privateGPT.py 2.8 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. #!/usr/bin/env python3
  2. from langchain.chains import RetrievalQA
  3. from langchain.embeddings import HuggingFaceEmbeddings
  4. from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
  5. from langchain.vectorstores import Chroma
  6. from langchain.llms import Ollama
  7. import chromadb
  8. import os
  9. import argparse
  10. import time
  11. model = os.environ.get("MODEL", "llama2-uncensored")
  12. # For embeddings model, the example uses a sentence-transformers model
  13. # https://www.sbert.net/docs/pretrained_models.html
  14. # "The all-mpnet-base-v2 model provides the best quality, while all-MiniLM-L6-v2 is 5 times faster and still offers good quality."
  15. embeddings_model_name = os.environ.get("EMBEDDINGS_MODEL_NAME", "all-MiniLM-L6-v2")
  16. persist_directory = os.environ.get("PERSIST_DIRECTORY", "db")
  17. target_source_chunks = int(os.environ.get('TARGET_SOURCE_CHUNKS',4))
  18. from constants import CHROMA_SETTINGS
  19. def main():
  20. # Parse the command line arguments
  21. args = parse_arguments()
  22. embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name)
  23. db = Chroma(persist_directory=persist_directory, embedding_function=embeddings)
  24. retriever = db.as_retriever(search_kwargs={"k": target_source_chunks})
  25. # activate/deactivate the streaming StdOut callback for LLMs
  26. callbacks = [] if args.mute_stream else [StreamingStdOutCallbackHandler()]
  27. llm = Ollama(model=model, callbacks=callbacks)
  28. qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents= not args.hide_source)
  29. # Interactive questions and answers
  30. while True:
  31. query = input("\nEnter a query: ")
  32. if query == "exit":
  33. break
  34. if query.strip() == "":
  35. continue
  36. # Get the answer from the chain
  37. start = time.time()
  38. res = qa(query)
  39. answer, docs = res['result'], [] if args.hide_source else res['source_documents']
  40. end = time.time()
  41. # Print the result
  42. print("\n\n> Question:")
  43. print(query)
  44. print(answer)
  45. # Print the relevant sources used for the answer
  46. for document in docs:
  47. print("\n> " + document.metadata["source"] + ":")
  48. print(document.page_content)
  49. def parse_arguments():
  50. parser = argparse.ArgumentParser(description='privateGPT: Ask questions to your documents without an internet connection, '
  51. 'using the power of LLMs.')
  52. parser.add_argument("--hide-source", "-S", action='store_true',
  53. help='Use this flag to disable printing of source documents used for answers.')
  54. parser.add_argument("--mute-stream", "-M",
  55. action='store_true',
  56. help='Use this flag to disable the streaming StdOut callback for LLMs.')
  57. return parser.parse_args()
  58. if __name__ == "__main__":
  59. main()