ggml.go 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. package llm
  2. import (
  3. "encoding/binary"
  4. "errors"
  5. "fmt"
  6. "io"
  7. "strings"
  8. )
  9. type GGML struct {
  10. container
  11. model
  12. }
  13. type model interface {
  14. KV() KV
  15. Tensors() Tensors
  16. }
  17. type KV map[string]any
  18. func (kv KV) u64(key string) uint64 {
  19. switch v := kv[key].(type) {
  20. case uint64:
  21. return v
  22. case uint32:
  23. return uint64(v)
  24. case float64:
  25. return uint64(v)
  26. default:
  27. return 0
  28. }
  29. }
  30. func (kv KV) Architecture() string {
  31. if s, ok := kv["general.architecture"].(string); ok {
  32. return s
  33. }
  34. return "unknown"
  35. }
  36. func (kv KV) ParameterCount() uint64 {
  37. return kv.u64("general.parameter_count")
  38. }
  39. func (kv KV) FileType() fileType {
  40. if u64 := kv.u64("general.file_type"); u64 > 0 {
  41. return fileType(uint32(u64))
  42. }
  43. return fileTypeUnknown
  44. }
  45. func (kv KV) BlockCount() uint64 {
  46. return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture()))
  47. }
  48. func (kv KV) HeadCount() uint64 {
  49. return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture()))
  50. }
  51. func (kv KV) HeadCountKV() uint64 {
  52. if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 {
  53. return headCountKV
  54. }
  55. return 1
  56. }
  57. func (kv KV) GQA() uint64 {
  58. return kv.HeadCount() / kv.HeadCountKV()
  59. }
  60. func (kv KV) EmbeddingLength() uint64 {
  61. return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture()))
  62. }
  63. func (kv KV) ContextLength() uint64 {
  64. return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture()))
  65. }
  66. type Tensors []*Tensor
  67. func (ts Tensors) Layers() map[string]Layer {
  68. layers := make(map[string]Layer)
  69. for _, t := range ts {
  70. parts := strings.Split(t.Name, ".")
  71. if parts[0] == "blk" {
  72. // join first and second part, e.g. blk.%d
  73. parts = append([]string{fmt.Sprintf("%s.%s", parts[0], parts[1])}, parts[2:]...)
  74. }
  75. if _, ok := layers[parts[0]]; !ok {
  76. layers[parts[0]] = make(Layer)
  77. }
  78. layers[parts[0]][strings.Join(parts[1:], ".")] = t
  79. }
  80. return layers
  81. }
  82. type Layer map[string]*Tensor
  83. func (l Layer) size() (size uint64) {
  84. for _, t := range l {
  85. size += t.Size()
  86. }
  87. return size
  88. }
  89. type Tensor struct {
  90. Name string `json:"name"`
  91. Kind uint32 `json:"kind"`
  92. Offset uint64 `json:"-"`
  93. // Shape is the number of elements in each dimension
  94. Shape []uint64 `json:"shape"`
  95. io.WriterTo `json:"-"`
  96. }
  97. func (t Tensor) blockSize() uint64 {
  98. switch {
  99. case t.Kind < 2:
  100. return 1
  101. case t.Kind < 10:
  102. return 32
  103. default:
  104. return 256
  105. }
  106. }
  107. func (t Tensor) typeSize() uint64 {
  108. blockSize := t.blockSize()
  109. switch t.Kind {
  110. case 0: // FP32
  111. return 4
  112. case 1: // FP16
  113. return 2
  114. case 2: // Q4_0
  115. return 2 + blockSize/2
  116. case 3: // Q4_1
  117. return 2 + 2 + blockSize/2
  118. case 6: // Q5_0
  119. return 2 + 4 + blockSize/2
  120. case 7: // Q5_1
  121. return 2 + 2 + 4 + blockSize/2
  122. case 8: // Q8_0
  123. return 2 + blockSize
  124. case 9: // Q8_1
  125. return 4 + 4 + blockSize
  126. case 10: // Q2_K
  127. return blockSize/16 + blockSize/4 + 2 + 2
  128. case 11: // Q3_K
  129. return blockSize/8 + blockSize/4 + 12 + 2
  130. case 12: // Q4_K
  131. return 2 + 2 + 12 + blockSize/2
  132. case 13: // Q5_K
  133. return 2 + 2 + 12 + blockSize/8 + blockSize/2
  134. case 14: // Q6_K
  135. return blockSize/2 + blockSize/4 + blockSize/16 + 2
  136. case 15: // Q8_K
  137. return 2 + blockSize + 2*blockSize/16
  138. case 16: // IQ2_XXS
  139. return 2 + 2*blockSize/8
  140. case 17: // IQ2_XS
  141. return 2 + 2*blockSize/8 + blockSize/32
  142. case 18: // IQ3_XXS
  143. return 2 + 3*blockSize/8
  144. default:
  145. return 0
  146. }
  147. }
  148. func (t Tensor) parameters() uint64 {
  149. var count uint64 = 1
  150. for _, n := range t.Shape {
  151. count *= n
  152. }
  153. return count
  154. }
  155. func (t Tensor) Size() uint64 {
  156. return t.parameters() * t.typeSize() / t.blockSize()
  157. }
  158. type container interface {
  159. Name() string
  160. Decode(io.ReadSeeker) (model, error)
  161. }
  162. const (
  163. // Magic constant for `ggml` files (unversioned).
  164. FILE_MAGIC_GGML = 0x67676d6c
  165. // Magic constant for `ggml` files (versioned, ggmf).
  166. FILE_MAGIC_GGMF = 0x67676d66
  167. // Magic constant for `ggml` files (versioned, ggjt).
  168. FILE_MAGIC_GGJT = 0x67676a74
  169. // Magic constant for `ggla` files (LoRA adapter).
  170. FILE_MAGIC_GGLA = 0x67676C61
  171. // Magic constant for `gguf` files (versioned, gguf)
  172. FILE_MAGIC_GGUF_LE = 0x46554747
  173. FILE_MAGIC_GGUF_BE = 0x47475546
  174. )
  175. var ErrUnsupportedFormat = errors.New("unsupported model format")
  176. func DetectGGMLType(b []byte) string {
  177. switch binary.LittleEndian.Uint32(b[:4]) {
  178. case FILE_MAGIC_GGML:
  179. return "ggml"
  180. case FILE_MAGIC_GGMF:
  181. return "ggmf"
  182. case FILE_MAGIC_GGJT:
  183. return "ggjt"
  184. case FILE_MAGIC_GGLA:
  185. return "ggla"
  186. case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE:
  187. return "gguf"
  188. default:
  189. return ""
  190. }
  191. }
  192. func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) {
  193. var magic uint32
  194. if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil {
  195. return nil, 0, err
  196. }
  197. var c container
  198. switch magic {
  199. case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT:
  200. return nil, 0, ErrUnsupportedFormat
  201. case FILE_MAGIC_GGLA:
  202. c = &containerGGLA{}
  203. case FILE_MAGIC_GGUF_LE:
  204. c = &containerGGUF{ByteOrder: binary.LittleEndian}
  205. case FILE_MAGIC_GGUF_BE:
  206. c = &containerGGUF{ByteOrder: binary.BigEndian}
  207. default:
  208. return nil, 0, errors.New("invalid file magic")
  209. }
  210. model, err := c.Decode(rs)
  211. if errors.Is(err, io.EOF) {
  212. // noop
  213. } else if err != nil {
  214. return nil, 0, err
  215. }
  216. offset, err := rs.Seek(0, io.SeekCurrent)
  217. if err != nil {
  218. return nil, 0, err
  219. }
  220. // final model type
  221. return &GGML{
  222. container: c,
  223. model: model,
  224. }, offset, nil
  225. }
  226. func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) {
  227. embedding := llm.KV().EmbeddingLength()
  228. heads := llm.KV().HeadCount()
  229. headsKV := llm.KV().HeadCountKV()
  230. vocab := uint64(len(llm.KV()["tokenizer.ggml.tokens"].([]any)))
  231. layers := llm.Tensors().Layers()
  232. switch llm.KV().Architecture() {
  233. case "llama":
  234. fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads))
  235. partialOffload = 4 * batch * embedding
  236. partialOffload += max(
  237. 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV),
  238. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  239. )
  240. if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok {
  241. // mixtral 8x22b
  242. ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32))
  243. partialOffload = max(
  244. 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embedding/heads*headsKV),
  245. 4*(context*batch*heads+context*embedding/heads*headsKV+batch*1024+embedding/heads*headsKV*batch),
  246. )
  247. } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok {
  248. // mixtral 8x7b
  249. ffnGateWeight1 := ffnGateWeight.Shape[1]
  250. fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1)
  251. partialOffload = max(
  252. 4*batch*(3+embedding/heads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16,
  253. 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16),
  254. )
  255. }
  256. case "gemma":
  257. fullOffload = 4 * batch * (embedding + vocab)
  258. partialOffload = 4*batch*(2*embedding+vocab+1) + embedding*vocab*105/128
  259. case "command-r":
  260. fullOffload = max(
  261. 4*batch*(embedding+vocab),
  262. 4*batch*(2+4*embedding+context*(1+heads)),
  263. )
  264. partialOffload = max(
  265. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  266. 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16,
  267. )
  268. case "qwen2":
  269. fullOffload = max(
  270. 4*batch*(embedding+vocab),
  271. 4*batch*(1+2*embedding+context+context*heads),
  272. )
  273. partialOffload = max(
  274. 4*batch*(embedding+vocab)+embedding*vocab*105/128,
  275. 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)),
  276. )
  277. case "phi2":
  278. fullOffload = max(
  279. 4*batch*(embedding+vocab),
  280. 4*batch*(1+4*embedding+context+context*heads),
  281. )
  282. partialOffload = max(
  283. 4*batch*(2*embedding+vocab)+embedding*vocab*105/128,
  284. 4*batch*(2+3*embedding+context+context*heads),
  285. )
  286. case "stablelm":
  287. fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2)
  288. partialOffload = max(
  289. 4*batch*(vocab+2*embedding),
  290. fullOffload,
  291. )
  292. }
  293. return
  294. }