123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- #include <cmath>
- #include <cstdio>
- #include <string>
- #include <vector>
- #include <thread>
- #include "llama.h"
- #include "main.h"
- std::vector<llama_token> tokenize(const struct llama_model * model, const std::string & text, bool add_bos, bool special = false) {
- // upper limit for the number of tokens
- int n_tokens = text.length() + add_bos;
- std::vector<llama_token> result(n_tokens);
- n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
- if (n_tokens < 0) {
- result.resize(-n_tokens);
- int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos, special);
- GGML_ASSERT(check == -n_tokens);
- } else {
- result.resize(n_tokens);
- }
- return result;
- }
- std::string token_to_piece(const struct llama_context * ctx, llama_token token) {
- std::vector<char> result(8, 0);
- const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
- if (n_tokens < 0) {
- result.resize(-n_tokens);
- int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
- GGML_ASSERT(check == -n_tokens);
- } else {
- result.resize(n_tokens);
- }
- return std::string(result.data(), result.size());
- }
- void batch_add(
- struct llama_batch & batch,
- llama_token id,
- llama_pos pos,
- const std::vector<llama_seq_id> & seq_ids,
- bool logits) {
- batch.token [batch.n_tokens] = id;
- batch.pos [batch.n_tokens] = pos,
- batch.n_seq_id[batch.n_tokens] = seq_ids.size();
- for (size_t i = 0; i < seq_ids.size(); ++i) {
- batch.seq_id[batch.n_tokens][i] = seq_ids[i];
- }
- batch.logits [batch.n_tokens] = logits;
- batch.n_tokens++;
- }
- void batch_clear(struct llama_batch & batch) {
- batch.n_tokens = 0;
- }
- int generate(const char *model_path, const char *prompt) {
- // number of parallel batches
- int n_parallel = 1;
- // total length of the sequences including the prompt
- int n_len = 32;
- // init LLM
- llama_backend_init(true);
- // initialize the model
- llama_model_params model_params = llama_model_default_params();
- // model_params.n_gpu_layers = 99; // offload all layers to the GPU
- llama_model * model = llama_load_model_from_file(model_path, model_params);
- if (model == NULL) {
- fprintf(stderr , "%s: error: unable to load model\n" , __func__);
- return 1;
- }
- // tokenize the prompt
- std::vector<llama_token> tokens_list;
- tokens_list = tokenize(model, std::string(prompt), true);
- const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
- // initialize the context
- llama_context_params ctx_params = llama_context_default_params();
- ctx_params.seed = 1234;
- ctx_params.n_ctx = n_kv_req;
- ctx_params.n_batch = std::max(n_len, n_parallel);
- ctx_params.n_threads = std::thread::hardware_concurrency();
- ctx_params.n_threads_batch = ctx_params.n_threads;
- llama_context * ctx = llama_new_context_with_model(model, ctx_params);
- if (ctx == NULL) {
- fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
- return 1;
- }
- const int n_ctx = llama_n_ctx(ctx);
- printf("\n%s: n_len = %d, n_ctx = %d, n_batch = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
- // make sure the KV cache is big enough to hold all the prompt and generated tokens
- if (n_kv_req > n_ctx) {
- printf("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req);
- printf("%s: either reduce n_parallel or increase n_ctx\n", __func__);
- return 1;
- }
- // print the prompt token-by-token
- fprintf(stderr, "\n");
- for (auto id : tokens_list) {
- fprintf(stderr, "%s", token_to_piece(ctx, id).c_str());
- }
- fflush(stderr);
- // create a llama_batch
- // we use this object to submit token data for decoding
- llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t)n_parallel), 0, 1);
- // evaluate the initial prompt
- for (size_t i = 0; i < tokens_list.size(); ++i) {
- batch_add(batch, tokens_list[i], i, { 0 }, false);
- }
- GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
- // llama_decode will output logits only for the last token of the prompt
- batch.logits[batch.n_tokens - 1] = true;
- if (llama_decode(ctx, batch) != 0) {
- printf("%s: llama_decode() failed\n", __func__);
- return 1;
- }
- // assign the system KV cache to all parallel sequences
- // this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
- for (int32_t i = 1; i < n_parallel; ++i) {
- llama_kv_cache_seq_cp(ctx, 0, i, 0, batch.n_tokens);
- }
- if (n_parallel > 1) {
- printf("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
- }
- // main loop
- // we will store the parallel decoded sequences in this vector
- std::vector<std::string> streams(n_parallel);
- // remember the batch index of the last token for each parallel sequence
- // we need this to determine which logits to sample from
- std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
- int n_cur = batch.n_tokens;
- int n_decode = 0;
- const auto t_main_start = ggml_time_us();
- while (n_cur <= n_len) {
- // prepare the next batch
- batch_clear(batch);
- // sample the next token for each parallel sequence / stream
- for (int32_t i = 0; i < n_parallel; ++i) {
- if (i_batch[i] < 0) {
- // the stream has already finished
- continue;
- }
- auto n_vocab = llama_n_vocab(model);
- auto * logits = llama_get_logits_ith(ctx, i_batch[i]);
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- const int top_k = 40;
- const float top_p = 0.9f;
- const float temp = 0.4f;
- llama_sample_top_k(ctx, &candidates_p, top_k, 1);
- llama_sample_top_p(ctx, &candidates_p, top_p, 1);
- llama_sample_temp (ctx, &candidates_p, temp);
- const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
- //const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
- // is it an end of stream? -> mark the stream as finished
- if (new_token_id == llama_token_eos(ctx) || n_cur == n_len) {
- i_batch[i] = -1;
- printf("\n");
- if (n_parallel > 1) {
- printf("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
- }
- continue;
- }
- // if there is only one stream, we print immediately to stdout
- if (n_parallel == 1) {
- printf("%s", token_to_piece(ctx, new_token_id).c_str());
- fflush(stdout);
- }
- streams[i] += token_to_piece(ctx, new_token_id);
- i_batch[i] = batch.n_tokens;
- // push this new token for next evaluation
- batch_add(batch, new_token_id, n_cur, { i }, true);
- n_decode += 1;
- }
- // all streams are finished
- if (batch.n_tokens == 0) {
- break;
- }
- n_cur += 1;
- // evaluate the current batch with the transformer model
- if (llama_decode(ctx, batch)) {
- fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
- return 1;
- }
- }
- printf("\n");
- if (n_parallel > 1) {
- printf("\n");
- for (int32_t i = 0; i < n_parallel; ++i) {
- printf("sequence %d:\n\n%s%s\n\n", i, prompt, streams[i].c_str());
- }
- }
- const auto t_main_end = ggml_time_us();
- printf("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
- __func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
- llama_print_timings(ctx);
- fprintf(stderr, "\n");
- llama_batch_free(batch);
- llama_free(ctx);
- llama_free_model(model);
- llama_backend_free();
- return 0;
- }
|