KQ_pos->data;
  4068. for (int i = 0; i < n_tokens; ++i) {
  4069. data[i] = batch.pos[i];
  4070. }
  4071. }
  4072. if (do_rope_shift) {
  4073. struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  4074. offload_func_kq(K_shift);
  4075. ggml_set_name(K_shift, "K_shift");
  4076. ggml_allocr_alloc(lctx.alloc, K_shift);
  4077. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4078. int * data = (int *) K_shift->data;
  4079. for (int i = 0; i < n_ctx; ++i) {
  4080. data[i] = kv_self.cells[i].delta;
  4081. }
  4082. }
  4083. for (int il = 0; il < n_layer; ++il) {
  4084. struct ggml_tensor * tmp =
  4085. // we rotate only the first n_rot dimensions.
  4086. ggml_rope_custom_inplace(ctx0,
  4087. ggml_view_3d(ctx0, kv_self.k,
  4088. n_rot, n_head, n_ctx,
  4089. ggml_element_size(kv_self.k)*n_embd_gqa,
  4090. ggml_element_size(kv_self.k)*n_embd_head,
  4091. ggml_element_size(kv_self.k)*(n_embd_head*n_ctx*il)
  4092. ),
  4093. K_shift, n_rot, 2, 0, freq_base, freq_scale);
  4094. offload_func_kq(tmp);
  4095. ggml_build_forward_expand(gf, tmp);
  4096. }
  4097. }
  4098. for (int il=0; il < n_layer; ++il) {
  4099. struct ggml_tensor * residual = inpL;
  4100. offload_func_t offload_func = llama_nop;
  4101. {
  4102. cur = ggml_norm(ctx0, inpL, norm_eps);
  4103. offload_func(cur);
  4104. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  4105. offload_func(cur);
  4106. cur = ggml_add(ctx0, cur, model.layers[il].attn_norm_b);
  4107. offload_func(cur);
  4108. ggml_format_name(cur, "input_layernorm_%d", il);
  4109. }
  4110. // self attention
  4111. {
  4112. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  4113. offload_func_kq(cur);
  4114. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4115. offload_func_kq(cur);
  4116. // split qkv
  4117. GGML_ASSERT(n_head_kv == n_head);
  4118. ggml_set_name(cur, format("qkv_%d", il).c_str());
  4119. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  4120. offload_func_kq(tmpqkv);
  4121. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  4122. offload_func_kq(tmpqkv_perm);
  4123. ggml_format_name(tmpqkv_perm, "tmpqkv_perm_%d", il);
  4124. struct ggml_tensor * tmpq = ggml_view_3d(
  4125. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4126. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4127. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4128. 0
  4129. );
  4130. offload_func_kq(tmpq);
  4131. struct ggml_tensor * tmpk = ggml_view_3d(
  4132. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4133. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4134. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4135. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  4136. );
  4137. offload_func_kq(tmpk);
  4138. // Q/K Layernorm
  4139. tmpq = ggml_norm(ctx0, tmpq, norm_eps);
  4140. offload_func_kq(tmpq);
  4141. tmpq = ggml_mul(ctx0, tmpq, model.layers[il].attn_q_norm);
  4142. offload_func_kq(tmpq);
  4143. tmpq = ggml_add(ctx0, tmpq, model.layers[il].attn_q_norm_b);
  4144. offload_func_kq(tmpq);
  4145. tmpk = ggml_norm(ctx0, tmpk, norm_eps);
  4146. offload_func_v(tmpk);
  4147. tmpk = ggml_mul(ctx0, tmpk, model.layers[il].attn_k_norm);
  4148. offload_func_v(tmpk);
  4149. tmpk = ggml_add(ctx0, tmpk, model.layers[il].attn_k_norm_b);
  4150. offload_func_v(tmpk);
  4151. // RoPE the first n_rot of q/k, pass the other half, and concat.
  4152. struct ggml_tensor * qrot = ggml_view_3d(
  4153. ctx0, tmpq, n_rot, n_head, n_tokens,
  4154. ggml_element_size(tmpq) * n_embd_head,
  4155. ggml_element_size(tmpq) * n_embd_head * n_head,
  4156. 0
  4157. );
  4158. offload_func_kq(qrot);
  4159. ggml_format_name(qrot, "qrot_%d", il);
  4160. struct ggml_tensor * krot = ggml_view_3d(
  4161. ctx0, tmpk, n_rot, n_head, n_tokens,
  4162. ggml_element_size(tmpk) * n_embd_head,
  4163. ggml_element_size(tmpk) * n_embd_head * n_head,
  4164. 0
  4165. );
  4166. offload_func_kq(krot);
  4167. ggml_format_name(krot, "krot_%d", il);
  4168. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  4169. struct ggml_tensor * qpass = ggml_view_3d(
  4170. ctx0, tmpq, n_rot, n_head, n_tokens,
  4171. ggml_element_size(tmpq) * n_embd_head,
  4172. ggml_element_size(tmpq) * n_embd_head * n_head,
  4173. ggml_element_size(tmpq) * n_rot
  4174. );
  4175. offload_func_kq(qpass);
  4176. ggml_format_name(qpass, "qpass_%d", il);
  4177. struct ggml_tensor * kpass = ggml_view_3d(
  4178. ctx0, tmpk, n_rot, n_head, n_tokens,
  4179. ggml_element_size(tmpk) * n_embd_head,
  4180. ggml_element_size(tmpk) * n_embd_head * n_head,
  4181. ggml_element_size(tmpk) * n_rot
  4182. );
  4183. offload_func_kq(kpass);
  4184. ggml_format_name(kpass, "kpass_%d", il);
  4185. struct ggml_tensor * qrotated = ggml_rope_custom(
  4186. ctx0, qrot, KQ_pos, n_rot, 2, 0, freq_base, freq_scale
  4187. );
  4188. offload_func_kq(qrotated);
  4189. struct ggml_tensor * krotated = ggml_rope_custom(
  4190. ctx0, krot, KQ_pos, n_rot, 2, 0, freq_base, freq_scale
  4191. );
  4192. offload_func_kq(krotated);
  4193. // ggml currently only supports concatenation on dim=2
  4194. // so we need to permute qrot, qpass, concat, then permute back.
  4195. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  4196. offload_func_kq(qrotated);
  4197. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  4198. offload_func_kq(krotated);
  4199. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  4200. offload_func_kq(qpass);
  4201. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  4202. offload_func_kq(kpass);
  4203. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  4204. offload_func_kq(Qcur);
  4205. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  4206. offload_func_kq(Kcur);
  4207. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 1, 2, 0, 3));
  4208. offload_func_kq(Q);
  4209. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  4210. offload_func_kq(Kcur);
  4211. {
  4212. struct ggml_tensor * tmpv = ggml_view_3d(
  4213. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4214. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4215. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4216. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  4217. );
  4218. offload_func_v(tmpv);
  4219. // store K, V in cache
  4220. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, n_tokens));
  4221. offload_func_v(Vcur);
  4222. ggml_set_name(Vcur, "Vcur");
  4223. struct ggml_tensor * k = ggml_view_1d(
  4224. ctx0, kv_self.k, n_tokens*n_embd_gqa,
  4225. (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head)
  4226. );
  4227. offload_func_kq(k);
  4228. ggml_set_name(k, "k");
  4229. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  4230. ( n_ctx)*ggml_element_size(kv_self.v),
  4231. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  4232. offload_func_v(v);
  4233. ggml_set_name(v, "v");
  4234. // important: storing RoPE-ed version of K in the KV cache!
  4235. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  4236. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  4237. }
  4238. struct ggml_tensor * K = ggml_view_3d(ctx0, kv_self.k,
  4239. n_embd_head, n_kv, n_head_kv,
  4240. ggml_element_size(kv_self.k)*n_embd_gqa,
  4241. ggml_element_size(kv_self.k)*n_embd_head,
  4242. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  4243. offload_func_kq(K);
  4244. ggml_format_name(K, "K_%d", il);
  4245. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  4246. offload_func_kq(KQ);
  4247. ggml_set_name(KQ, "KQ");
  4248. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  4249. offload_func_kq(KQ_scaled);
  4250. ggml_set_name(KQ_scaled, "KQ_scaled");
  4251. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
  4252. offload_func_kq(KQ_masked);
  4253. ggml_set_name(KQ_masked, "KQ_masked");
  4254. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  4255. offload_func_kq(KQ_soft_max);
  4256. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  4257. struct ggml_tensor * V =
  4258. ggml_view_3d(ctx0, kv_self.v,
  4259. n_kv, n_embd_head, n_head_kv,
  4260. ggml_element_size(kv_self.v)*n_ctx,
  4261. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  4262. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  4263. offload_func_v(V);
  4264. ggml_set_name(V, "V");
  4265. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  4266. offload_func_v(KQV);
  4267. ggml_set_name(KQV, "KQV");
  4268. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  4269. offload_func_v(KQV_merged);
  4270. ggml_set_name(KQV_merged, "KQV_merged");
  4271. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  4272. offload_func_v(cur);
  4273. ggml_set_name(cur, "KQV_merged_contiguous");
  4274. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  4275. offload_func(cur);
  4276. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  4277. offload_func(cur);
  4278. ggml_set_name(cur, "result_wo");
  4279. }
  4280. struct ggml_tensor * inpFF = ggml_add(ctx0, residual, cur);
  4281. offload_func(inpFF);
  4282. ggml_set_name(inpFF, "inpFF");
  4283. {
  4284. // MLP
  4285. {
  4286. // Norm
  4287. cur = ggml_norm(ctx0, inpFF, norm_eps);
  4288. offload_func(cur);
  4289. cur = ggml_add(ctx0,
  4290. ggml_mul(ctx0, cur, model.layers[il].ffn_norm),
  4291. model.layers[il].ffn_norm_b
  4292. );
  4293. ggml_set_name(cur, "ffn_norm");
  4294. offload_func(cur);
  4295. }
  4296. cur = ggml_mul_mat(ctx0, model.layers[il].w3, cur);
  4297. offload_func(cur);
  4298. cur = ggml_add(ctx0, cur, model.layers[il].b3);
  4299. offload_func(cur);
  4300. ggml_set_name(cur, "result_ffn_up");
  4301. cur = ggml_sqr(ctx0, ggml_relu(ctx0, cur));
  4302. ggml_set_name(cur, "result_ffn_act");
  4303. offload_func(cur);
  4304. offload_func(cur->src[0]);
  4305. cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
  4306. offload_func(cur);
  4307. cur = ggml_add(ctx0,
  4308. cur,
  4309. model.layers[il].b2);
  4310. offload_func(cur);
  4311. ggml_set_name(cur, "outFF");
  4312. }
  4313. cur = ggml_add(ctx0, cur, inpFF);
  4314. offload_func(cur);
  4315. ggml_set_name(cur, "inpFF_+_outFF");
  4316. inpL = cur;
  4317. }
  4318. cur = inpL;
  4319. {
  4320. cur = ggml_norm(ctx0, cur, norm_eps);
  4321. offload_func_nr(cur);
  4322. cur = ggml_mul(ctx0, cur, model.output_norm);
  4323. offload_func_nr(cur);
  4324. cur = ggml_add(ctx0, cur, model.output_norm_b);
  4325. // offload_func_nr(cur);
  4326. ggml_set_name(cur, "result_norm");
  4327. }
  4328. cur = ggml_mul_mat(ctx0, model.output, cur);
  4329. ggml_set_name(cur, "result_output");
  4330. ggml_build_forward_expand(gf, cur);
  4331. ggml_free(ctx0);
  4332. return gf;
  4333. }
  4334. static struct ggml_cgraph * llm_build_bloom(
  4335. llama_context & lctx,
  4336. const llama_batch & batch) {
  4337. const auto & model = lctx.model;
  4338. const auto & hparams = model.hparams;
  4339. const auto & cparams = lctx.cparams;
  4340. const auto & kv_self = lctx.kv_self;
  4341. GGML_ASSERT(!!kv_self.ctx);
  4342. const int64_t n_embd = hparams.n_embd;
  4343. const int64_t n_layer = hparams.n_layer;
  4344. const int64_t n_ctx = cparams.n_ctx;
  4345. const int64_t n_head = hparams.n_head;
  4346. const int64_t n_head_kv = hparams.n_head_kv;
  4347. const int64_t n_embd_head = hparams.n_embd_head();
  4348. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  4349. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4350. const float norm_eps = hparams.f_norm_eps;
  4351. const int32_t n_tokens = batch.n_tokens;
  4352. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  4353. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  4354. auto & buf_compute = lctx.buf_compute;
  4355. struct ggml_init_params params = {
  4356. /*.mem_size =*/ buf_compute.size,
  4357. /*.mem_buffer =*/ buf_compute.data,
  4358. /*.no_alloc =*/ false,
  4359. };
  4360. params.no_alloc = true;
  4361. struct ggml_context * ctx0 = ggml_init(params);
  4362. ggml_cgraph * gf = ggml_new_graph(ctx0);
  4363. struct ggml_tensor * cur;
  4364. struct ggml_tensor * token;
  4365. struct ggml_tensor * inpL;
  4366. if (batch.token) {
  4367. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  4368. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  4369. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4370. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  4371. }
  4372. ggml_set_name(inp_tokens, "inp_tokens");
  4373. token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  4374. } else {
  4375. #ifdef GGML_USE_MPI
  4376. GGML_ASSERT(false && "not implemented");
  4377. #endif
  4378. token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  4379. ggml_allocr_alloc(lctx.alloc, token);
  4380. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4381. memcpy(token->data, batch.embd, n_tokens * n_embd * ggml_element_size(token));
  4382. }
  4383. }
  4384. // KQ_scale
  4385. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  4386. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  4387. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  4388. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4389. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  4390. }
  4391. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4392. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  4393. ggml_set_name(KQ_mask, "KQ_mask");
  4394. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  4395. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4396. float * data = (float *) KQ_mask->data;
  4397. memset(data, 0, ggml_nbytes(KQ_mask));
  4398. for (int h = 0; h < 1; ++h) {
  4399. for (int j = 0; j < n_tokens; ++j) {
  4400. const llama_pos pos = batch.pos[j];
  4401. const llama_seq_id seq_id = batch.seq_id[j][0];
  4402. for (int i = 0; i < n_kv; ++i) {
  4403. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  4404. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  4405. }
  4406. }
  4407. }
  4408. }
  4409. }
  4410. // norm
  4411. {
  4412. inpL = ggml_norm(ctx0, token, norm_eps);
  4413. inpL = ggml_add(ctx0, ggml_mul(ctx0, inpL, model.tok_norm), model.tok_norm_b);
  4414. }
  4415. ggml_set_name(inpL, "inpL");
  4416. for (int il = 0; il < n_layer; ++il) {
  4417. {
  4418. // Norm
  4419. cur = ggml_norm(ctx0, inpL, norm_eps);
  4420. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
  4421. }
  4422. {
  4423. // Self Attention
  4424. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
  4425. struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*n_embd);
  4426. struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*n_embd);
  4427. struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa));
  4428. struct ggml_tensor * Qcur = tmpq;
  4429. struct ggml_tensor * Kcur = tmpk;
  4430. // store key and value to memory
  4431. {
  4432. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  4433. ggml_set_name(Vcur, "Vcur");
  4434. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  4435. ggml_set_name(k, "k");
  4436. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  4437. ( n_ctx)*ggml_element_size(kv_self.v),
  4438. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  4439. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  4440. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  4441. }
  4442. struct ggml_tensor * Q =
  4443. ggml_permute(ctx0,
  4444. ggml_cpy(ctx0,
  4445. Qcur,
  4446. ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, n_tokens)),
  4447. 0, 2, 1, 3);
  4448. ggml_set_name(Q, "Q");
  4449. struct ggml_tensor * K =
  4450. ggml_view_3d(ctx0, kv_self.k,
  4451. n_embd_head, n_kv, n_head_kv,
  4452. ggml_element_size(kv_self.k)*n_embd_gqa,
  4453. ggml_element_size(kv_self.k)*n_embd_head,
  4454. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  4455. ggml_set_name(K, "K");
  4456. // K * Q
  4457. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  4458. ggml_set_name(KQ, "KQ");
  4459. // KQ_scaled = KQ / sqrt(n_embd_head)
  4460. // KQ_scaled shape [n_past + n_tokens, n_tokens, n_head, 1]
  4461. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  4462. ggml_set_name(KQ_scaled, "KQ_scaled");
  4463. struct ggml_tensor * KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, /*n_past*/ kv_head, n_head, 8);
  4464. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  4465. // KQ_masked = mask_past(KQ_scaled)
  4466. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  4467. ggml_set_name(KQ_masked, "KQ_masked");
  4468. // KQ = soft_max(KQ_masked)
  4469. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  4470. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  4471. // split cached V into n_head heads
  4472. struct ggml_tensor * V =
  4473. ggml_view_3d(ctx0, kv_self.v,
  4474. n_kv, n_embd_head, n_head_kv,
  4475. ggml_element_size(kv_self.v)*n_ctx,
  4476. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  4477. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  4478. ggml_set_name(V, "V");
  4479. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  4480. ggml_set_name(KQV, "KQV");
  4481. // KQV_merged = KQV.permute(0, 2, 1, 3)
  4482. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  4483. ggml_set_name(KQV_merged, "KQV_merged");
  4484. // cur = KQV_merged.contiguous().view(n_embd, n_tokens)
  4485. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  4486. ggml_set_name(cur, "KQV_merged_contiguous");
  4487. }
  4488. // Projection
  4489. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
  4490. // Add the input
  4491. cur = ggml_add(ctx0, cur, inpL);
  4492. struct ggml_tensor * inpFF = cur;
  4493. // FF
  4494. {
  4495. // Norm
  4496. {
  4497. cur = ggml_norm(ctx0, inpFF, norm_eps);
  4498. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
  4499. }
  4500. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
  4501. // GELU activation
  4502. cur = ggml_gelu(ctx0, cur);
  4503. // Projection
  4504. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
  4505. }
  4506. inpL = ggml_add(ctx0, cur, inpFF);
  4507. }
  4508. // Output Norm
  4509. {
  4510. cur = ggml_norm(ctx0, inpL, norm_eps);
  4511. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
  4512. }
  4513. ggml_set_name(cur, "result_norm");
  4514. cur = ggml_mul_mat(ctx0, model.output, cur);
  4515. ggml_set_name(cur, "result_output");
  4516. ggml_build_forward_expand(gf, cur);
  4517. ggml_free(ctx0);
  4518. return gf;
  4519. }
  4520. static struct ggml_cgraph * llm_build_mpt(
  4521. llama_context & lctx,
  4522. const llama_batch & batch) {
  4523. const auto & model = lctx.model;
  4524. const auto & hparams = model.hparams;
  4525. const auto & cparams = lctx.cparams;
  4526. const auto & kv_self = lctx.kv_self;
  4527. GGML_ASSERT(!!kv_self.ctx);
  4528. const int64_t n_embd = hparams.n_embd;
  4529. const int64_t n_layer = hparams.n_layer;
  4530. const int64_t n_ctx = cparams.n_ctx;
  4531. const int64_t n_head = hparams.n_head;
  4532. const int64_t n_head_kv = hparams.n_head_kv;
  4533. const int64_t n_embd_head = hparams.n_embd_head();
  4534. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  4535. const float norm_eps = hparams.f_norm_eps;
  4536. const float clamp_kqv = hparams.f_clamp_kqv;
  4537. const float max_alibi_bias = hparams.f_max_alibi_bias;
  4538. const int n_gpu_layers = model.n_gpu_layers;
  4539. const int32_t n_tokens = batch.n_tokens;
  4540. const int32_t n_kv = ggml_allocr_is_measure(lctx.alloc) ? n_ctx : kv_self.n;
  4541. const int32_t kv_head = ggml_allocr_is_measure(lctx.alloc) ? n_ctx - n_tokens : kv_self.head;
  4542. auto & buf_compute = lctx.buf_compute;
  4543. struct ggml_init_params params = {
  4544. /*.mem_size =*/ buf_compute.size,
  4545. /*.mem_buffer =*/ buf_compute.data,
  4546. /*.no_alloc =*/ false,
  4547. };
  4548. params.no_alloc = true;
  4549. struct ggml_context * ctx0 = ggml_init(params);
  4550. ggml_cgraph * gf = ggml_new_graph(ctx0);
  4551. struct ggml_tensor * cur;
  4552. struct ggml_tensor * inpL;
  4553. //int warmup = 0;
  4554. if (batch.token) {
  4555. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  4556. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  4557. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4558. memcpy(inp_tokens->data, batch.token, n_tokens*ggml_element_size(inp_tokens));
  4559. //warmup = ((uint32_t*) inp_tokens->data)[0] == 0;
  4560. }
  4561. ggml_set_name(inp_tokens, "inp_tokens");
  4562. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  4563. } else {
  4564. #ifdef GGML_USE_MPI
  4565. GGML_ASSERT(false && "not implemented");
  4566. #endif
  4567. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_tokens);
  4568. ggml_allocr_alloc(lctx.alloc, inpL);
  4569. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4570. memcpy(inpL->data, batch.embd, n_tokens * n_embd * ggml_element_size(inpL));
  4571. }
  4572. }
  4573. const int i_gpu_start = n_layer - n_gpu_layers;
  4574. (void) i_gpu_start;
  4575. // offload functions set the tensor output backend to GPU
  4576. // tensors are GPU-accelerated if any input or the output has been offloaded
  4577. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  4578. offload_func_t offload_func_kq = llama_nop;
  4579. offload_func_t offload_func_v = llama_nop;
  4580. #ifdef GGML_USE_CUBLAS
  4581. if (n_gpu_layers > n_layer) {
  4582. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  4583. }
  4584. if (n_gpu_layers > n_layer + 1) {
  4585. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  4586. }
  4587. if (n_gpu_layers > n_layer + 2) {
  4588. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  4589. }
  4590. #endif // GGML_USE_CUBLAS
  4591. // KQ_scale
  4592. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  4593. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  4594. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  4595. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4596. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  4597. }
  4598. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4599. struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
  4600. offload_func_kq(KQ_mask);
  4601. ggml_set_name(KQ_mask, "KQ_mask");
  4602. ggml_allocr_alloc(lctx.alloc, KQ_mask);
  4603. if (!ggml_allocr_is_measure(lctx.alloc)) {
  4604. float * data = (float *) KQ_mask->data;
  4605. memset(data, 0, ggml_nbytes(KQ_mask));
  4606. for (int h = 0; h < 1; ++h) {
  4607. for (int j = 0; j < n_tokens; ++j) {
  4608. const llama_pos pos = batch.pos[j];
  4609. const llama_seq_id seq_id = batch.seq_id[j][0];
  4610. for (int i = 0; i < n_kv; ++i) {
  4611. if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
  4612. data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
  4613. }
  4614. }
  4615. }
  4616. }
  4617. }
  4618. for (int il = 0; il < n_layer; ++il) {
  4619. struct ggml_tensor * attn_norm;
  4620. offload_func_t offload_func = llama_nop;
  4621. #ifdef GGML_USE_CUBLAS
  4622. if (il >= i_gpu_start) {
  4623. offload_func = ggml_cuda_assign_buffers_no_alloc;
  4624. }
  4625. #endif // GGML_USE_CUBLAS
  4626. // self-attention
  4627. // TODO: refactor into common function (shared with LLaMA)
  4628. {
  4629. attn_norm = ggml_norm(ctx0, inpL, norm_eps);
  4630. offload_func(attn_norm);
  4631. attn_norm = ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm);
  4632. offload_func(attn_norm);
  4633. if (1) {
  4634. cur = attn_norm;
  4635. }
  4636. // compute QKV
  4637. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  4638. offload_func_kq(cur);
  4639. if (clamp_kqv > 0.0f) {
  4640. cur = ggml_clamp(ctx0, cur, -clamp_kqv, clamp_kqv);
  4641. offload_func_kq(cur);
  4642. }
  4643. const size_t wsize = ggml_type_size(cur->type);
  4644. struct ggml_tensor * Qcur = ggml_view_3d(
  4645. ctx0, cur, n_embd_head, n_head, n_tokens,
  4646. wsize * n_embd_head,
  4647. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  4648. 0);
  4649. offload_func_kq(Qcur);
  4650. struct ggml_tensor * Kcur = ggml_view_3d(
  4651. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  4652. wsize * n_embd_head,
  4653. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  4654. wsize * n_embd_head * n_head);
  4655. offload_func_kq(Kcur);
  4656. struct ggml_tensor * tmpv = ggml_view_3d(
  4657. ctx0, cur, n_embd_head, n_head_kv, n_tokens,
  4658. wsize * n_embd_head,
  4659. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  4660. wsize * n_embd_head * (n_head + n_head_kv));
  4661. offload_func_kq(Kcur);
  4662. ggml_set_name(Qcur, "Qcur");
  4663. ggml_set_name(Kcur, "Kcur");
  4664. {
  4665. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, n_tokens));
  4666. offload_func_v(Vcur);
  4667. offload_func_v(Vcur->src[0]->src[0]);
  4668. ggml_set_name(Vcur, "Vcur");
  4669. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, n_tokens*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + kv_head));
  4670. offload_func_kq(k);
  4671. ggml_set_name(k, "k");
  4672. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, n_tokens, n_embd_gqa,
  4673. ( n_ctx)*ggml_element_size(kv_self.v),
  4674. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + kv_head*ggml_element_size(kv_self.v));
  4675. offload_func_v(v);
  4676. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  4677. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  4678. }
  4679. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  4680. offload_func_kq(Q);
  4681. ggml_set_name(Q, "Q");
  4682. struct ggml_tensor * K =
  4683. ggml_view_3d(ctx0, kv_self.k,
  4684. n_embd_head, n_kv, n_head_kv,
  4685. ggml_element_size(kv_self.k)*n_embd_gqa,
  4686. ggml_element_size(kv_self.k)*n_embd_head,
  4687. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  4688. offload_func_kq(K);
  4689. ggml_set_name(K, "K");
  4690. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  4691. offload_func_kq(KQ);
  4692. ggml_set_name(KQ, "KQ");
  4693. struct ggml_tensor * KQ_scaled = ggml_scale(ctx0, KQ, KQ_scale);
  4694. offload_func_kq(KQ_scaled);
  4695. ggml_set_name(KQ_scaled, "KQ_scaled");
  4696. // TODO: replace with ggml_add()
  4697. struct ggml_tensor * KQ_scaled_alibi =
  4698. ggml_alibi(ctx0, KQ_scaled, 0, n_head, max_alibi_bias);
  4699. offload_func_kq(KQ_scaled_alibi);
  4700. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  4701. struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled_alibi, KQ_mask);
  4702. offload_func_kq(KQ_masked);
  4703. ggml_set_name(KQ_masked, "KQ_masked");
  4704. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  4705. offload_func_v(KQ_soft_max);
  4706. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  4707. struct ggml_tensor * V =
  4708. ggml_view_3d(ctx0, kv_self.v,
  4709. n_kv, n_embd_head, n_head_kv,
  4710. ggml_element_size(kv_self.v)*n_ctx,
  4711. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  4712. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  4713. offload_func_v(V);
  4714. ggml_set_name(V, "V");
  4715. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  4716. offload_func_v(KQV);
  4717. ggml_set_name(KQV, "KQV");
  4718. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  4719. offload_func_v(KQV_merged);
  4720. ggml_set_name(KQV_merged, "KQV_merged");
  4721. cur = ggml_cont_2d(ctx0, KQV_merged, n_embd, n_tokens);
  4722. offload_func_v(cur);
  4723. ggml_set_name(cur, "KQV_merged_contiguous");
  4724. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  4725. offload_func(cur);
  4726. ggml_set_name(cur, "result_wo");
  4727. }
  4728. // Add the input
  4729. cur = ggml_add(ctx0, cur, inpL);
  4730. offload_func(cur);
  4731. struct ggml_tensor * attn_out = cur;
  4732. // feed forward
  4733. {
  4734. // Norm
  4735. {
  4736. cur = ggml_norm(ctx0, attn_out, norm_eps);
  4737. offload_func(cur);
  4738. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  4739. offload_func(cur);
  4740. }
  4741. cur = ggml_mul_mat(ctx0, model.layers[il].w3, cur);
  4742. offload_func(cur);
  4743. cur = ggml_gelu(ctx0, cur);
  4744. offload_func(cur);
  4745. cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
  4746. offload_func(cur);
  4747. }
  4748. cur = ggml_add(ctx0, cur, attn_out);
  4749. offload_func(cur);
  4750. // input for next layer
  4751. inpL = cur;
  4752. }
  4753. cur = inpL;
  4754. // norm
  4755. {
  4756. cur = ggml_norm(ctx0, cur, norm_eps);
  4757. offload_func_nr(cur);
  4758. cur = ggml_mul(ctx0, cur, model.output_norm);
  4759. ggml_set_name(cur, "result_norm");
  4760. }
  4761. cur = ggml_mul_mat(ctx0, model.output, cur);
  4762. ggml_set_name(cur, "result_output");
  4763. ggml_build_forward_expand(gf, cur);
  4764. ggml_free(ctx0);
  4765. return gf;
  4766. }
  4767. static struct ggml_cgraph * llama_build_graph(
  4768. llama_context & lctx,
  4769. const llama_batch & batch) {
  4770. const auto & model = lctx.model;
  4771. struct ggml_cgraph * result = NULL;
  4772. switch (model.arch) {
  4773. case LLM_ARCH_LLAMA:
  4774. {
  4775. result = llm_build_llama(lctx, batch);
  4776. } break;
  4777. case LLM_ARCH_BAICHUAN:
  4778. {
  4779. result = llm_build_baichaun(lctx, batch);
  4780. } break;
  4781. case LLM_ARCH_FALCON:
  4782. {
  4783. result = llm_build_falcon(lctx, batch);
  4784. } break;
  4785. case LLM_ARCH_STARCODER:
  4786. {
  4787. result = llm_build_starcoder(lctx, batch);
  4788. } break;
  4789. case LLM_ARCH_PERSIMMON:
  4790. {
  4791. result = llm_build_persimmon(lctx, batch);
  4792. } break;
  4793. case LLM_ARCH_REFACT:
  4794. {
  4795. result = llm_build_refact(lctx, batch);
  4796. } break;
  4797. case LLM_ARCH_BLOOM:
  4798. {
  4799. result = llm_build_bloom(lctx, batch);
  4800. } break;
  4801. case LLM_ARCH_MPT:
  4802. {
  4803. result = llm_build_mpt(lctx, batch);
  4804. } break;
  4805. default:
  4806. GGML_ASSERT(false);
  4807. }
  4808. return result;
  4809. }
  4810. // decode a batch of tokens by evaluating the transformer
  4811. //
  4812. // - lctx: llama context
  4813. // - batch: batch to evaluate
  4814. //
  4815. // return 0 on success
  4816. // return positive int on warning
  4817. // return negative int on error
  4818. //
  4819. static int llama_decode_internal(
  4820. llama_context & lctx,
  4821. llama_batch batch) {
  4822. const uint32_t n_tokens = batch.n_tokens;
  4823. if (n_tokens == 0) {
  4824. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  4825. return -1;
  4826. }
  4827. const auto & model = lctx.model;
  4828. const auto & hparams = model.hparams;
  4829. const auto & cparams = lctx.cparams;
  4830. const auto n_batch = cparams.n_batch;
  4831. GGML_ASSERT(n_tokens <= n_batch);
  4832. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  4833. GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
  4834. const int64_t t_start_us = ggml_time_us();
  4835. #ifdef GGML_USE_MPI
  4836. // TODO: needs fix after #3228
  4837. GGML_ASSERT(false && "not implemented");
  4838. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  4839. #endif
  4840. GGML_ASSERT(n_threads > 0);
  4841. auto & kv_self = lctx.kv_self;
  4842. GGML_ASSERT(!!kv_self.ctx);
  4843. const int64_t n_embd = hparams.n_embd;
  4844. const int64_t n_vocab = hparams.n_vocab;
  4845. // helpers for smoother batch API transistion
  4846. // after deprecating the llama_eval calls, these will be removed
  4847. std::vector<llama_pos> pos;
  4848. std::vector<int32_t> n_seq_id;
  4849. std::vector<llama_seq_id *> seq_id_arr;
  4850. std::vector<std::vector<llama_seq_id>> seq_id;
  4851. if (batch.pos == nullptr) {
  4852. pos.resize(n_tokens);
  4853. for (uint32_t i = 0; i < n_tokens; i++) {
  4854. pos[i] = batch.all_pos_0 + i*batch.all_pos_1;
  4855. }
  4856. batch.pos = pos.data();
  4857. }
  4858. if (batch.seq_id == nullptr) {
  4859. n_seq_id.resize(n_tokens);
  4860. seq_id.resize(n_tokens);
  4861. seq_id_arr.resize(n_tokens);
  4862. for (uint32_t i = 0; i < n_tokens; i++) {
  4863. n_seq_id[i] = 1;
  4864. seq_id[i].resize(1);
  4865. seq_id[i][0] = batch.all_seq_id;
  4866. seq_id_arr[i] = seq_id[i].data();
  4867. }
  4868. batch.n_seq_id = n_seq_id.data();
  4869. batch.seq_id = seq_id_arr.data();
  4870. }
  4871. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  4872. return 1;
  4873. }
  4874. // a heuristic, to avoid attending the full cache if it is not yet utilized
  4875. // after enough generations, the benefit from this heuristic disappears
  4876. // if we start defragmenting the cache, the benefit from this will be more important
  4877. //kv_self.n = std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)); // TODO: this might be better for CUDA?
  4878. kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, llama_kv_cache_cell_max(kv_self)));
  4879. //printf("kv_self.n = %d\n", kv_self.n);
  4880. ggml_allocr_reset(lctx.alloc);
  4881. ggml_cgraph * gf = llama_build_graph(lctx, batch);
  4882. ggml_allocr_alloc_graph(lctx.alloc, gf);
  4883. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  4884. struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
  4885. GGML_ASSERT(strcmp(res->name, "result_output") == 0);
  4886. GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
  4887. #ifdef GGML_USE_CUBLAS
  4888. for (int i = 0; i < gf->n_leafs; i++) {
  4889. ggml_tensor * node = gf->leafs[i];
  4890. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  4891. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  4892. ggml_cuda_copy_to_device(node);
  4893. }
  4894. }
  4895. for (int i = 0; i < gf->n_nodes; i++) {
  4896. ggml_tensor * node = gf->nodes[i];
  4897. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  4898. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  4899. }
  4900. }
  4901. ggml_cuda_set_mul_mat_q(cparams.mul_mat_q);
  4902. // HACK: ggml-alloc may change the tensor backend when reusing a parent, so force output to be on the CPU here if needed
  4903. if (!lctx.embedding.empty()) {
  4904. embeddings->backend = GGML_BACKEND_CPU;
  4905. }
  4906. res->backend = GGML_BACKEND_CPU;
  4907. #endif
  4908. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  4909. // for big prompts, if BLAS is enabled, it is better to use only one thread
  4910. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  4911. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  4912. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  4913. // with the BLAS calls. need a better solution
  4914. if (n_tokens >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  4915. n_threads = std::min(4, n_threads);
  4916. }
  4917. // If all tensors can be run on the GPU then using more than 1 thread is detrimental.
  4918. const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA ||
  4919. model.arch == LLM_ARCH_BAICHUAN ||
  4920. model.arch == LLM_ARCH_FALCON ||
  4921. model.arch == LLM_ARCH_REFACT ||
  4922. model.arch == LLM_ARCH_MPT;
  4923. const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
  4924. if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {
  4925. n_threads = 1;
  4926. }
  4927. #if GGML_USE_MPI
  4928. const int64_t n_layer = hparams.n_layer;
  4929. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  4930. #endif
  4931. #ifdef GGML_USE_METAL
  4932. if (lctx.ctx_metal) {
  4933. ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
  4934. ggml_metal_graph_compute(lctx.ctx_metal, gf);
  4935. } else {
  4936. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  4937. }
  4938. #else
  4939. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  4940. #endif
  4941. #if GGML_USE_MPI
  4942. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  4943. #endif
  4944. // update the kv ring buffer
  4945. lctx.kv_self.has_shift = false;
  4946. lctx.kv_self.head += n_tokens;
  4947. // Ensure kv cache head points to a valid index.
  4948. if (lctx.kv_self.head >= lctx.kv_self.size) {
  4949. lctx.kv_self.head = 0;
  4950. }
  4951. #ifdef GGML_PERF
  4952. // print timing information per ggml operation (for debugging purposes)
  4953. // requires GGML_PERF to be defined
  4954. ggml_graph_print(gf);
  4955. #endif
  4956. // plot the computation graph in dot format (for debugging purposes)
  4957. //if (n_past%100 == 0) {
  4958. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  4959. //}
  4960. // extract logits
  4961. {
  4962. auto & logits_out = lctx.logits;
  4963. if (batch.logits) {
  4964. logits_out.resize(n_vocab * n_tokens);
  4965. for (uint32_t i = 0; i < n_tokens; i++) {
  4966. if (batch.logits[i] == 0) {
  4967. continue;
  4968. }
  4969. memcpy(logits_out.data() + (n_vocab*i), (float *) ggml_get_data(res) + (n_vocab*i), sizeof(float)*n_vocab);
  4970. }
  4971. } else if (lctx.logits_all) {
  4972. logits_out.resize(n_vocab * n_tokens);
  4973. memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*n_tokens);
  4974. } else {
  4975. logits_out.resize(n_vocab);
  4976. memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(n_tokens - 1)), sizeof(float)*n_vocab);
  4977. }
  4978. }
  4979. // extract embeddings
  4980. if (!lctx.embedding.empty()) {
  4981. auto & embedding_out = lctx.embedding;
  4982. embedding_out.resize(n_embd);
  4983. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(n_tokens - 1)), sizeof(float)*n_embd);
  4984. }
  4985. // measure the performance only for the single-token evals
  4986. if (n_tokens == 1) {
  4987. lctx.t_eval_us += ggml_time_us() - t_start_us;
  4988. lctx.n_eval++;
  4989. }
  4990. else if (n_tokens > 1) {
  4991. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  4992. lctx.n_p_eval += n_tokens;
  4993. }
  4994. // get a more accurate load time, upon first eval
  4995. // TODO: fix this
  4996. if (!lctx.has_evaluated_once) {
  4997. lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
  4998. lctx.has_evaluated_once = true;
  4999. }
  5000. return 0;
  5001. }
  5002. //
  5003. // tokenizer
  5004. //
  5005. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  5006. return vocab.type;
  5007. }
  5008. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  5009. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  5010. }
  5011. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  5012. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  5013. }
  5014. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  5015. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  5016. }
  5017. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  5018. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  5019. }
  5020. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  5021. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  5022. }
  5023. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  5024. GGML_ASSERT(llama_is_byte_token(vocab, id));
  5025. const auto& token_data = vocab.id_to_token.at(id);
  5026. switch (llama_vocab_get_type(vocab)) {
  5027. case LLAMA_VOCAB_TYPE_SPM: {
  5028. auto buf = token_data.text.substr(3, 2);
  5029. return strtol(buf.c_str(), NULL, 16);
  5030. }
  5031. case LLAMA_VOCAB_TYPE_BPE: {
  5032. GGML_ASSERT(false);
  5033. return unicode_to_bytes_bpe(token_data.text);
  5034. }
  5035. default:
  5036. GGML_ASSERT(false);
  5037. }
  5038. }
  5039. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  5040. switch (llama_vocab_get_type(vocab)) {
  5041. case LLAMA_VOCAB_TYPE_SPM: {
  5042. char buf[7];
  5043. int result = snprintf(buf, sizeof(buf), "<0x%02X>", ch);
  5044. GGML_ASSERT(0 <= result && result < 7);
  5045. return vocab.token_to_id.at(buf);
  5046. }
  5047. case LLAMA_VOCAB_TYPE_BPE: {
  5048. return vocab.token_to_id.at(bytes_to_unicode_bpe(ch));
  5049. }
  5050. default:
  5051. GGML_ASSERT(false);
  5052. }
  5053. }
  5054. static void llama_escape_whitespace(std::string & text) {
  5055. replace_all(text, " ", "\xe2\x96\x81");
  5056. }
  5057. static void llama_unescape_whitespace(std::string & word) {
  5058. replace_all(word, "\xe2\x96\x81", " ");
  5059. }
  5060. struct llm_symbol {
  5061. using index = int;
  5062. index prev;
  5063. index next;
  5064. const char * text;
  5065. size_t n;
  5066. };
  5067. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  5068. // SPM tokenizer
  5069. // original implementation:
  5070. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  5071. struct llm_bigram_spm {
  5072. struct comparator {
  5073. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  5074. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  5075. }
  5076. };
  5077. using queue_storage = std::vector<llm_bigram_spm>;
  5078. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  5079. llm_symbol::index left;
  5080. llm_symbol::index right;
  5081. float score;
  5082. size_t size;
  5083. };
  5084. struct llm_tokenizer_spm {
  5085. llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
  5086. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  5087. // split string into utf8 chars
  5088. int index = 0;
  5089. size_t offs = 0;
  5090. while (offs < text.size()) {
  5091. llm_symbol sym;
  5092. size_t len = utf8_len(text[offs]);
  5093. sym.text = text.c_str() + offs;
  5094. sym.n = std::min(len, text.size() - offs);
  5095. offs += sym.n;
  5096. sym.prev = index - 1;
  5097. sym.next = offs == text.size() ? -1 : index + 1;
  5098. index++;
  5099. symbols.emplace_back(sym);
  5100. }
  5101. // seed the work queue with all possible 2-character tokens.
  5102. for (size_t i = 1; i < symbols.size(); ++i) {
  5103. try_add_bigram(i - 1, i);
  5104. }
  5105. // keep substituting the highest frequency pairs for as long as we can.
  5106. while (!work_queue.empty()) {
  5107. auto bigram = work_queue.top();
  5108. work_queue.pop();
  5109. auto & left_sym = symbols[bigram.left];
  5110. auto & right_sym = symbols[bigram.right];
  5111. // if one of the symbols already got merged, skip it.
  5112. if (left_sym.n == 0 || right_sym.n == 0 ||
  5113. left_sym.n + right_sym.n != bigram.size) {
  5114. continue;
  5115. }
  5116. // merge the right sym into the left one
  5117. left_sym.n += right_sym.n;
  5118. right_sym.n = 0;
  5119. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  5120. // remove the right sym from the chain
  5121. left_sym.next = right_sym.next;
  5122. if (right_sym.next >= 0) {
  5123. symbols[right_sym.next].prev = bigram.left;
  5124. }
  5125. // find more substitutions
  5126. try_add_bigram(left_sym.prev, bigram.left);
  5127. try_add_bigram(bigram.left, left_sym.next);
  5128. }
  5129. for (int i = 0; i != -1; i = symbols[i].next) {
  5130. auto & symbol = symbols[i];
  5131. resegment(symbol, output);
  5132. }
  5133. }
  5134. private:
  5135. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  5136. auto text = std::string(symbol.text, symbol.n);
  5137. auto token = vocab.token_to_id.find(text);
  5138. // Do we need to support is_unused?
  5139. if (token != vocab.token_to_id.end()) {
  5140. output.push_back((*token).second);
  5141. return;
  5142. }
  5143. const auto p = rev_merge.find(text);
  5144. if (p == rev_merge.end()) {
  5145. // output any symbols that did not form tokens as bytes.
  5146. for (int j = 0; j < (int)symbol.n; ++j) {
  5147. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  5148. output.push_back(token_id);
  5149. }
  5150. return;
  5151. }
  5152. resegment(symbols[p->second.first], output);
  5153. resegment(symbols[p->second.second], output);
  5154. }
  5155. void try_add_bigram(int left, int right) {
  5156. if (left == -1 || right == -1) {
  5157. return;
  5158. }
  5159. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  5160. auto token = vocab.token_to_id.find(text);
  5161. if (token == vocab.token_to_id.end()) {
  5162. return;
  5163. }
  5164. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  5165. return;
  5166. }
  5167. const auto & tok_data = vocab.id_to_token[(*token).second];
  5168. llm_bigram_spm bigram;
  5169. bigram.left = left;
  5170. bigram.right = right;
  5171. bigram.score = tok_data.score;
  5172. bigram.size = text.size();
  5173. work_queue.push(bigram);
  5174. // Do we need to support is_unused?
  5175. rev_merge[text] = std::make_pair(left, right);
  5176. }
  5177. const llama_vocab & vocab;
  5178. std::vector<llm_symbol> symbols;
  5179. llm_bigram_spm::queue work_queue;
  5180. std::map<std::string, std::pair<int, int>> rev_merge;
  5181. };
  5182. // BPE tokenizer
  5183. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  5184. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  5185. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  5186. struct llm_bigram_bpe {
  5187. struct comparator {
  5188. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  5189. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  5190. }
  5191. };
  5192. using queue_storage = std::vector<llm_bigram_bpe>;
  5193. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  5194. llm_symbol::index left;
  5195. llm_symbol::index right;
  5196. std::string text;
  5197. int rank;
  5198. size_t size;
  5199. };
  5200. struct llm_tokenizer_bpe {
  5201. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  5202. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  5203. int final_prev_index = -1;
  5204. auto word_collection = bpe_gpt2_preprocess(text);
  5205. symbols_final.clear();
  5206. for (auto & word : word_collection) {
  5207. work_queue = llm_bigram_bpe::queue();
  5208. symbols.clear();
  5209. int index = 0;
  5210. size_t offset = 0;
  5211. while (offset < word.size()) {
  5212. llm_symbol sym;
  5213. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  5214. sym.text = word.c_str() + offset;
  5215. sym.n = char_len;
  5216. offset += sym.n;
  5217. sym.prev = index - 1;
  5218. sym.next = offset == word.size() ? -1 : index + 1;
  5219. index++;
  5220. symbols.emplace_back(sym);
  5221. }
  5222. for (size_t i = 1; i < symbols.size(); ++i) {
  5223. add_new_bigram(i - 1, i);
  5224. }
  5225. // build token(s)
  5226. while (!work_queue.empty()) {
  5227. auto bigram = work_queue.top();
  5228. work_queue.pop();
  5229. auto & left_symbol = symbols[bigram.left];
  5230. auto & right_symbol = symbols[bigram.right];
  5231. if (left_symbol.n == 0 || right_symbol.n == 0) {
  5232. continue;
  5233. }
  5234. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  5235. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  5236. if (left_token + right_token != bigram.text) {
  5237. continue; // Skip this bigram if it's outdated
  5238. }
  5239. // merge the right sym into the left one
  5240. left_symbol.n += right_symbol.n;
  5241. right_symbol.n = 0;
  5242. // remove the right sym from the chain
  5243. left_symbol.next = right_symbol.next;
  5244. if (right_symbol.next >= 0) {
  5245. symbols[right_symbol.next].prev = bigram.left;
  5246. }
  5247. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  5248. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  5249. }
  5250. // add the fnished tokens to the final list keeping correct order for next and prev
  5251. for (auto & sym : symbols) {
  5252. if (sym.n > 0) {
  5253. sym.prev = final_prev_index;
  5254. sym.next = -1;
  5255. if (final_prev_index != -1) {
  5256. symbols_final[final_prev_index].next = symbols_final.size();
  5257. }
  5258. symbols_final.emplace_back(sym);
  5259. final_prev_index = symbols_final.size() - 1;
  5260. }
  5261. }
  5262. }
  5263. symbols = symbols_final;
  5264. if (!symbols.empty()) {
  5265. for (int i = 0; i != -1; i = symbols[i].next) {
  5266. auto & symbol = symbols[i];
  5267. if (symbol.n == 0) {
  5268. continue;
  5269. }
  5270. const std::string str = std::string(symbol.text, symbol.n);
  5271. const auto token = vocab.token_to_id.find(str);
  5272. if (token == vocab.token_to_id.end()) {
  5273. for (auto j = str.begin(); j != str.end(); ++j) {
  5274. std::string byte_str(1, *j);
  5275. auto token_multibyte = vocab.token_to_id.find(byte_str);
  5276. if (token_multibyte == vocab.token_to_id.end()) {
  5277. throw std::runtime_error("ERROR: byte not found in vocab");
  5278. }
  5279. output.push_back((*token_multibyte).second);
  5280. }
  5281. } else {
  5282. output.push_back((*token).second);
  5283. }
  5284. }
  5285. }
  5286. }
  5287. private:
  5288. void add_new_bigram(int left, int right) {
  5289. if (left == -1 || right == -1) {
  5290. return;
  5291. }
  5292. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  5293. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  5294. int rank_found = -1;
  5295. rank_found = vocab.find_bpe_rank(left_token, right_token);
  5296. if (rank_found < 0) {
  5297. return;
  5298. }
  5299. llm_bigram_bpe bigram;
  5300. bigram.left = left;
  5301. bigram.right = right;
  5302. bigram.text = left_token + right_token;
  5303. bigram.size = left_token.size() + right_token.size();
  5304. bigram.rank = rank_found;
  5305. work_queue.push(bigram);
  5306. }
  5307. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  5308. std::vector<std::string> bpe_words;
  5309. std::vector<std::string> bpe_encoded_words;
  5310. std::string token = "";
  5311. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  5312. bool collecting_numeric = false;
  5313. bool collecting_letter = false;
  5314. bool collecting_special = false;
  5315. bool collecting_whitespace_lookahead = false;
  5316. bool collecting = false;
  5317. std::vector<std::string> text_utf;
  5318. text_utf.reserve(text.size());
  5319. bpe_words.reserve(text.size());
  5320. bpe_encoded_words.reserve(text.size());
  5321. auto cps = codepoints_from_utf8(text);
  5322. for (size_t i = 0; i < cps.size(); ++i)
  5323. text_utf.emplace_back(codepoint_to_utf8(cps[i]));
  5324. for (int i = 0; i < (int)text_utf.size(); i++) {
  5325. const std::string & utf_char = text_utf[i];
  5326. bool split_condition = false;
  5327. int bytes_remain = text_utf.size() - i;
  5328. // forward backward lookups
  5329. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  5330. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  5331. // handling contractions
  5332. if (!split_condition && bytes_remain >= 2) {
  5333. // 's|'t|'m|'d
  5334. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  5335. split_condition = true;
  5336. }
  5337. if (split_condition) {
  5338. if (token.size()) {
  5339. bpe_words.emplace_back(token); // push previous content as token
  5340. }
  5341. token = utf_char + utf_char_next;
  5342. bpe_words.emplace_back(token);
  5343. token = "";
  5344. i++;
  5345. continue;
  5346. }
  5347. }
  5348. if (!split_condition && bytes_remain >= 3) {
  5349. // 're|'ve|'ll
  5350. if (utf_char == "\'" && (
  5351. (utf_char_next == "r" && utf_char_next_next == "e") ||
  5352. (utf_char_next == "v" && utf_char_next_next == "e") ||
  5353. (utf_char_next == "l" && utf_char_next_next == "l"))
  5354. ) {
  5355. split_condition = true;
  5356. }
  5357. if (split_condition) {
  5358. // current token + next token can be defined
  5359. if (token.size()) {
  5360. bpe_words.emplace_back(token); // push previous content as token
  5361. }
  5362. token = utf_char + utf_char_next + utf_char_next_next;
  5363. bpe_words.emplace_back(token); // the contraction
  5364. token = "";
  5365. i += 2;
  5366. continue;
  5367. }
  5368. }
  5369. if (!split_condition && !collecting) {
  5370. if (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  5371. collecting_letter = true;
  5372. collecting = true;
  5373. }
  5374. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  5375. collecting_numeric = true;
  5376. collecting = true;
  5377. }
  5378. else if (
  5379. ((codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (codepoint_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  5380. (!token.size() && utf_char == " " && codepoint_type(utf_char_next) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && codepoint_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  5381. ) {
  5382. collecting_special = true;
  5383. collecting = true;
  5384. }
  5385. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && codepoint_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  5386. collecting_whitespace_lookahead = true;
  5387. collecting = true;
  5388. }
  5389. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  5390. split_condition = true;
  5391. }
  5392. }
  5393. else if (!split_condition && collecting) {
  5394. if (collecting_letter && codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  5395. split_condition = true;
  5396. }
  5397. else if (collecting_numeric && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  5398. split_condition = true;
  5399. }
  5400. else if (collecting_special && (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  5401. split_condition = true;
  5402. }
  5403. else if (collecting_whitespace_lookahead && (codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  5404. split_condition = true;
  5405. }
  5406. }
  5407. if (utf_char_next == "") {
  5408. split_condition = true; // final
  5409. token += utf_char;
  5410. }
  5411. if (split_condition) {
  5412. if (token.size()) {
  5413. bpe_words.emplace_back(token);
  5414. }
  5415. token = utf_char;
  5416. collecting = false;
  5417. collecting_letter = false;
  5418. collecting_numeric = false;
  5419. collecting_special = false;
  5420. collecting_whitespace_lookahead = false;
  5421. }
  5422. else {
  5423. token += utf_char;
  5424. }
  5425. }
  5426. for (std::string & word : bpe_words) {
  5427. std::string encoded_token = "";
  5428. for (char & c : word) {
  5429. encoded_token += bytes_to_unicode_bpe(c);
  5430. }
  5431. bpe_encoded_words.emplace_back(encoded_token);
  5432. }
  5433. return bpe_encoded_words;
  5434. }
  5435. const llama_vocab & vocab;
  5436. std::vector<llm_symbol> symbols;
  5437. std::vector<llm_symbol> symbols_final;
  5438. llm_bigram_bpe::queue work_queue;
  5439. };
  5440. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE{
  5441. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  5442. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  5443. } FRAGMENT_BUFFER_VARIANT_TYPE;
  5444. struct fragment_buffer_variant{
  5445. fragment_buffer_variant(llama_vocab::id _token)
  5446. :
  5447. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  5448. token(_token),
  5449. raw_text(_dummy),
  5450. offset(0),
  5451. length(0){}
  5452. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  5453. :
  5454. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  5455. token((llama_vocab::id)-1),
  5456. raw_text(_raw_text),
  5457. offset(_offset),
  5458. length(_length){
  5459. GGML_ASSERT( _offset >= 0 );
  5460. GGML_ASSERT( _length >= 1 );
  5461. GGML_ASSERT( offset + length <= raw_text.length() );
  5462. }
  5463. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  5464. const llama_vocab::id token;
  5465. const std::string _dummy;
  5466. const std::string & raw_text;
  5467. const uint64_t offset;
  5468. const uint64_t length;
  5469. };
  5470. // #define PRETOKENIZERDEBUG
  5471. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer)
  5472. {
  5473. // for each special token
  5474. for (const auto & st: vocab.special_tokens_cache) {
  5475. const auto & special_token = st.first;
  5476. const auto & special_id = st.second;
  5477. // for each text fragment
  5478. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  5479. while (it != buffer.end()) {
  5480. auto & fragment = (*it);
  5481. // if a fragment is text ( not yet processed )
  5482. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  5483. auto * raw_text = &(fragment.raw_text);
  5484. auto raw_text_base_offset = fragment.offset;
  5485. auto raw_text_base_length = fragment.length;
  5486. // loop over the text
  5487. while (true) {
  5488. // find the first occurence of a given special token in this fragment
  5489. // passing offset argument only limit the "search area" but match coordinates
  5490. // are still relative to the source full raw_text
  5491. auto match = raw_text->find(special_token, raw_text_base_offset);
  5492. // no occurences found, stop processing this fragment for a given special token
  5493. if (match == std::string::npos) break;
  5494. // check if match is within bounds of offset <-> length
  5495. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  5496. #ifdef PRETOKENIZERDEBUG
  5497. fprintf(stderr, "FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  5498. #endif
  5499. auto source = std::distance(buffer.begin(), it);
  5500. // if match is further than base offset
  5501. // then we have some text to the left of it
  5502. if (match > raw_text_base_offset) {
  5503. // left
  5504. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  5505. const int64_t left_reminder_length = match - raw_text_base_offset;
  5506. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  5507. #ifdef PRETOKENIZERDEBUG
  5508. fprintf(stderr, "FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  5509. #endif
  5510. it++;
  5511. }
  5512. // special token
  5513. buffer.emplace_after(it, special_id);
  5514. it++;
  5515. // right
  5516. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  5517. const int64_t right_reminder_offset = match + special_token.length();
  5518. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  5519. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  5520. #ifdef PRETOKENIZERDEBUG
  5521. fprintf(stderr, "FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  5522. #endif
  5523. it++;
  5524. if (source == 0) {
  5525. buffer.erase_after(buffer.before_begin());
  5526. } else {
  5527. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  5528. }
  5529. // repeat for the right side
  5530. raw_text_base_offset = right_reminder_offset;
  5531. raw_text_base_length = right_reminder_length;
  5532. #ifdef PRETOKENIZERDEBUG
  5533. fprintf(stderr, "RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  5534. #endif
  5535. } else {
  5536. if (source == 0) {
  5537. buffer.erase_after(buffer.before_begin());
  5538. } else {
  5539. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  5540. }
  5541. break;
  5542. }
  5543. }
  5544. }
  5545. it++;
  5546. }
  5547. }
  5548. }
  5549. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) {
  5550. std::vector<llama_vocab::id> output;
  5551. // OG tokenizer behavior:
  5552. //
  5553. // tokenizer.encode('', add_bos=True) returns [1]
  5554. // tokenizer.encode('', add_bos=False) returns []
  5555. if (bos && vocab.special_bos_id != -1) {
  5556. output.push_back(vocab.special_bos_id);
  5557. }
  5558. if (raw_text.empty()) {
  5559. return output;
  5560. }
  5561. std::forward_list<fragment_buffer_variant> fragment_buffer;
  5562. fragment_buffer.emplace_front( raw_text, 0, raw_text.length() );
  5563. if (special) tokenizer_st_partition( vocab, fragment_buffer );
  5564. switch (vocab.type) {
  5565. case LLAMA_VOCAB_TYPE_SPM:
  5566. {
  5567. for (const auto & fragment: fragment_buffer)
  5568. {
  5569. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
  5570. {
  5571. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  5572. // TODO: It's likely possible to get rid of this string copy entirely
  5573. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  5574. // and passing 'add space prefix' as bool argument
  5575. //
  5576. auto raw_text = (special ? "" : " ") + fragment.raw_text.substr(fragment.offset, fragment.length);
  5577. #ifdef PRETOKENIZERDEBUG
  5578. fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  5579. #endif
  5580. llm_tokenizer_spm tokenizer(vocab);
  5581. llama_escape_whitespace(raw_text);
  5582. tokenizer.tokenize(raw_text, output);
  5583. }
  5584. else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  5585. {
  5586. output.push_back(fragment.token);
  5587. }
  5588. }
  5589. } break;
  5590. case LLAMA_VOCAB_TYPE_BPE:
  5591. {
  5592. for (const auto & fragment: fragment_buffer)
  5593. {
  5594. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT)
  5595. {
  5596. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  5597. #ifdef PRETOKENIZERDEBUG
  5598. fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  5599. #endif
  5600. llm_tokenizer_bpe tokenizer(vocab);
  5601. tokenizer.tokenize(raw_text, output);
  5602. }
  5603. else // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  5604. {
  5605. output.push_back(fragment.token);
  5606. }
  5607. }
  5608. } break;
  5609. }
  5610. return output;
  5611. }
  5612. //
  5613. // grammar - internal
  5614. //
  5615. struct llama_partial_utf8 {
  5616. uint32_t value; // bit value so far (unshifted)
  5617. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  5618. };
  5619. struct llama_grammar {
  5620. const std::vector<std::vector<llama_grammar_element>> rules;
  5621. std::vector<std::vector<const llama_grammar_element *>> stacks;
  5622. // buffer for partially generated UTF-8 sequence from accepted tokens
  5623. llama_partial_utf8 partial_utf8;
  5624. };
  5625. struct llama_grammar_candidate {
  5626. size_t index;
  5627. const uint32_t * code_points;
  5628. llama_partial_utf8 partial_utf8;
  5629. };
  5630. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  5631. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  5632. static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  5633. const char * src,
  5634. llama_partial_utf8 partial_start) {
  5635. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  5636. const char * pos = src;
  5637. std::vector<uint32_t> code_points;
  5638. uint32_t value = partial_start.value;
  5639. int n_remain = partial_start.n_remain;
  5640. // continue previous decode, if applicable
  5641. while (*pos != 0 && n_remain > 0) {
  5642. uint8_t next_byte = static_cast<uint8_t>(*pos);
  5643. if ((next_byte >> 6) != 2) {
  5644. // invalid sequence, abort
  5645. code_points.push_back(0);
  5646. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  5647. }
  5648. value = (value << 6) + (next_byte & 0x3F);
  5649. ++pos;
  5650. --n_remain;
  5651. }
  5652. if (partial_start.n_remain > 0 && n_remain == 0) {
  5653. code_points.push_back(value);
  5654. }
  5655. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  5656. while (*pos != 0) {
  5657. uint8_t first_byte = static_cast<uint8_t>(*pos);
  5658. uint8_t highbits = first_byte >> 4;
  5659. n_remain = lookup[highbits] - 1;
  5660. if (n_remain < 0) {
  5661. // invalid sequence, abort
  5662. code_points.clear();
  5663. code_points.push_back(0);
  5664. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  5665. }
  5666. uint8_t mask = (1 << (7 - n_remain)) - 1;
  5667. value = first_byte & mask;
  5668. ++pos;
  5669. while (*pos != 0 && n_remain > 0) {
  5670. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  5671. ++pos;
  5672. --n_remain;
  5673. }
  5674. if (n_remain == 0) {
  5675. code_points.push_back(value);
  5676. }
  5677. }
  5678. code_points.push_back(0);
  5679. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  5680. }
  5681. // returns true iff pos points to the end of one of the definitions of a rule
  5682. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  5683. switch (pos->type) {
  5684. case LLAMA_GRETYPE_END: return true; // NOLINT
  5685. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  5686. default: return false;
  5687. }
  5688. }
  5689. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  5690. // asserts that pos is pointing to a char range element
  5691. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  5692. const llama_grammar_element * pos,
  5693. const uint32_t chr) {
  5694. bool found = false;
  5695. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  5696. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  5697. do {
  5698. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  5699. // inclusive range, e.g. [a-z]
  5700. found = found || (pos->value <= chr && chr <= pos[1].value);
  5701. pos += 2;
  5702. } else {
  5703. // exact char match, e.g. [a] or "a"
  5704. found = found || pos->value == chr;
  5705. pos += 1;
  5706. }
  5707. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  5708. return std::make_pair(found == is_positive_char, pos);
  5709. }
  5710. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  5711. // range at pos (regular or inverse range)
  5712. // asserts that pos is pointing to a char range element
  5713. static bool llama_grammar_match_partial_char(
  5714. const llama_grammar_element * pos,
  5715. const llama_partial_utf8 partial_utf8) {
  5716. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  5717. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  5718. uint32_t partial_value = partial_utf8.value;
  5719. int n_remain = partial_utf8.n_remain;
  5720. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  5721. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  5722. return false;
  5723. }
  5724. // range of possible code points this partial UTF-8 sequence could complete to
  5725. uint32_t low = partial_value << (n_remain * 6);
  5726. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  5727. if (low == 0) {
  5728. if (n_remain == 2) {
  5729. low = 1 << 11;
  5730. } else if (n_remain == 3) {
  5731. low = 1 << 16;
  5732. }
  5733. }
  5734. do {
  5735. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  5736. // inclusive range, e.g. [a-z]
  5737. if (pos->value <= high && low <= pos[1].value) {
  5738. return is_positive_char;
  5739. }
  5740. pos += 2;
  5741. } else {
  5742. // exact char match, e.g. [a] or "a"
  5743. if (low <= pos->value && pos->value <= high) {
  5744. return is_positive_char;
  5745. }
  5746. pos += 1;
  5747. }
  5748. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  5749. return !is_positive_char;
  5750. }
  5751. // transforms a grammar pushdown stack into N possible stacks, all ending
  5752. // at a character range (terminal element)
  5753. static void llama_grammar_advance_stack(
  5754. const std::vector<std::vector<llama_grammar_element>> & rules,
  5755. const std::vector<const llama_grammar_element *> & stack,
  5756. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  5757. if (stack.empty()) {
  5758. new_stacks.emplace_back(stack);
  5759. return;
  5760. }
  5761. const llama_grammar_element * pos = stack.back();
  5762. switch (pos->type) {
  5763. case LLAMA_GRETYPE_RULE_REF: {
  5764. const size_t rule_id = static_cast<size_t>(pos->value);
  5765. const llama_grammar_element * subpos = rules[rule_id].data();
  5766. do {
  5767. // init new stack without the top (pos)
  5768. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  5769. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  5770. // if this rule ref is followed by another element, add that to stack
  5771. new_stack.push_back(pos + 1);
  5772. }
  5773. if (!llama_grammar_is_end_of_sequence(subpos)) {
  5774. // if alternate is nonempty, add to stack
  5775. new_stack.push_back(subpos);
  5776. }
  5777. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  5778. while (!llama_grammar_is_end_of_sequence(subpos)) {
  5779. // scan to end of alternate def
  5780. subpos++;
  5781. }
  5782. if (subpos->type == LLAMA_GRETYPE_ALT) {
  5783. // there's another alternate def of this rule to process
  5784. subpos++;
  5785. } else {
  5786. break;
  5787. }
  5788. } while (true);
  5789. break;
  5790. }
  5791. case LLAMA_GRETYPE_CHAR:
  5792. case LLAMA_GRETYPE_CHAR_NOT:
  5793. new_stacks.emplace_back(stack);
  5794. break;
  5795. default:
  5796. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  5797. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  5798. // those
  5799. GGML_ASSERT(false);
  5800. }
  5801. }
  5802. // takes a set of possible pushdown stacks on a grammar, which are required to
  5803. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  5804. // produces the N possible stacks if the given char is accepted at those
  5805. // positions
  5806. static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
  5807. const std::vector<std::vector<llama_grammar_element>> & rules,
  5808. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5809. const uint32_t chr) {
  5810. std::vector<std::vector<const llama_grammar_element *>> new_stacks;
  5811. for (const auto & stack : stacks) {
  5812. if (stack.empty()) {
  5813. continue;
  5814. }
  5815. auto match = llama_grammar_match_char(stack.back(), chr);
  5816. if (match.first) {
  5817. const llama_grammar_element * pos = match.second;
  5818. // update top of stack to next element, if any
  5819. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  5820. if (!llama_grammar_is_end_of_sequence(pos)) {
  5821. new_stack.push_back(pos);
  5822. }
  5823. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  5824. }
  5825. }
  5826. return new_stacks;
  5827. }
  5828. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  5829. const std::vector<std::vector<llama_grammar_element>> & rules,
  5830. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5831. const std::vector<llama_grammar_candidate> & candidates);
  5832. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  5833. const std::vector<std::vector<llama_grammar_element>> & rules,
  5834. const std::vector<const llama_grammar_element *> & stack,
  5835. const std::vector<llama_grammar_candidate> & candidates) {
  5836. std::vector<llama_grammar_candidate> rejects;
  5837. if (stack.empty()) {
  5838. for (const auto & tok : candidates) {
  5839. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  5840. rejects.push_back(tok);
  5841. }
  5842. }
  5843. return rejects;
  5844. }
  5845. const llama_grammar_element * stack_pos = stack.back();
  5846. std::vector<llama_grammar_candidate> next_candidates;
  5847. for (const auto & tok : candidates) {
  5848. if (*tok.code_points == 0) {
  5849. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  5850. // that cannot satisfy this position in grammar
  5851. if (tok.partial_utf8.n_remain != 0 &&
  5852. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  5853. rejects.push_back(tok);
  5854. }
  5855. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  5856. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  5857. } else {
  5858. rejects.push_back(tok);
  5859. }
  5860. }
  5861. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  5862. // update top of stack to next element, if any
  5863. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  5864. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  5865. stack_after.push_back(stack_pos_after);
  5866. }
  5867. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  5868. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  5869. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  5870. for (const auto & tok : next_rejects) {
  5871. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  5872. }
  5873. return rejects;
  5874. }
  5875. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  5876. const std::vector<std::vector<llama_grammar_element>> & rules,
  5877. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  5878. const std::vector<llama_grammar_candidate> & candidates) {
  5879. GGML_ASSERT(!stacks.empty()); // REVIEW
  5880. if (candidates.empty()) {
  5881. return std::vector<llama_grammar_candidate>();
  5882. }
  5883. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  5884. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  5885. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  5886. }
  5887. return rejects;
  5888. }
  5889. //
  5890. // grammar - external
  5891. //
  5892. struct llama_grammar * llama_grammar_init(
  5893. const llama_grammar_element ** rules,
  5894. size_t n_rules,
  5895. size_t start_rule_index) {
  5896. const llama_grammar_element * pos;
  5897. // copy rule definitions into vectors
  5898. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  5899. for (size_t i = 0; i < n_rules; i++) {
  5900. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  5901. vec_rules[i].push_back(*pos);
  5902. }
  5903. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  5904. }
  5905. // loop over alternates of start rule to build initial stacks
  5906. std::vector<std::vector<const llama_grammar_element *>> stacks;
  5907. pos = rules[start_rule_index];
  5908. do {
  5909. std::vector<const llama_grammar_element *> stack;
  5910. if (!llama_grammar_is_end_of_sequence(pos)) {
  5911. // if alternate is nonempty, add to stack
  5912. stack.push_back(pos);
  5913. }
  5914. llama_grammar_advance_stack(vec_rules, stack, stacks);
  5915. while (!llama_grammar_is_end_of_sequence(pos)) {
  5916. // scan to end of alternate def
  5917. pos++;
  5918. }
  5919. if (pos->type == LLAMA_GRETYPE_ALT) {
  5920. // there's another alternate def of this rule to process
  5921. pos++;
  5922. } else {
  5923. break;
  5924. }
  5925. } while (true);
  5926. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  5927. }
  5928. void llama_grammar_free(struct llama_grammar * grammar) {
  5929. delete grammar;
  5930. }
  5931. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  5932. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  5933. // redirect elements in stacks to point to new rules
  5934. for (size_t is = 0; is < result->stacks.size(); is++) {
  5935. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  5936. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  5937. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  5938. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  5939. result->stacks[is][ie] = &result->rules[ir0][ir1];
  5940. }
  5941. }
  5942. }
  5943. }
  5944. }
  5945. return result;
  5946. }
  5947. //
  5948. // sampling
  5949. //
  5950. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  5951. if (seed == LLAMA_DEFAULT_SEED) {
  5952. seed = time(NULL);
  5953. }
  5954. ctx->rng.seed(seed);
  5955. }
  5956. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  5957. GGML_ASSERT(candidates->size > 0);
  5958. const int64_t t_start_sample_us = ggml_time_us();
  5959. // Sort the logits in descending order
  5960. if (!candidates->sorted) {
  5961. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  5962. return a.logit > b.logit;
  5963. });
  5964. candidates->sorted = true;
  5965. }
  5966. float max_l = candidates->data[0].logit;
  5967. float cum_sum = 0.0f;
  5968. for (size_t i = 0; i < candidates->size; ++i) {
  5969. float p = expf(candidates->data[i].logit - max_l);
  5970. candidates->data[i].p = p;
  5971. cum_sum += p;
  5972. }
  5973. for (size_t i = 0; i < candidates->size; ++i) {
  5974. candidates->data[i].p /= cum_sum;
  5975. }
  5976. if (ctx) {
  5977. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5978. }
  5979. }
  5980. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  5981. const int64_t t_start_sample_us = ggml_time_us();
  5982. k = std::max(k, (int) min_keep);
  5983. k = std::min(k, (int) candidates->size);
  5984. // Sort scores in descending order
  5985. if (!candidates->sorted) {
  5986. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  5987. return a.logit > b.logit;
  5988. };
  5989. if (k == (int) candidates->size) {
  5990. std::sort(candidates->data, candidates->data + candidates->size, comp);
  5991. } else {
  5992. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  5993. }
  5994. candidates->sorted = true;
  5995. }
  5996. candidates->size = k;
  5997. if (ctx) {
  5998. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  5999. }
  6000. }
  6001. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  6002. if (p >= 1.0f) {
  6003. return;
  6004. }
  6005. llama_sample_softmax(ctx, candidates);
  6006. const int64_t t_start_sample_us = ggml_time_us();
  6007. // Compute the cumulative probabilities
  6008. float cum_sum = 0.0f;
  6009. size_t last_idx = candidates->size;
  6010. for (size_t i = 0; i < candidates->size; ++i) {
  6011. cum_sum += candidates->data[i].p;
  6012. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  6013. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  6014. if (cum_sum >= p && i + 1 >= min_keep) {
  6015. last_idx = i + 1;
  6016. break;
  6017. }
  6018. }
  6019. // Resize the output vector to keep only the top-p tokens
  6020. candidates->size = last_idx;
  6021. if (ctx) {
  6022. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6023. }
  6024. }
  6025. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  6026. if (z >= 1.0f || candidates->size <= 2) {
  6027. return;
  6028. }
  6029. llama_sample_softmax(nullptr, candidates);
  6030. const int64_t t_start_sample_us = ggml_time_us();
  6031. // Compute the first and second derivatives
  6032. std::vector<float> first_derivatives(candidates->size - 1);
  6033. std::vector<float> second_derivatives(candidates->size - 2);
  6034. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  6035. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  6036. }
  6037. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  6038. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  6039. }
  6040. // Calculate absolute value of second derivatives
  6041. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  6042. second_derivatives[i] = std::abs(second_derivatives[i]);
  6043. }
  6044. // Normalize the second derivatives
  6045. {
  6046. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  6047. if (second_derivatives_sum > 1e-6f) {
  6048. for (float & value : second_derivatives) {
  6049. value /= second_derivatives_sum;
  6050. }
  6051. } else {
  6052. for (float & value : second_derivatives) {
  6053. value = 1.0f / second_derivatives.size();
  6054. }
  6055. }
  6056. }
  6057. float cum_sum = 0.0f;
  6058. size_t last_idx = candidates->size;
  6059. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  6060. cum_sum += second_derivatives[i];
  6061. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  6062. if (cum_sum > z && i >= min_keep) {
  6063. last_idx = i;
  6064. break;
  6065. }
  6066. }
  6067. // Resize the output vector to keep only the tokens above the tail location
  6068. candidates->size = last_idx;
  6069. if (ctx) {
  6070. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6071. }
  6072. }
  6073. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  6074. // Reference implementation:
  6075. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  6076. if (p >= 1.0f) {
  6077. return;
  6078. }
  6079. // Compute the softmax of logits and calculate entropy
  6080. llama_sample_softmax(nullptr, candidates);
  6081. const int64_t t_start_sample_us = ggml_time_us();
  6082. float entropy = 0.0f;
  6083. for (size_t i = 0; i < candidates->size; ++i) {
  6084. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  6085. }
  6086. // Compute the absolute difference between negative log probability and entropy for each candidate
  6087. std::vector<float> shifted_scores;
  6088. for (size_t i = 0; i < candidates->size; ++i) {
  6089. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  6090. shifted_scores.push_back(shifted_score);
  6091. }
  6092. // Sort tokens based on the shifted_scores and their corresponding indices
  6093. std::vector<size_t> indices(candidates->size);
  6094. std::iota(indices.begin(), indices.end(), 0);
  6095. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  6096. return shifted_scores[a] < shifted_scores[b];
  6097. });
  6098. // Compute the cumulative probabilities
  6099. float cum_sum = 0.0f;
  6100. size_t last_idx = indices.size();
  6101. for (size_t i = 0; i < indices.size(); ++i) {
  6102. size_t idx = indices[i];
  6103. cum_sum += candidates->data[idx].p;
  6104. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  6105. if (cum_sum > p && i >= min_keep - 1) {
  6106. last_idx = i + 1;
  6107. break;
  6108. }
  6109. }
  6110. // Resize the output vector to keep only the locally typical tokens
  6111. std::vector<llama_token_data> new_candidates;
  6112. for (size_t i = 0; i < last_idx; ++i) {
  6113. size_t idx = indices[i];
  6114. new_candidates.push_back(candidates->data[idx]);
  6115. }
  6116. // Replace the data in candidates with the new_candidates data
  6117. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  6118. candidates->size = new_candidates.size();
  6119. if (ctx) {
  6120. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6121. }
  6122. }
  6123. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  6124. const int64_t t_start_sample_us = ggml_time_us();
  6125. for (size_t i = 0; i < candidates_p->size; ++i) {
  6126. candidates_p->data[i].logit /= temp;
  6127. }
  6128. if (ctx) {
  6129. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6130. }
  6131. }
  6132. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  6133. llama_sample_temp(ctx, candidates_p, temp);
  6134. }
  6135. void llama_sample_repetition_penalties(
  6136. struct llama_context * ctx,
  6137. llama_token_data_array * candidates,
  6138. const llama_token * last_tokens,
  6139. size_t penalty_last_n,
  6140. float penalty_repeat,
  6141. float penalty_freq,
  6142. float penalty_present) {
  6143. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  6144. return;
  6145. }
  6146. const int64_t t_start_sample_us = ggml_time_us();
  6147. // Create a frequency map to count occurrences of each token in last_tokens
  6148. std::unordered_map<llama_token, int> token_count;
  6149. for (size_t i = 0; i < penalty_last_n; ++i) {
  6150. token_count[last_tokens[i]]++;
  6151. }
  6152. // Apply frequency and presence penalties to the candidates
  6153. for (size_t i = 0; i < candidates->size; ++i) {
  6154. const auto token_iter = token_count.find(candidates->data[i].id);
  6155. if (token_iter == token_count.end()) {
  6156. continue;
  6157. }
  6158. const int count = token_iter->second;
  6159. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  6160. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  6161. if (candidates->data[i].logit <= 0) {
  6162. candidates->data[i].logit *= penalty_repeat;
  6163. } else {
  6164. candidates->data[i].logit /= penalty_repeat;
  6165. }
  6166. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  6167. }
  6168. candidates->sorted = false;
  6169. if (ctx) {
  6170. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6171. }
  6172. }
  6173. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  6174. GGML_ASSERT(ctx);
  6175. const int64_t t_start_sample_us = ggml_time_us();
  6176. bool allow_eos = false;
  6177. for (const auto & stack : grammar->stacks) {
  6178. if (stack.empty()) {
  6179. allow_eos = true;
  6180. break;
  6181. }
  6182. }
  6183. const llama_token eos = llama_token_eos(ctx);
  6184. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  6185. std::vector<llama_grammar_candidate> candidates_grammar;
  6186. for (size_t i = 0; i < candidates->size; ++i) {
  6187. const llama_token id = candidates->data[i].id;
  6188. const std::string piece = llama_token_to_str(ctx, id);
  6189. if (id == eos) {
  6190. if (!allow_eos) {
  6191. candidates->data[i].logit = -INFINITY;
  6192. }
  6193. } else if (piece.empty() || piece[0] == 0) {
  6194. candidates->data[i].logit = -INFINITY;
  6195. } else {
  6196. candidates_decoded.push_back(decode_utf8(piece.c_str(), grammar->partial_utf8));
  6197. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  6198. }
  6199. }
  6200. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  6201. for (const auto & reject : rejects) {
  6202. candidates->data[reject.index].logit = -INFINITY;
  6203. }
  6204. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6205. }
  6206. static void llama_log_softmax(float * array, size_t size) {
  6207. float max_l = *std::max_element(array, array + size);
  6208. float sum = 0.f;
  6209. for (size_t i = 0; i < size; ++i) {
  6210. float p = expf(array[i] - max_l);
  6211. sum += p;
  6212. array[i] = p;
  6213. }
  6214. for (size_t i = 0; i < size; ++i) {
  6215. array[i] = logf(array[i] / sum);
  6216. }
  6217. }
  6218. void llama_sample_classifier_free_guidance(
  6219. struct llama_context * ctx,
  6220. llama_token_data_array * candidates,
  6221. struct llama_context * guidance_ctx,
  6222. float scale) {
  6223. int64_t t_start_sample_us = ggml_time_us();
  6224. GGML_ASSERT(ctx);
  6225. auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  6226. GGML_ASSERT(n_vocab == (int)candidates->size);
  6227. GGML_ASSERT(!candidates->sorted);
  6228. std::vector<float> logits_base;
  6229. logits_base.reserve(candidates->size);
  6230. for (size_t i = 0; i < candidates->size; ++i) {
  6231. logits_base.push_back(candidates->data[i].logit);
  6232. }
  6233. llama_log_softmax(logits_base.data(), candidates->size);
  6234. float* logits_guidance = llama_get_logits(guidance_ctx);
  6235. llama_log_softmax(logits_guidance, n_vocab);
  6236. for (int i = 0; i < n_vocab; ++i) {
  6237. float logit_guidance = logits_guidance[i];
  6238. float logit_base = logits_base[i];
  6239. candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
  6240. }
  6241. if (ctx) {
  6242. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6243. }
  6244. }
  6245. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  6246. GGML_ASSERT(ctx);
  6247. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  6248. int64_t t_start_sample_us;
  6249. t_start_sample_us = ggml_time_us();
  6250. llama_sample_softmax(nullptr, candidates);
  6251. // Estimate s_hat using the most probable m tokens
  6252. float s_hat = 0.0;
  6253. float sum_ti_bi = 0.0;
  6254. float sum_ti_sq = 0.0;
  6255. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  6256. float t_i = logf(float(i + 2) / float(i + 1));
  6257. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  6258. sum_ti_bi += t_i * b_i;
  6259. sum_ti_sq += t_i * t_i;
  6260. }
  6261. s_hat = sum_ti_bi / sum_ti_sq;
  6262. // Compute k from the estimated s_hat and target surprise value
  6263. float epsilon_hat = s_hat - 1;
  6264. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  6265. // Sample the next word X using top-k sampling
  6266. llama_sample_top_k(nullptr, candidates, int(k), 1);
  6267. if (ctx) {
  6268. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6269. }
  6270. llama_token X = llama_sample_token(ctx, candidates);
  6271. t_start_sample_us = ggml_time_us();
  6272. // Compute error as the difference between observed surprise and target surprise value
  6273. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  6274. return candidate.id == X;
  6275. }));
  6276. float observed_surprise = -log2f(candidates->data[X_idx].p);
  6277. float e = observed_surprise - tau;
  6278. // Update mu using the learning rate and error
  6279. *mu = *mu - eta * e;
  6280. if (ctx) {
  6281. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6282. }
  6283. return X;
  6284. }
  6285. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  6286. int64_t t_start_sample_us;
  6287. t_start_sample_us = ggml_time_us();
  6288. llama_sample_softmax(ctx, candidates);
  6289. // Truncate the words with surprise values greater than mu
  6290. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  6291. return -log2f(candidate.p) > *mu;
  6292. }));
  6293. if (candidates->size == 0) {
  6294. candidates->size = 1;
  6295. }
  6296. if (ctx) {
  6297. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6298. }
  6299. // Normalize the probabilities of the remaining words
  6300. llama_sample_softmax(ctx, candidates);
  6301. // Sample the next word X from the remaining words
  6302. llama_token X = llama_sample_token(ctx, candidates);
  6303. t_start_sample_us = ggml_time_us();
  6304. // Compute error as the difference between observed surprise and target surprise value
  6305. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  6306. return candidate.id == X;
  6307. }));
  6308. float observed_surprise = -log2f(candidates->data[X_idx].p);
  6309. float e = observed_surprise - tau;
  6310. // Update mu using the learning rate and error
  6311. *mu = *mu - eta * e;
  6312. if (ctx) {
  6313. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6314. }
  6315. return X;
  6316. }
  6317. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  6318. const int64_t t_start_sample_us = ggml_time_us();
  6319. // Find max element
  6320. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  6321. return a.logit < b.logit;
  6322. });
  6323. llama_token result = max_iter->id;
  6324. if (ctx) {
  6325. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6326. ctx->n_sample++;
  6327. }
  6328. return result;
  6329. }
  6330. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  6331. GGML_ASSERT(ctx);
  6332. const int64_t t_start_sample_us = ggml_time_us();
  6333. llama_sample_softmax(nullptr, candidates);
  6334. std::vector<float> probs;
  6335. probs.reserve(candidates->size);
  6336. for (size_t i = 0; i < candidates->size; ++i) {
  6337. probs.push_back(candidates->data[i].p);
  6338. }
  6339. std::discrete_distribution<> dist(probs.begin(), probs.end());
  6340. auto & rng = ctx->rng;
  6341. int idx = dist(rng);
  6342. llama_token result = candidates->data[idx].id;
  6343. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6344. ctx->n_sample++;
  6345. return result;
  6346. }
  6347. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  6348. const int64_t t_start_sample_us = ggml_time_us();
  6349. if (token == llama_token_eos(ctx)) {
  6350. for (const auto & stack : grammar->stacks) {
  6351. if (stack.empty()) {
  6352. return;
  6353. }
  6354. }
  6355. GGML_ASSERT(false);
  6356. }
  6357. const std::string piece = llama_token_to_str(ctx, token);
  6358. // Note terminating 0 in decoded string
  6359. const auto decoded = decode_utf8(piece.c_str(), grammar->partial_utf8);
  6360. const auto & code_points = decoded.first;
  6361. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  6362. grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
  6363. }
  6364. grammar->partial_utf8 = decoded.second;
  6365. GGML_ASSERT(!grammar->stacks.empty());
  6366. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6367. }
  6368. //
  6369. // Beam search
  6370. //
  6371. struct llama_beam {
  6372. std::vector<llama_token> tokens;
  6373. float p; // Cumulative beam probability (renormalized relative to all beams)
  6374. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  6375. // Sort beams by probability. In case of ties, prefer beams at eob.
  6376. bool operator<(const llama_beam & rhs) const {
  6377. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  6378. }
  6379. // Shift off first n tokens and discard them.
  6380. void shift_tokens(const size_t n) {
  6381. if (n) {
  6382. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  6383. tokens.resize(tokens.size() - n);
  6384. }
  6385. }
  6386. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  6387. };
  6388. // A struct for calculating logit-related info.
  6389. struct llama_logit_info {
  6390. const float * const logits;
  6391. const int n_vocab;
  6392. const float max_l;
  6393. const float normalizer;
  6394. struct sum_exp {
  6395. float max_l;
  6396. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  6397. };
  6398. llama_logit_info(llama_context * ctx)
  6399. : logits(llama_get_logits(ctx))
  6400. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  6401. , max_l(*std::max_element(logits, logits + n_vocab))
  6402. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  6403. { }
  6404. llama_token_data get_token_data(const llama_token token_id) const {
  6405. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  6406. return {token_id, logits[token_id], p};
  6407. }
  6408. // Return top k token_data by logit.
  6409. std::vector<llama_token_data> top_k(size_t k) {
  6410. std::vector<llama_token_data> min_heap; // min-heap by logit
  6411. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  6412. min_heap.reserve(k_min);
  6413. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  6414. min_heap.push_back(get_token_data(token_id));
  6415. }
  6416. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  6417. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  6418. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  6419. if (min_heap.front().logit < logits[token_id]) {
  6420. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  6421. min_heap.back().id = token_id;
  6422. min_heap.back().logit = logits[token_id];
  6423. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  6424. }
  6425. }
  6426. return min_heap;
  6427. }
  6428. float probability_from_logit(float logit) const {
  6429. return normalizer * std::exp(logit - max_l);
  6430. }
  6431. };
  6432. struct llama_beam_search_data {
  6433. llama_context * ctx;
  6434. size_t n_beams;
  6435. int n_past;
  6436. int n_predict;
  6437. std::vector<llama_beam> beams;
  6438. std::vector<llama_beam> next_beams;
  6439. // Re-calculated on each loop iteration
  6440. size_t common_prefix_length;
  6441. // Used to communicate to/from callback on beams state.
  6442. std::vector<llama_beam_view> beam_views;
  6443. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  6444. : ctx(ctx)
  6445. , n_beams(n_beams)
  6446. , n_past(n_past)
  6447. , n_predict(n_predict)
  6448. , beam_views(n_beams) {
  6449. beams.reserve(n_beams);
  6450. next_beams.reserve(n_beams);
  6451. }
  6452. // Collapse beams to a single beam given by index.
  6453. void collapse_beams(const size_t beam_idx) {
  6454. if (0u < beam_idx) {
  6455. std::swap(beams[0], beams[beam_idx]);
  6456. }
  6457. beams.resize(1);
  6458. }
  6459. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  6460. // The repetative patterns below reflect the 2 stages of heaps:
  6461. // * Gather elements until the vector is full, then call std::make_heap() on it.
  6462. // * If the heap is full and a new element is found that should be included, pop the
  6463. // least element to the back(), replace it with the new, then push it into the heap.
  6464. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  6465. // Min-heaps use a greater-than comparator.
  6466. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  6467. if (beam.eob) {
  6468. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  6469. if (next_beams.size() < n_beams) {
  6470. next_beams.push_back(std::move(beam));
  6471. if (next_beams.size() == n_beams) {
  6472. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  6473. }
  6474. } else if (next_beams.front().p < beam.p) {
  6475. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6476. next_beams.back() = std::move(beam);
  6477. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6478. }
  6479. } else {
  6480. // beam is not at end-of-sentence, so branch with next top_k tokens.
  6481. if (!beam.tokens.empty()) {
  6482. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  6483. }
  6484. llama_logit_info logit_info(ctx);
  6485. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  6486. size_t i=0;
  6487. if (next_beams.size() < n_beams) {
  6488. for (; next_beams.size() < n_beams ; ++i) {
  6489. llama_beam next_beam = beam;
  6490. next_beam.tokens.push_back(next_tokens[i].id);
  6491. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  6492. next_beams.push_back(std::move(next_beam));
  6493. }
  6494. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  6495. } else {
  6496. for (; next_beams.front().p == 0.0f ; ++i) {
  6497. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6498. next_beams.back() = beam;
  6499. next_beams.back().tokens.push_back(next_tokens[i].id);
  6500. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  6501. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6502. }
  6503. }
  6504. for (; i < n_beams ; ++i) {
  6505. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  6506. if (next_beams.front().p < next_p) {
  6507. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  6508. next_beams.back() = beam;
  6509. next_beams.back().tokens.push_back(next_tokens[i].id);
  6510. next_beams.back().p = next_p;
  6511. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  6512. }
  6513. }
  6514. }
  6515. }
  6516. // Find common_prefix_length based on beams.
  6517. // Requires beams is not empty.
  6518. size_t find_common_prefix_length() {
  6519. size_t common_prefix_length = beams[0].tokens.size();
  6520. for (size_t i = 1 ; i < beams.size() ; ++i) {
  6521. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  6522. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  6523. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  6524. common_prefix_length = j;
  6525. break;
  6526. }
  6527. }
  6528. }
  6529. return common_prefix_length;
  6530. }
  6531. // Construct beams_state to send back to caller via the callback function.
  6532. // Side effect: set common_prefix_length = find_common_prefix_length();
  6533. llama_beams_state get_beams_state(const bool last_call) {
  6534. for (size_t i = 0 ; i < beams.size() ; ++i) {
  6535. beam_views[i] = beams[i].view();
  6536. }
  6537. common_prefix_length = find_common_prefix_length();
  6538. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  6539. }
  6540. // Loop:
  6541. // * while i < n_predict, AND
  6542. // * any of the beams have not yet reached end-of-beam (eob), AND
  6543. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  6544. // (since all other beam probabilities can only decrease)
  6545. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  6546. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  6547. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  6548. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  6549. !beams[top_beam_index()].eob ; ++i) {
  6550. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  6551. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  6552. if (common_prefix_length) {
  6553. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  6554. n_past += common_prefix_length;
  6555. }
  6556. // Zero-out next_beam probabilities to place them last in following min-heap.
  6557. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  6558. for (llama_beam & beam : beams) {
  6559. beam.shift_tokens(common_prefix_length);
  6560. fill_next_beams_by_top_probabilities(beam);
  6561. }
  6562. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  6563. beams.swap(next_beams);
  6564. renormalize_beam_probabilities(beams);
  6565. }
  6566. collapse_beams(top_beam_index());
  6567. callback(callback_data, get_beams_state(true));
  6568. }
  6569. // As beams grow, the cumulative probabilities decrease.
  6570. // Renormalize them to avoid floating point underflow.
  6571. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  6572. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  6573. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  6574. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  6575. }
  6576. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  6577. size_t top_beam_index() {
  6578. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  6579. }
  6580. // Copy (p,eob) for each beam which may have been changed by the callback.
  6581. void update_beams_from_beam_views() {
  6582. for (size_t i = 0 ; i < beams.size() ; ++i) {
  6583. beams[i].p = beam_views[i].p;
  6584. beams[i].eob = beam_views[i].eob;
  6585. }
  6586. }
  6587. };
  6588. void llama_beam_search(llama_context * ctx,
  6589. llama_beam_search_callback_fn_t callback, void * callback_data,
  6590. size_t n_beams, int n_past, int n_predict) {
  6591. assert(ctx);
  6592. const int64_t t_start_sample_us = ggml_time_us();
  6593. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  6594. beam_search_data.loop(callback, callback_data);
  6595. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  6596. ctx->n_sample++;
  6597. }
  6598. //
  6599. // quantization
  6600. //
  6601. template <typename T>
  6602. struct no_init {
  6603. T value;
  6604. no_init() { /* do nothing */ }
  6605. };
  6606. static void llama_convert_tensor_internal(
  6607. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  6608. const size_t nelements, const int nthread
  6609. ) {
  6610. if (output.size() < nelements) {
  6611. output.resize(nelements);
  6612. }
  6613. float * f32_output = (float *) output.data();
  6614. ggml_type_traits_t qtype;
  6615. if (ggml_is_quantized(tensor->type)) {
  6616. qtype = ggml_internal_get_type_traits(tensor->type);
  6617. if (qtype.to_float == NULL) {
  6618. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  6619. }
  6620. } else if (tensor->type != GGML_TYPE_F16) {
  6621. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  6622. }
  6623. if (nthread < 2) {
  6624. if (tensor->type == GGML_TYPE_F16) {
  6625. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  6626. } else if (ggml_is_quantized(tensor->type)) {
  6627. qtype.to_float(tensor->data, f32_output, nelements);
  6628. } else {
  6629. GGML_ASSERT(false); // unreachable
  6630. }
  6631. return;
  6632. }
  6633. auto block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  6634. auto block_size_bytes = ggml_type_size(tensor->type);
  6635. GGML_ASSERT(nelements % block_size == 0);
  6636. auto nblocks = nelements / block_size;
  6637. auto blocks_per_thread = nblocks / nthread;
  6638. auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  6639. for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
  6640. auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  6641. auto thr_elems = thr_blocks * block_size; // number of elements for this thread
  6642. auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  6643. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  6644. if (typ == GGML_TYPE_F16) {
  6645. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  6646. } else {
  6647. qtype.to_float(inbuf, outbuf, nels);
  6648. }
  6649. };
  6650. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  6651. in_buff_offs += thr_block_bytes;
  6652. out_buff_offs += thr_elems;
  6653. }
  6654. for (auto & w : workers) { w.join(); }
  6655. workers.clear();
  6656. }
  6657. #ifdef GGML_USE_K_QUANTS
  6658. static ggml_type get_k_quant_type(
  6659. ggml_type new_type, const ggml_tensor * tensor, const llama_model & model, llama_ftype ftype, int * i_attention_wv,
  6660. int n_attention_wv, int * i_feed_forward_w2, int n_feed_forward_w2
  6661. ) {
  6662. const std::string name = ggml_get_name(tensor);
  6663. // TODO: avoid hardcoded tensor names - use the TN_* constants
  6664. const auto tn = LLM_TN(model.arch);
  6665. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  6666. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  6667. };
  6668. if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
  6669. int nx = tensor->ne[0];
  6670. if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  6671. new_type = GGML_TYPE_Q8_0;
  6672. }
  6673. else if (new_type != GGML_TYPE_Q8_0) {
  6674. new_type = GGML_TYPE_Q6_K;
  6675. }
  6676. } else if (name.find("attn_v.weight") != std::string::npos) {
  6677. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6678. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  6679. new_type = *i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  6680. }
  6681. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  6682. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  6683. use_more_bits(*i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  6684. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && *i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  6685. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  6686. (*i_attention_wv < n_attention_wv/8 || *i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  6687. if (model.type == MODEL_70B) {
  6688. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  6689. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  6690. // nearly negligible increase in model size by quantizing this tensor with more bits:
  6691. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  6692. }
  6693. ++*i_attention_wv;
  6694. } else if (name.find("ffn_down.weight") != std::string::npos) {
  6695. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6696. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  6697. new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
  6698. : model.arch != LLM_ARCH_FALCON || use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K
  6699. : GGML_TYPE_Q3_K;
  6700. }
  6701. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  6702. new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  6703. }
  6704. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  6705. if (model.arch == LLM_ARCH_FALCON) {
  6706. new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
  6707. use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  6708. } else {
  6709. if (use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  6710. }
  6711. }
  6712. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  6713. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && *i_feed_forward_w2 < 4) {
  6714. new_type = GGML_TYPE_Q5_K;
  6715. }
  6716. ++*i_feed_forward_w2;
  6717. } else if (name.find("attn_output.weight") != std::string::npos) {
  6718. if (model.arch != LLM_ARCH_FALCON) {
  6719. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  6720. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
  6721. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  6722. } else {
  6723. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  6724. }
  6725. }
  6726. else if (name.find("attn_qkv.weight") != std::string::npos) {
  6727. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  6728. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  6729. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  6730. }
  6731. else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
  6732. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  6733. }
  6734. // This can be used to reduce the size of the Q5_K_S model.
  6735. // The associated PPL increase is fully in line with the size reduction
  6736. //else {
  6737. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  6738. //}
  6739. bool convert_incompatible_tensor = false;
  6740. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  6741. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
  6742. int nx = tensor->ne[0];
  6743. int ny = tensor->ne[1];
  6744. if (nx % QK_K != 0) {
  6745. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K);
  6746. convert_incompatible_tensor = true;
  6747. }
  6748. }
  6749. if (convert_incompatible_tensor) {
  6750. if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
  6751. new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
  6752. LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
  6753. } else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  6754. new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
  6755. LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
  6756. } else {
  6757. throw std::runtime_error("Unsupported tensor size encountered\n");
  6758. }
  6759. }
  6760. return new_type;
  6761. }
  6762. #endif
  6763. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  6764. ggml_type quantized_type;
  6765. llama_ftype ftype = params->ftype;
  6766. switch (params->ftype) {
  6767. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  6768. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  6769. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  6770. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  6771. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  6772. case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
  6773. case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
  6774. #ifdef GGML_USE_K_QUANTS
  6775. // K-quants
  6776. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  6777. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  6778. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  6779. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  6780. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  6781. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  6782. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  6783. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  6784. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  6785. #endif
  6786. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  6787. }
  6788. int nthread = params->nthread;
  6789. if (nthread <= 0) {
  6790. nthread = std::thread::hardware_concurrency();
  6791. }
  6792. // mmap consistently increases speed Linux, and also increases speed on Windows with
  6793. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  6794. #if defined(__linux__) || defined(_WIN32)
  6795. constexpr bool use_mmap = true;
  6796. #else
  6797. constexpr bool use_mmap = false;
  6798. #endif
  6799. llama_model_loader ml(fname_inp, use_mmap);
  6800. if (ml.use_mmap) {
  6801. ml.mapping.reset(new llama_mmap(&ml.file, /* prefetch */ 0, ggml_is_numa()));
  6802. }
  6803. llama_model model;
  6804. llm_load_arch(ml, model);
  6805. llm_load_hparams(ml, model);
  6806. if (params->only_copy) {
  6807. ftype = model.ftype;
  6808. }
  6809. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  6810. struct gguf_context * ctx_out = gguf_init_empty();
  6811. // copy the KV pairs from the input file
  6812. gguf_set_kv (ctx_out, ml.ctx_gguf);
  6813. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  6814. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  6815. #ifdef GGML_USE_K_QUANTS
  6816. int n_attention_wv = 0;
  6817. int n_feed_forward_w2 = 0;
  6818. for (int i = 0; i < ml.n_tensors; ++i) {
  6819. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  6820. const std::string name = ggml_get_name(meta);
  6821. // TODO: avoid hardcoded tensor names - use the TN_* constants
  6822. if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
  6823. ++n_attention_wv;
  6824. }
  6825. else if (name.find("ffn_down.weight") != std::string::npos) {
  6826. ++n_feed_forward_w2;
  6827. }
  6828. }
  6829. if (n_attention_wv != n_feed_forward_w2 || (uint32_t)n_attention_wv != model.hparams.n_layer) {
  6830. LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n",
  6831. __func__, n_attention_wv, n_feed_forward_w2, model.hparams.n_layer);
  6832. }
  6833. int i_attention_wv = 0;
  6834. int i_feed_forward_w2 = 0;
  6835. #endif
  6836. size_t total_size_org = 0;
  6837. size_t total_size_new = 0;
  6838. std::vector<int64_t> hist_all(1 << 4, 0);
  6839. std::vector<std::thread> workers;
  6840. workers.reserve(nthread);
  6841. std::mutex mutex;
  6842. int idx = 0;
  6843. std::vector<no_init<uint8_t>> read_data;
  6844. std::vector<no_init<uint8_t>> work;
  6845. std::vector<no_init<float>> f32_conv_buf;
  6846. // populate the original tensors so we get an initial meta data
  6847. for (int i = 0; i < ml.n_tensors; ++i) {
  6848. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  6849. gguf_add_tensor(ctx_out, meta);
  6850. }
  6851. std::ofstream fout(fname_out, std::ios::binary);
  6852. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  6853. const size_t meta_size = gguf_get_meta_size(ctx_out);
  6854. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  6855. // placeholder for the meta data
  6856. ::zeros(fout, meta_size);
  6857. for (int i = 0; i < ml.n_tensors; ++i) {
  6858. struct ggml_tensor * tensor = ml.get_tensor_meta(i);
  6859. const std::string name = ggml_get_name(tensor);
  6860. if (!ml.use_mmap) {
  6861. if (read_data.size() < ggml_nbytes(tensor)) {
  6862. read_data.resize(ggml_nbytes(tensor));
  6863. }
  6864. tensor->data = read_data.data();
  6865. }
  6866. ml.load_data_for(tensor);
  6867. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  6868. ++idx, ml.n_tensors,
  6869. ggml_get_name(tensor),
  6870. llama_format_tensor_shape(tensor).c_str(),
  6871. ggml_type_name(tensor->type));
  6872. // This used to be a regex, but <regex> has an extreme cost to compile times.
  6873. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  6874. // quantize only 2D tensors
  6875. quantize &= (tensor->n_dims == 2);
  6876. quantize &= params->quantize_output_tensor || name != "output.weight";
  6877. quantize &= !params->only_copy;
  6878. enum ggml_type new_type;
  6879. void * new_data;
  6880. size_t new_size;
  6881. if (quantize) {
  6882. new_type = quantized_type;
  6883. #ifdef GGML_USE_K_QUANTS
  6884. new_type = get_k_quant_type(
  6885. new_type, tensor, model, ftype, &i_attention_wv, n_attention_wv, &i_feed_forward_w2, n_feed_forward_w2
  6886. );
  6887. #endif
  6888. // If we've decided to quantize to the same type the tensor is already
  6889. // in then there's nothing to do.
  6890. quantize = tensor->type != new_type;
  6891. }
  6892. if (!quantize) {
  6893. new_type = tensor->type;
  6894. new_data = tensor->data;
  6895. new_size = ggml_nbytes(tensor);
  6896. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  6897. } else {
  6898. const size_t nelements = ggml_nelements(tensor);
  6899. float * f32_data;
  6900. if (tensor->type == GGML_TYPE_F32) {
  6901. f32_data = (float *) tensor->data;
  6902. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  6903. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  6904. } else {
  6905. llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  6906. f32_data = (float *) f32_conv_buf.data();
  6907. }
  6908. LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
  6909. fflush(stdout);
  6910. if (work.size() < nelements * 4) {
  6911. work.resize(nelements * 4); // upper bound on size
  6912. }
  6913. new_data = work.data();
  6914. std::array<int64_t, 1 << 4> hist_cur = {};
  6915. static const int chunk_size = 32 * 512;
  6916. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  6917. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  6918. if (nthread_use < 2) {
  6919. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  6920. } else {
  6921. size_t counter = 0;
  6922. new_size = 0;
  6923. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
  6924. std::array<int64_t, 1 << 4> local_hist = {};
  6925. size_t local_size = 0;
  6926. while (true) {
  6927. std::unique_lock<std::mutex> lock(mutex);
  6928. size_t first = counter; counter += chunk_size;
  6929. if (first >= nelements) {
  6930. if (local_size > 0) {
  6931. for (int j=0; j<int(local_hist.size()); ++j) {
  6932. hist_cur[j] += local_hist[j];
  6933. }
  6934. new_size += local_size;
  6935. }
  6936. break;
  6937. }
  6938. lock.unlock();
  6939. size_t last = std::min(nelements, first + chunk_size);
  6940. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  6941. }
  6942. };
  6943. for (int it = 0; it < nthread_use - 1; ++it) {
  6944. workers.emplace_back(compute);
  6945. }
  6946. compute();
  6947. for (auto & w : workers) { w.join(); }
  6948. workers.clear();
  6949. }
  6950. LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  6951. int64_t tot_count = 0;
  6952. for (size_t i = 0; i < hist_cur.size(); i++) {
  6953. hist_all[i] += hist_cur[i];
  6954. tot_count += hist_cur[i];
  6955. }
  6956. if (tot_count > 0) {
  6957. for (size_t i = 0; i < hist_cur.size(); i++) {
  6958. LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
  6959. }
  6960. }
  6961. LLAMA_LOG_INFO("\n");
  6962. }
  6963. total_size_org += ggml_nbytes(tensor);
  6964. total_size_new += new_size;
  6965. // update the gguf meta data as we go
  6966. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  6967. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  6968. // write tensor data + padding
  6969. fout.write((const char *) new_data, new_size);
  6970. zeros(fout, GGML_PAD(new_size, align) - new_size);
  6971. }
  6972. // go back to beginning of file and write the updated meta data
  6973. {
  6974. fout.seekp(0);
  6975. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  6976. gguf_get_meta_data(ctx_out, data.data());
  6977. fout.write((const char *) data.data(), data.size());
  6978. }
  6979. fout.close();
  6980. gguf_free(ctx_out);
  6981. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  6982. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  6983. // print histogram for all tensors
  6984. {
  6985. int64_t sum_all = 0;
  6986. for (size_t i = 0; i < hist_all.size(); i++) {
  6987. sum_all += hist_all[i];
  6988. }
  6989. if (sum_all > 0) {
  6990. LLAMA_LOG_INFO("%s: hist: ", __func__);
  6991. for (size_t i = 0; i < hist_all.size(); i++) {
  6992. LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
  6993. }
  6994. LLAMA_LOG_INFO("\n");
  6995. }
  6996. }
  6997. }
  6998. static int llama_apply_lora_from_file_internal(
  6999. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  7000. ) {
  7001. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  7002. const int64_t t_start_lora_us = ggml_time_us();
  7003. auto fin = std::ifstream(path_lora, std::ios::binary);
  7004. if (!fin) {
  7005. LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora);
  7006. return 1;
  7007. }
  7008. // verify magic and version
  7009. {
  7010. uint32_t magic;
  7011. fin.read((char *) &magic, sizeof(magic));
  7012. uint32_t format_version;
  7013. fin.read((char *) &format_version, sizeof(format_version));
  7014. if (format_version != 1) {
  7015. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  7016. return 1;
  7017. }
  7018. }
  7019. int32_t lora_r;
  7020. int32_t lora_alpha;
  7021. fin.read((char *) &lora_r, sizeof(lora_r));
  7022. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  7023. float scaling = scale * (float)lora_alpha / (float)lora_r;
  7024. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  7025. // create a temporary ggml context to store the lora tensors
  7026. // todo: calculate size from biggest possible tensor
  7027. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  7028. struct ggml_init_params params;
  7029. params.mem_size = lora_buf.size();
  7030. params.mem_buffer = lora_buf.data();
  7031. params.no_alloc = false;
  7032. ggml_context * lora_ctx = ggml_init(params);
  7033. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  7034. // create a name -> tensor map of the model to accelerate lookups
  7035. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  7036. for (const auto & kv : model.tensors_by_name) {
  7037. model_tensors.insert(kv);
  7038. }
  7039. // load base model
  7040. std::unique_ptr<llama_model_loader> ml;
  7041. ggml_context * base_ctx = NULL;
  7042. std::vector<uint8_t> base_buf;
  7043. if (path_base_model) {
  7044. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  7045. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
  7046. size_t ctx_size;
  7047. size_t mmapped_size;
  7048. ml->calc_sizes(ctx_size, mmapped_size);
  7049. base_buf.resize(ctx_size);
  7050. ggml_init_params base_params;
  7051. base_params.mem_size = base_buf.size();
  7052. base_params.mem_buffer = base_buf.data();
  7053. base_params.no_alloc = ml->use_mmap;
  7054. base_ctx = ggml_init(base_params);
  7055. // maybe this should in llama_model_loader
  7056. if (ml->use_mmap) {
  7057. ml->mapping.reset(new llama_mmap(&ml->file, /* prefetch */ 0, ggml_is_numa()));
  7058. }
  7059. }
  7060. // read tensors and apply
  7061. bool warned = false;
  7062. int n_tensors = 0;
  7063. std::vector<uint8_t> work_buffer;
  7064. while (true) {
  7065. int32_t n_dims;
  7066. int32_t length;
  7067. int32_t ftype;
  7068. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  7069. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  7070. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  7071. if (fin.eof()) {
  7072. break;
  7073. }
  7074. int32_t ne[2] = { 1, 1 };
  7075. for (int i = 0; i < n_dims; ++i) {
  7076. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  7077. }
  7078. std::string name;
  7079. {
  7080. char buf[1024];
  7081. fin.read(buf, length);
  7082. name = std::string(buf, length);
  7083. }
  7084. // check for lora suffix and get the type of tensor
  7085. const std::string lora_suffix = ".lora";
  7086. size_t pos = name.rfind(lora_suffix);
  7087. if (pos == std::string::npos) {
  7088. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  7089. return 1;
  7090. }
  7091. std::string lora_type = name.substr(pos + lora_suffix.length());
  7092. std::string base_name = name;
  7093. base_name.erase(pos);
  7094. // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  7095. if (model_tensors.find(base_name) == model_tensors.end()) {
  7096. LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  7097. return 1;
  7098. }
  7099. // create ggml tensor
  7100. ggml_type wtype;
  7101. switch (ftype) {
  7102. case 0: wtype = GGML_TYPE_F32; break;
  7103. case 1: wtype = GGML_TYPE_F16; break;
  7104. default:
  7105. {
  7106. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  7107. __func__, ftype);
  7108. return false;
  7109. }
  7110. }
  7111. ggml_tensor * lora_tensor;
  7112. if (n_dims == 2) {
  7113. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  7114. }
  7115. else {
  7116. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  7117. return 1;
  7118. }
  7119. ggml_set_name(lora_tensor, "lora_tensor");
  7120. // load tensor data
  7121. size_t offset = fin.tellg();
  7122. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  7123. offset = (offset + 31) & -32;
  7124. fin.seekg(offset);
  7125. fin.read((char*)lora_tensor->data, tensor_data_size);
  7126. lora_tensors[name] = lora_tensor;
  7127. // check if we have both A and B tensors and apply
  7128. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  7129. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  7130. ggml_tensor * dest_t = model_tensors[base_name];
  7131. offload_func_t offload_func = llama_nop;
  7132. offload_func_t offload_func_force_inplace = llama_nop;
  7133. #ifdef GGML_USE_CUBLAS
  7134. if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
  7135. if (dest_t->type != GGML_TYPE_F16) {
  7136. throw std::runtime_error(format(
  7137. "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
  7138. }
  7139. offload_func = ggml_cuda_assign_buffers;
  7140. offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
  7141. }
  7142. #endif // GGML_USE_CUBLAS
  7143. ggml_tensor * base_t;
  7144. if (ml) {
  7145. struct gguf_context * ctx_gguf = ml->ctx_gguf;
  7146. // load from base model
  7147. if (gguf_find_tensor(ctx_gguf, base_name.c_str()) < 0) {
  7148. // TODO: throw
  7149. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  7150. return 1;
  7151. }
  7152. // TODO: not tested!! maybe not working!
  7153. base_t = ml->create_tensor(base_ctx, base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  7154. ml->load_data_for(base_t);
  7155. } else {
  7156. base_t = dest_t;
  7157. }
  7158. if (ggml_is_quantized(base_t->type)) {
  7159. if (!warned) {
  7160. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  7161. "use a f16 or f32 base model with --lora-base\n", __func__);
  7162. warned = true;
  7163. }
  7164. }
  7165. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  7166. GGML_ASSERT(loraA->type == GGML_TYPE_F32);
  7167. ggml_set_name(loraA, "loraA");
  7168. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  7169. GGML_ASSERT(loraB->type == GGML_TYPE_F32);
  7170. ggml_set_name(loraB, "loraB");
  7171. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  7172. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  7173. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  7174. return 1;
  7175. }
  7176. // w = w + BA*s
  7177. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  7178. offload_func(BA);
  7179. ggml_set_name(BA, "BA");
  7180. if (scaling != 1.0f) {
  7181. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  7182. ggml_set_name(scale_tensor, "scale_tensor");
  7183. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  7184. offload_func(BA);
  7185. ggml_set_name(BA, "BA_scaled");
  7186. }
  7187. ggml_tensor * r;
  7188. if (base_t == dest_t) {
  7189. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  7190. offload_func_force_inplace(r);
  7191. ggml_set_name(r, "r_add_inplace");
  7192. }
  7193. else {
  7194. r = ggml_add(lora_ctx, base_t, BA);
  7195. offload_func(r);
  7196. ggml_set_name(r, "r_add");
  7197. r = ggml_cpy(lora_ctx, r, dest_t);
  7198. offload_func(r);
  7199. ggml_set_name(r, "r_cpy");
  7200. }
  7201. struct ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  7202. ggml_build_forward_expand(gf, r);
  7203. ggml_graph_compute_helper(work_buffer, gf, n_threads);
  7204. // we won't need these tensors again, reset the context to save memory
  7205. ggml_free(lora_ctx);
  7206. lora_ctx = ggml_init(params);
  7207. lora_tensors.clear();
  7208. n_tensors++;
  7209. if (n_tensors % 4 == 0) {
  7210. LLAMA_LOG_INFO(".");
  7211. }
  7212. }
  7213. }
  7214. // TODO: this should be in a destructor, it will leak on failure
  7215. ggml_free(lora_ctx);
  7216. if (base_ctx) {
  7217. ggml_free(base_ctx);
  7218. }
  7219. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  7220. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  7221. return 0;
  7222. }
  7223. //
  7224. // interface implementation
  7225. //
  7226. struct llama_model_params llama_model_default_params() {
  7227. struct llama_model_params result = {
  7228. /*.n_gpu_layers =*/ 0,
  7229. /*.main_gpu =*/ 0,
  7230. /*.tensor_split =*/ nullptr,
  7231. /*.progress_callback =*/ nullptr,
  7232. /*.progress_callback_user_data =*/ nullptr,
  7233. /*.vocab_only =*/ false,
  7234. /*.use_mmap =*/ true,
  7235. /*.use_mlock =*/ false,
  7236. };
  7237. #ifdef GGML_USE_METAL
  7238. result.n_gpu_layers = 1;
  7239. #endif
  7240. return result;
  7241. }
  7242. struct llama_context_params llama_context_default_params() {
  7243. struct llama_context_params result = {
  7244. /*.seed =*/ LLAMA_DEFAULT_SEED,
  7245. /*.n_ctx =*/ 512,
  7246. /*.n_batch =*/ 512,
  7247. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  7248. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  7249. /*.rope_freq_base =*/ 0.0f,
  7250. /*.rope_freq_scale =*/ 0.0f,
  7251. /*.mul_mat_q =*/ true,
  7252. /*.f16_kv =*/ true,
  7253. /*.logits_all =*/ false,
  7254. /*.embedding =*/ false,
  7255. };
  7256. return result;
  7257. }
  7258. struct llama_model_quantize_params llama_model_quantize_default_params() {
  7259. struct llama_model_quantize_params result = {
  7260. /*.nthread =*/ 0,
  7261. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  7262. /*.allow_requantize =*/ false,
  7263. /*.quantize_output_tensor =*/ true,
  7264. /*.only_copy =*/ false,
  7265. };
  7266. return result;
  7267. }
  7268. int llama_max_devices(void) {
  7269. return LLAMA_MAX_DEVICES;
  7270. }
  7271. bool llama_mmap_supported(void) {
  7272. return llama_mmap::SUPPORTED;
  7273. }
  7274. bool llama_mlock_supported(void) {
  7275. return llama_mlock::SUPPORTED;
  7276. }
  7277. void llama_backend_init(bool numa) {
  7278. ggml_time_init();
  7279. // needed to initialize f16 tables
  7280. {
  7281. struct ggml_init_params params = { 0, NULL, false };
  7282. struct ggml_context * ctx = ggml_init(params);
  7283. ggml_free(ctx);
  7284. }
  7285. if (numa) {
  7286. ggml_numa_init();
  7287. }
  7288. #ifdef GGML_USE_MPI
  7289. ggml_mpi_backend_init();
  7290. #endif
  7291. }
  7292. void llama_backend_free(void) {
  7293. #ifdef GGML_USE_MPI
  7294. ggml_mpi_backend_free();
  7295. #endif
  7296. }
  7297. int64_t llama_time_us(void) {
  7298. return ggml_time_us();
  7299. }
  7300. struct llama_model * llama_load_model_from_file(
  7301. const char * path_model,
  7302. struct llama_model_params params) {
  7303. ggml_time_init();
  7304. llama_model * model = new llama_model;
  7305. unsigned cur_percentage = 0;
  7306. if (params.progress_callback == NULL) {
  7307. params.progress_callback_user_data = &cur_percentage;
  7308. params.progress_callback = [](float progress, void * ctx) {
  7309. unsigned * cur_percentage_p = (unsigned *) ctx;
  7310. unsigned percentage = (unsigned) (100 * progress);
  7311. while (percentage > *cur_percentage_p) {
  7312. *cur_percentage_p = percentage;
  7313. LLAMA_LOG_INFO(".");
  7314. if (percentage >= 100) {
  7315. LLAMA_LOG_INFO("\n");
  7316. }
  7317. }
  7318. };
  7319. }
  7320. if (!llama_model_load(path_model, *model, params.n_gpu_layers,
  7321. params.main_gpu, params.tensor_split,
  7322. params.use_mmap, params.use_mlock, params.vocab_only,
  7323. params.progress_callback, params.progress_callback_user_data)) {
  7324. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  7325. delete model;
  7326. return nullptr;
  7327. }
  7328. return model;
  7329. }
  7330. void llama_free_model(struct llama_model * model) {
  7331. delete model;
  7332. }
  7333. struct llama_context * llama_new_context_with_model(
  7334. struct llama_model * model,
  7335. struct llama_context_params params) {
  7336. if (!model) {
  7337. return nullptr;
  7338. }
  7339. llama_context * ctx = new llama_context(*model);
  7340. const auto & hparams = model->hparams;
  7341. auto & cparams = ctx->cparams;
  7342. cparams.n_batch = params.n_batch;
  7343. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  7344. cparams.rope_freq_base = params.rope_freq_base == 0 ? hparams.rope_freq_base_train : params.rope_freq_base;
  7345. cparams.rope_freq_scale = params.rope_freq_scale == 0 ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  7346. cparams.n_threads = params.n_threads;
  7347. cparams.n_threads_batch = params.n_threads_batch;
  7348. cparams.mul_mat_q = params.mul_mat_q;
  7349. if (params.seed == LLAMA_DEFAULT_SEED) {
  7350. params.seed = time(NULL);
  7351. }
  7352. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  7353. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  7354. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  7355. ctx->rng = std::mt19937(params.seed);
  7356. ctx->logits_all = params.logits_all;
  7357. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  7358. // reserve memory for context buffers
  7359. if (!hparams.vocab_only) {
  7360. if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, cparams.n_ctx, model->n_gpu_layers)) {
  7361. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  7362. llama_free(ctx);
  7363. return nullptr;
  7364. }
  7365. {
  7366. const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
  7367. LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  7368. }
  7369. // resized during inference
  7370. if (params.logits_all) {
  7371. ctx->logits.reserve(cparams.n_ctx*hparams.n_vocab);
  7372. } else {
  7373. ctx->logits.reserve(hparams.n_vocab);
  7374. }
  7375. if (params.embedding){
  7376. ctx->embedding.resize(hparams.n_embd);
  7377. }
  7378. {
  7379. static const size_t tensor_alignment = 32;
  7380. // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
  7381. ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
  7382. // create measure allocator
  7383. ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
  7384. // build worst-case graph
  7385. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch);
  7386. int n_past = cparams.n_ctx - n_tokens;
  7387. llama_token token = llama_token_bos(ctx); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  7388. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0));
  7389. #ifdef GGML_USE_METAL
  7390. if (model->n_gpu_layers > 0) {
  7391. ggml_metal_log_set_callback(llama_log_callback_default, NULL);
  7392. ctx->ctx_metal = ggml_metal_init(1);
  7393. if (!ctx->ctx_metal) {
  7394. LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
  7395. llama_free(ctx);
  7396. return NULL;
  7397. }
  7398. //ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
  7399. //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  7400. }
  7401. #endif
  7402. // measure memory requirements for the graph
  7403. size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
  7404. LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
  7405. // recreate allocator with exact memory requirements
  7406. ggml_allocr_free(ctx->alloc);
  7407. ctx->buf_alloc.resize(alloc_size);
  7408. ctx->alloc = ggml_allocr_new(ctx->buf_alloc.data, ctx->buf_alloc.size, tensor_alignment);
  7409. #ifdef GGML_USE_METAL
  7410. if (ctx->ctx_metal) {
  7411. //ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  7412. }
  7413. #endif
  7414. #ifdef GGML_USE_CUBLAS
  7415. ggml_cuda_set_scratch_size(alloc_size);
  7416. LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
  7417. // calculate total VRAM usage
  7418. auto add_tensor = [](const ggml_tensor * t, size_t & size) {
  7419. if (t->backend == GGML_BACKEND_GPU || t->backend == GGML_BACKEND_GPU_SPLIT) {
  7420. size += ggml_nbytes(t);
  7421. }
  7422. };
  7423. size_t model_vram_size = 0;
  7424. for (const auto & kv : model->tensors_by_name) {
  7425. add_tensor(kv.second, model_vram_size);
  7426. }
  7427. size_t kv_vram_size = 0;
  7428. add_tensor(ctx->kv_self.k, kv_vram_size);
  7429. add_tensor(ctx->kv_self.v, kv_vram_size);
  7430. size_t ctx_vram_size = alloc_size + kv_vram_size;
  7431. size_t total_vram_size = model_vram_size + ctx_vram_size;
  7432. LLAMA_LOG_INFO("%s: total VRAM used: %.2f MB (model: %.2f MB, context: %.2f MB)\n", __func__,
  7433. total_vram_size / 1024.0 / 1024.0,
  7434. model_vram_size / 1024.0 / 1024.0,
  7435. ctx_vram_size / 1024.0 / 1024.0);
  7436. #endif
  7437. }
  7438. #ifdef GGML_USE_METAL
  7439. if (model->n_gpu_layers > 0) {
  7440. // this allocates all Metal resources and memory buffers
  7441. void * data_ptr = NULL;
  7442. size_t data_size = 0;
  7443. if (ctx->model.mapping) {
  7444. data_ptr = ctx->model.mapping->addr;
  7445. data_size = ctx->model.mapping->size;
  7446. } else {
  7447. data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
  7448. data_size = ggml_get_mem_size (ctx->model.ctx);
  7449. }
  7450. const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
  7451. LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
  7452. #define LLAMA_METAL_CHECK_BUF(result) \
  7453. if (!(result)) { \
  7454. LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
  7455. llama_free(ctx); \
  7456. return NULL; \
  7457. }
  7458. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
  7459. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
  7460. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
  7461. #undef LLAMA_METAL_CHECK_BUF
  7462. }
  7463. #endif
  7464. }
  7465. #ifdef GGML_USE_MPI
  7466. ctx->ctx_mpi = ggml_mpi_init();
  7467. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  7468. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  7469. // TODO: needs fix after #3228
  7470. GGML_ASSERT(false && "not implemented");
  7471. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  7472. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  7473. llama_backend_free();
  7474. exit(1);
  7475. }
  7476. #endif
  7477. return ctx;
  7478. }
  7479. void llama_free(struct llama_context * ctx) {
  7480. delete ctx;
  7481. }
  7482. const llama_model * llama_get_model(const struct llama_context * ctx) {
  7483. return &ctx->model;
  7484. }
  7485. int llama_n_ctx(const struct llama_context * ctx) {
  7486. return ctx->cparams.n_ctx;
  7487. }
  7488. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  7489. return model->vocab.type;
  7490. }
  7491. int llama_n_vocab(const struct llama_model * model) {
  7492. return model->vocab.id_to_token.size();
  7493. }
  7494. int llama_n_ctx_train(const struct llama_model * model) {
  7495. return model->hparams.n_ctx_train;
  7496. }
  7497. int llama_n_embd(const struct llama_model * model) {
  7498. return model->hparams.n_embd;
  7499. }
  7500. float llama_rope_freq_scale_train(const struct llama_model * model) {
  7501. return model->hparams.rope_freq_scale_train;
  7502. }
  7503. int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  7504. return snprintf(buf, buf_size, "%s %s %s",
  7505. llama_model_arch_name(model->arch).c_str(),
  7506. llama_model_type_name(model->type),
  7507. llama_model_ftype_name(model->ftype).c_str());
  7508. }
  7509. uint64_t llama_model_size(const struct llama_model * model) {
  7510. uint64_t size = 0;
  7511. for (const auto & it : model->tensors_by_name) {
  7512. size += ggml_nbytes(it.second);
  7513. }
  7514. return size;
  7515. }
  7516. uint64_t llama_model_n_params(const struct llama_model * model) {
  7517. uint64_t nparams = 0;
  7518. for (const auto & it : model->tensors_by_name) {
  7519. nparams += ggml_nelements(it.second);
  7520. }
  7521. return nparams;
  7522. }
  7523. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  7524. return ggml_get_tensor(model->ctx, name);
  7525. }
  7526. int llama_model_quantize(
  7527. const char * fname_inp,
  7528. const char * fname_out,
  7529. const llama_model_quantize_params * params) {
  7530. try {
  7531. llama_model_quantize_internal(fname_inp, fname_out, params);
  7532. return 0;
  7533. } catch (const std::exception & err) {
  7534. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  7535. return 1;
  7536. }
  7537. }
  7538. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, float scale, const char * path_base_model, int n_threads) {
  7539. try {
  7540. return llama_apply_lora_from_file_internal(ctx->model, path_lora, scale, path_base_model, n_threads);
  7541. } catch (const std::exception & err) {
  7542. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  7543. return 1;
  7544. }
  7545. }
  7546. int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int n_threads) {
  7547. try {
  7548. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  7549. } catch (const std::exception & err) {
  7550. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  7551. return 1;
  7552. }
  7553. }
  7554. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  7555. return ctx->kv_self.head;
  7556. }
  7557. void llama_kv_cache_tokens_rm(struct llama_context * ctx, int32_t c0, int32_t c1) {
  7558. llama_kv_cache_tokens_rm(ctx->kv_self, c0, c1);
  7559. }
  7560. void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  7561. llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  7562. }
  7563. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  7564. if (seq_id_src == seq_id_dst) {
  7565. return;
  7566. }
  7567. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  7568. }
  7569. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  7570. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  7571. }
  7572. void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  7573. llama_kv_cache_seq_shift(ctx->kv_self, seq_id, p0, p1, delta);
  7574. }
  7575. // Returns the *maximum* size of the state
  7576. size_t llama_get_state_size(const struct llama_context * ctx) {
  7577. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  7578. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  7579. const size_t s_rng_size = sizeof(size_t);
  7580. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  7581. const size_t s_logits_capacity = sizeof(size_t);
  7582. const size_t s_logits_size = sizeof(size_t);
  7583. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  7584. const size_t s_embedding_size = sizeof(size_t);
  7585. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  7586. const size_t s_kv_size = sizeof(size_t);
  7587. const size_t s_kv_ntok = sizeof(int);
  7588. const size_t s_kv = ctx->kv_self.buf.size;
  7589. const size_t s_total = (
  7590. + s_rng_size
  7591. + s_rng
  7592. + s_logits_capacity
  7593. + s_logits_size
  7594. + s_logits
  7595. + s_embedding_size
  7596. + s_embedding
  7597. + s_kv_size
  7598. + s_kv_ntok
  7599. + s_kv
  7600. );
  7601. return s_total;
  7602. }
  7603. // llama_context_data
  7604. struct llama_data_context {
  7605. virtual void write(const void * src, size_t size) = 0;
  7606. virtual size_t get_size_written() = 0;
  7607. virtual ~llama_data_context() = default;
  7608. };
  7609. struct llama_data_buffer_context : llama_data_context {
  7610. uint8_t * ptr;
  7611. size_t size_written = 0;
  7612. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  7613. void write(const void * src, size_t size) override {
  7614. memcpy(ptr, src, size);
  7615. ptr += size;
  7616. size_written += size;
  7617. }
  7618. size_t get_size_written() override {
  7619. return size_written;
  7620. }
  7621. };
  7622. struct llama_data_file_context : llama_data_context {
  7623. llama_file * file;
  7624. size_t size_written = 0;
  7625. llama_data_file_context(llama_file * f) : file(f) {}
  7626. void write(const void * src, size_t size) override {
  7627. file->write_raw(src, size);
  7628. size_written += size;
  7629. }
  7630. size_t get_size_written() override {
  7631. return size_written;
  7632. }
  7633. };
  7634. /** copy state data into either a buffer or file depending on the passed in context
  7635. *
  7636. * file context:
  7637. * llama_file file("/path", "wb");
  7638. * llama_data_file_context data_ctx(&file);
  7639. * llama_copy_state_data(ctx, &data_ctx);
  7640. *
  7641. * buffer context:
  7642. * std::vector<uint8_t> buf(max_size, 0);
  7643. * llama_data_buffer_context data_ctx(&buf.data());
  7644. * llama_copy_state_data(ctx, &data_ctx);
  7645. *
  7646. */
  7647. static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  7648. // copy rng
  7649. {
  7650. std::stringstream rng_ss;
  7651. rng_ss << ctx->rng;
  7652. const size_t rng_size = rng_ss.str().size();
  7653. char rng_buf[LLAMA_MAX_RNG_STATE];
  7654. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  7655. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  7656. data_ctx->write(&rng_size, sizeof(rng_size));
  7657. data_ctx->write(&rng_buf[0], LLAMA_MAX_RNG_STATE);
  7658. }
  7659. // copy logits
  7660. {
  7661. const size_t logits_cap = ctx->logits.capacity();
  7662. const size_t logits_size = ctx->logits.size();
  7663. data_ctx->write(&logits_cap, sizeof(logits_cap));
  7664. data_ctx->write(&logits_size, sizeof(logits_size));
  7665. if (logits_size) {
  7666. data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
  7667. }
  7668. // If there is a gap between the size and the capacity, write padding
  7669. size_t padding_size = (logits_cap - logits_size) * sizeof(float);
  7670. if (padding_size > 0) {
  7671. std::vector<uint8_t> padding(padding_size, 0); // Create a buffer filled with zeros
  7672. data_ctx->write(padding.data(), padding_size);
  7673. }
  7674. }
  7675. // copy embeddings
  7676. {
  7677. const size_t embedding_size = ctx->embedding.size();
  7678. data_ctx->write(&embedding_size, sizeof(embedding_size));
  7679. if (embedding_size) {
  7680. data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
  7681. }
  7682. }
  7683. // copy kv cache
  7684. {
  7685. const auto & kv_self = ctx->kv_self;
  7686. const auto & hparams = ctx->model.hparams;
  7687. const auto & cparams = ctx->cparams;
  7688. const auto n_layer = hparams.n_layer;
  7689. const auto n_embd = hparams.n_embd_gqa();
  7690. const auto n_ctx = cparams.n_ctx;
  7691. const size_t kv_buf_size = kv_self.buf.size;
  7692. const uint32_t kv_head = kv_self.head;
  7693. const uint32_t kv_size = kv_self.size;
  7694. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  7695. data_ctx->write(&kv_head, sizeof(kv_head));
  7696. data_ctx->write(&kv_size, sizeof(kv_size));
  7697. if (kv_buf_size) {
  7698. const size_t elt_size = ggml_element_size(kv_self.k);
  7699. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  7700. ggml_cgraph gf{};
  7701. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
  7702. std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
  7703. kout3d->data = kout3d_data.data();
  7704. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
  7705. std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
  7706. vout3d->data = vout3d_data.data();
  7707. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  7708. n_embd, kv_head, n_layer,
  7709. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  7710. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  7711. kv_head, n_embd, n_layer,
  7712. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  7713. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  7714. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  7715. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  7716. ggml_free(cpy_ctx);
  7717. // our data is now in the kout3d_data and vout3d_data buffers
  7718. // write them to file
  7719. data_ctx->write(kout3d_data.data(), kout3d_data.size());
  7720. data_ctx->write(vout3d_data.data(), vout3d_data.size());
  7721. }
  7722. for (uint32_t i = 0; i < kv_size; ++i) {
  7723. const auto & cell = kv_self.cells[i];
  7724. const llama_pos pos = cell.pos;
  7725. const size_t seq_id_size = cell.seq_id.size();
  7726. data_ctx->write(&pos, sizeof(pos));
  7727. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  7728. for (auto seq_id : cell.seq_id) {
  7729. data_ctx->write(&seq_id, sizeof(seq_id));
  7730. }
  7731. }
  7732. }
  7733. }
  7734. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  7735. llama_data_buffer_context data_ctx(dst);
  7736. llama_copy_state_data_internal(ctx, &data_ctx);
  7737. return data_ctx.get_size_written();
  7738. }
  7739. // Sets the state reading from the specified source address
  7740. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  7741. uint8_t * inp = src;
  7742. // set rng
  7743. {
  7744. size_t rng_size;
  7745. char rng_buf[LLAMA_MAX_RNG_STATE];
  7746. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  7747. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  7748. std::stringstream rng_ss;
  7749. rng_ss.str(std::string(&rng_buf[0], rng_size));
  7750. rng_ss >> ctx->rng;
  7751. GGML_ASSERT(!rng_ss.fail());
  7752. }
  7753. // set logits
  7754. {
  7755. size_t logits_cap;
  7756. size_t logits_size;
  7757. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  7758. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  7759. GGML_ASSERT(ctx->logits.capacity() == logits_cap);
  7760. if (logits_size) {
  7761. ctx->logits.resize(logits_size);
  7762. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  7763. }
  7764. inp += logits_cap * sizeof(float);
  7765. }
  7766. // set embeddings
  7767. {
  7768. size_t embedding_size;
  7769. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  7770. GGML_ASSERT(ctx->embedding.capacity() == embedding_size);
  7771. if (embedding_size) {
  7772. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  7773. inp += embedding_size * sizeof(float);
  7774. }
  7775. }
  7776. // set kv cache
  7777. {
  7778. const auto & kv_self = ctx->kv_self;
  7779. const auto & hparams = ctx->model.hparams;
  7780. const auto & cparams = ctx->cparams;
  7781. const int n_layer = hparams.n_layer;
  7782. const int n_embd = hparams.n_embd_gqa();
  7783. const int n_ctx = cparams.n_ctx;
  7784. size_t kv_buf_size;
  7785. uint32_t kv_head;
  7786. uint32_t kv_size;
  7787. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  7788. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  7789. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  7790. if (kv_buf_size) {
  7791. GGML_ASSERT(kv_self.buf.size == kv_buf_size);
  7792. const size_t elt_size = ggml_element_size(kv_self.k);
  7793. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  7794. ggml_cgraph gf{};
  7795. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
  7796. kin3d->data = (void *) inp;
  7797. inp += ggml_nbytes(kin3d);
  7798. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_head, n_embd, n_layer);
  7799. vin3d->data = (void *) inp;
  7800. inp += ggml_nbytes(vin3d);
  7801. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  7802. n_embd, kv_head, n_layer,
  7803. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  7804. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  7805. kv_head, n_embd, n_layer,
  7806. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  7807. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  7808. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  7809. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  7810. ggml_free(cpy_ctx);
  7811. }
  7812. ctx->kv_self.head = kv_head;
  7813. ctx->kv_self.size = kv_size;
  7814. ctx->kv_self.cells.resize(kv_size);
  7815. for (uint32_t i = 0; i < kv_size; ++i) {
  7816. llama_pos pos;
  7817. size_t seq_id_size;
  7818. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  7819. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  7820. ctx->kv_self.cells[i].pos = pos;
  7821. llama_seq_id seq_id;
  7822. for (size_t j = 0; j < seq_id_size; ++j) {
  7823. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  7824. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  7825. }
  7826. }
  7827. }
  7828. const size_t nread = inp - src;
  7829. const size_t max_size = llama_get_state_size(ctx);
  7830. GGML_ASSERT(nread <= max_size);
  7831. return nread;
  7832. }
  7833. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  7834. llama_file file(path_session, "rb");
  7835. // sanity checks
  7836. {
  7837. const uint32_t magic = file.read_u32();
  7838. const uint32_t version = file.read_u32();
  7839. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  7840. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  7841. return false;
  7842. }
  7843. llama_hparams session_hparams;
  7844. file.read_raw(&session_hparams, sizeof(llama_hparams));
  7845. if (session_hparams != ctx->model.hparams) {
  7846. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  7847. return false;
  7848. }
  7849. }
  7850. // load the prompt
  7851. {
  7852. const uint32_t n_token_count = file.read_u32();
  7853. if (n_token_count > n_token_capacity) {
  7854. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  7855. return false;
  7856. }
  7857. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  7858. *n_token_count_out = n_token_count;
  7859. }
  7860. // restore the context state
  7861. {
  7862. const size_t n_state_size_cur = file.size - file.tell();
  7863. const size_t n_state_size_max = llama_get_state_size(ctx);
  7864. if (n_state_size_cur > n_state_size_max) {
  7865. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  7866. return false;
  7867. }
  7868. std::vector<uint8_t> state_data(n_state_size_max);
  7869. file.read_raw(state_data.data(), n_state_size_cur);
  7870. llama_set_state_data(ctx, state_data.data());
  7871. }
  7872. return true;
  7873. }
  7874. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  7875. try {
  7876. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  7877. } catch (const std::exception & err) {
  7878. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  7879. return false;
  7880. }
  7881. }
  7882. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  7883. llama_file file(path_session, "wb");
  7884. file.write_u32(LLAMA_SESSION_MAGIC);
  7885. file.write_u32(LLAMA_SESSION_VERSION);
  7886. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  7887. // save the prompt
  7888. file.write_u32((uint32_t) n_token_count);
  7889. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  7890. // save the context state using stream saving
  7891. llama_data_file_context data_ctx(&file);
  7892. llama_copy_state_data_internal(ctx, &data_ctx);
  7893. return true;
  7894. }
  7895. int llama_eval(
  7896. struct llama_context * ctx,
  7897. llama_token * tokens,
  7898. int32_t n_tokens,
  7899. int n_past) {
  7900. llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
  7901. const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0));
  7902. if (ret < 0) {
  7903. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7904. }
  7905. return ret;
  7906. }
  7907. int llama_eval_embd(
  7908. struct llama_context * ctx,
  7909. float * embd,
  7910. int32_t n_tokens,
  7911. int n_past) {
  7912. llama_kv_cache_tokens_rm(ctx->kv_self, n_past, -1);
  7913. llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
  7914. const int ret = llama_decode_internal(*ctx, batch);
  7915. if (ret < 0) {
  7916. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7917. }
  7918. return ret;
  7919. }
  7920. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  7921. ctx->cparams.n_threads = n_threads;
  7922. ctx->cparams.n_threads_batch = n_threads_batch;
  7923. }
  7924. struct llama_batch llama_batch_get_one(
  7925. llama_token * tokens,
  7926. int32_t n_tokens,
  7927. llama_pos pos_0,
  7928. llama_seq_id seq_id) {
  7929. return {
  7930. /*n_tokens =*/ n_tokens,
  7931. /*tokens =*/ tokens,
  7932. /*embd =*/ nullptr,
  7933. /*pos =*/ nullptr,
  7934. /*n_seq_id =*/ nullptr,
  7935. /*seq_id =*/ nullptr,
  7936. /*logits =*/ nullptr,
  7937. /*all_pos_0 =*/ pos_0,
  7938. /*all_pos_1 =*/ 1,
  7939. /*all_seq_id =*/ seq_id,
  7940. };
  7941. }
  7942. struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd, int32_t n_seq_max) {
  7943. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  7944. if (embd) {
  7945. batch.embd = (float *) malloc(sizeof(float) * n_tokens * embd);
  7946. } else {
  7947. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens);
  7948. }
  7949. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens);
  7950. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens);
  7951. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * n_tokens);
  7952. for (int i = 0; i < n_tokens; ++i) {
  7953. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  7954. }
  7955. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens);
  7956. return batch;
  7957. }
  7958. void llama_batch_free(struct llama_batch batch) {
  7959. if (batch.token) free(batch.token);
  7960. if (batch.embd) free(batch.embd);
  7961. if (batch.pos) free(batch.pos);
  7962. if (batch.n_seq_id) free(batch.n_seq_id);
  7963. if (batch.seq_id) {
  7964. for (int i = 0; i < batch.n_tokens; ++i) {
  7965. free(batch.seq_id[i]);
  7966. }
  7967. free(batch.seq_id);
  7968. }
  7969. if (batch.logits) free(batch.logits);
  7970. }
  7971. int llama_decode(
  7972. struct llama_context * ctx,
  7973. struct llama_batch batch) {
  7974. const int ret = llama_decode_internal(*ctx, batch);
  7975. if (ret < 0) {
  7976. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  7977. }
  7978. return ret;
  7979. }
  7980. float * llama_get_logits(struct llama_context * ctx) {
  7981. return ctx->logits.data();
  7982. }
  7983. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  7984. return ctx->logits.data() + i*ctx->model.hparams.n_vocab;
  7985. }
  7986. float * llama_get_embeddings(struct llama_context * ctx) {
  7987. return ctx->embedding.data();
  7988. }
  7989. const char * llama_token_get_text(const struct llama_context * ctx, llama_token token) {
  7990. return ctx->model.vocab.id_to_token[token].text.c_str();
  7991. }
  7992. float llama_token_get_score(const struct llama_context * ctx, llama_token token) {
  7993. return ctx->model.vocab.id_to_token[token].score;
  7994. }
  7995. llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token) {
  7996. return ctx->model.vocab.id_to_token[token].type;
  7997. }
  7998. llama_token llama_token_bos(const struct llama_context * ctx) {
  7999. return ctx->model.vocab.special_bos_id;
  8000. }
  8001. llama_token llama_token_eos(const struct llama_context * ctx) {
  8002. return ctx->model.vocab.special_eos_id;
  8003. }
  8004. llama_token llama_token_nl(const struct llama_context * ctx) {
  8005. return ctx->model.vocab.linefeed_id;
  8006. }
  8007. llama_token llama_token_prefix(const struct llama_context * ctx) {
  8008. return ctx->model.vocab.special_prefix_id;
  8009. }
  8010. llama_token llama_token_middle(const struct llama_context * ctx) {
  8011. return ctx->model.vocab.special_middle_id;
  8012. }
  8013. llama_token llama_token_suffix(const struct llama_context * ctx) {
  8014. return ctx->model.vocab.special_suffix_id;
  8015. }
  8016. llama_token llama_token_eot(const struct llama_context * ctx) {
  8017. return ctx->model.vocab.special_eot_id;
  8018. }
  8019. int llama_tokenize(
  8020. const struct llama_model * model,
  8021. const char * text,
  8022. int text_len,
  8023. llama_token * tokens,
  8024. int n_max_tokens,
  8025. bool add_bos,
  8026. bool special) {
  8027. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special);
  8028. if (n_max_tokens < (int) res.size()) {
  8029. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  8030. return -((int) res.size());
  8031. }
  8032. for (size_t i = 0; i < res.size(); i++) {
  8033. tokens[i] = res[i];
  8034. }
  8035. return res.size();
  8036. }
  8037. static std::string llama_decode_text(const std::string & text) {
  8038. std::string decoded_text;
  8039. auto unicode_sequences = codepoints_from_utf8(text);
  8040. for (auto& unicode_sequence : unicode_sequences) {
  8041. decoded_text += unicode_to_bytes_bpe(codepoint_to_utf8(unicode_sequence));
  8042. }
  8043. return decoded_text;
  8044. }
  8045. // does not write null-terminator to buf
  8046. int llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int length) {
  8047. if (0 <= token && token < llama_n_vocab(model)) {
  8048. switch (llama_vocab_get_type(model->vocab)) {
  8049. case LLAMA_VOCAB_TYPE_SPM: {
  8050. if (llama_is_normal_token(model->vocab, token)) {
  8051. std::string result = model->vocab.id_to_token[token].text;
  8052. llama_unescape_whitespace(result);
  8053. if (length < (int) result.length()) {
  8054. return -result.length();
  8055. }
  8056. memcpy(buf, result.c_str(), result.length());
  8057. return result.length();
  8058. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  8059. if (length < 3) {
  8060. return -3;
  8061. }
  8062. memcpy(buf, "\xe2\x96\x85", 3);
  8063. return 3;
  8064. } else if (llama_is_control_token(model->vocab, token)) {
  8065. ;
  8066. } else if (llama_is_byte_token(model->vocab, token)) {
  8067. if (length < 1) {
  8068. return -1;
  8069. }
  8070. buf[0] = llama_token_to_byte(model->vocab, token);
  8071. return 1;
  8072. } else {
  8073. // TODO: for now we accept all unsupported token types,
  8074. // suppressing them like CONTROL tokens.
  8075. // GGML_ASSERT(false);
  8076. }
  8077. break;
  8078. }
  8079. case LLAMA_VOCAB_TYPE_BPE: {
  8080. if (llama_is_normal_token(model->vocab, token)) {
  8081. std::string result = model->vocab.id_to_token[token].text;
  8082. result = llama_decode_text(result);
  8083. if (length < (int) result.length()) {
  8084. return -result.length();
  8085. }
  8086. memcpy(buf, result.c_str(), result.length());
  8087. return result.length();
  8088. } else if (llama_is_control_token(model->vocab, token)) {
  8089. ;
  8090. } else {
  8091. // TODO: for now we accept all unsupported token types,
  8092. // suppressing them like CONTROL tokens.
  8093. // GGML_ASSERT(false);
  8094. }
  8095. break;
  8096. }
  8097. default:
  8098. GGML_ASSERT(false);
  8099. }
  8100. }
  8101. return 0;
  8102. }
  8103. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  8104. struct llama_timings result = {
  8105. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  8106. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  8107. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  8108. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  8109. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  8110. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  8111. /*.n_sample =*/ std::max(1, ctx->n_sample),
  8112. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  8113. /*.n_eval =*/ std::max(1, ctx->n_eval),
  8114. };
  8115. return result;
  8116. }
  8117. void llama_print_timings(struct llama_context * ctx) {
  8118. const llama_timings timings = llama_get_timings(ctx);
  8119. LLAMA_LOG_INFO("\n");
  8120. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  8121. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  8122. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  8123. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  8124. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  8125. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  8126. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  8127. LLAMA_LOG_INFO("%s: total time = %10.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
  8128. }
  8129. void llama_reset_timings(struct llama_context * ctx) {
  8130. ctx->t_start_us = ggml_time_us();
  8131. ctx->t_sample_us = ctx->n_sample = 0;
  8132. ctx->t_eval_us = ctx->n_eval = 0;
  8133. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  8134. }
  8135. const char * llama_print_system_info(void) {
  8136. static std::string s;
  8137. s = "";
  8138. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  8139. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  8140. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  8141. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  8142. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  8143. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  8144. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  8145. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  8146. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  8147. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  8148. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  8149. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  8150. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  8151. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  8152. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  8153. return s.c_str();
  8154. }
  8155. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  8156. fprintf(stream, "\n");
  8157. fprintf(stream, "###########\n");
  8158. fprintf(stream, "# Timings #\n");
  8159. fprintf(stream, "###########\n");
  8160. fprintf(stream, "\n");
  8161. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  8162. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  8163. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  8164. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  8165. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  8166. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  8167. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  8168. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  8169. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  8170. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  8171. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  8172. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  8173. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  8174. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  8175. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  8176. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  8177. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  8178. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  8179. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  8180. }
  8181. // For internal test use
  8182. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  8183. struct llama_context * ctx
  8184. ) {
  8185. return ctx->model.tensors_by_name;
  8186. }
  8187. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  8188. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  8189. g_state.log_callback_user_data = user_data;
  8190. }
  8191. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  8192. va_list args_copy;
  8193. va_copy(args_copy, args);
  8194. char buffer[128];
  8195. int len = vsnprintf(buffer, 128, format, args);
  8196. if (len < 128) {
  8197. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  8198. } else {
  8199. char* buffer2 = new char[len+1];
  8200. vsnprintf(buffer2, len+1, format, args_copy);
  8201. buffer2[len] = 0;
  8202. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  8203. delete[] buffer2;
  8204. }
  8205. va_end(args_copy);
  8206. }
  8207. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  8208. va_list args;
  8209. va_start(args, format);
  8210. llama_log_internal_v(level, format, args);
  8211. va_end(args);
  8212. }
  8213. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  8214. (void) level;
  8215. (void) user_data;
  8216. fputs(text, stderr);
  8217. fflush(stderr);
  8218. }