123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- package llm
- import (
- "context"
- "fmt"
- "log/slog"
- "os"
- "runtime"
- "slices"
- "github.com/ollama/ollama/api"
- "github.com/ollama/ollama/gpu"
- )
- type LLM interface {
- Predict(context.Context, PredictOpts, func(PredictResult)) error
- Embedding(context.Context, string) ([]float64, error)
- Encode(context.Context, string) ([]int, error)
- Decode(context.Context, []int) (string, error)
- Close()
- }
- var cpuOnlyFamilies = []string{
- "mamba",
- }
- func New(model string, adapters, projectors []string, opts api.Options) (LLM, error) {
- if _, err := os.Stat(model); err != nil {
- return nil, err
- }
- f, err := os.Open(model)
- if err != nil {
- return nil, err
- }
- defer f.Close()
- ggml, err := DecodeGGML(f)
- if err != nil {
- return nil, err
- }
- if opts.NumCtx > int(ggml.NumCtx()) {
- slog.Warn(fmt.Sprintf("requested context length is greater than model's max context length (%d > %d), using %d instead", opts.NumCtx, ggml.NumCtx(), ggml.NumCtx()))
- opts.NumCtx = int(ggml.NumCtx())
- }
- if opts.NumCtx < 4 {
- opts.NumCtx = 4
- }
- vram, _ := gpu.CheckVRAM()
- size := ggml.Size
- // fp16 k,v matrices require = n_ctx * n_layer * n_embd / n_head * n_head_kv * 2 bytes each * 2 key and value
- kv := 2 * 2 * int64(opts.NumCtx) * int64(ggml.NumLayers()) * int64(ggml.NumEmbed()) * int64(ggml.NumHeadKv()) / int64(max(ggml.NumHead(), 1))
- // this amount is the overhead + tensors in memory
- // TODO: get this from the llama.cpp's graph calculations instead of
- // estimating it's 1/6 * kv_cache_size * num_gqa
- graph := int64(ggml.NumGQA()) * kv / 6
- // certain model architectures don't support gpu inference yet
- if slices.Contains(cpuOnlyFamilies, ggml.ModelFamily()) {
- opts.NumGPU = 0
- }
- info := gpu.GetGPUInfo()
- switch runtime.GOOS {
- case "darwin":
- if opts.NumGPU == 0 {
- break
- }
- if size+kv+graph > vram {
- slog.Info("not enough vram available, setting num_gpu=0")
- opts.NumGPU = 0
- break
- }
- // TODO: implement layer splitting on macOS
- opts.NumGPU = 999
- default:
- if info.Library == "cpu" {
- slog.Info("GPU not available, falling back to CPU")
- opts.NumGPU = 0
- break
- }
- // don't use GPU at all if no layers are loaded
- if opts.NumGPU == 0 {
- info.Library = "cpu"
- info.Variant = gpu.GetCPUVariant()
- break
- }
- // user-defined GPU count
- if opts.NumGPU != -1 {
- break
- }
- // the "main" GPU needs the most memory and determines the limit
- // of how many layers can be loaded. It needs to fit:
- // 1. the full compute graph allocation for all devices (graph)
- // 2. the proportional kv cache for all devices (kv * % layers)
- // 3. the proportional model (size * % layers / # devices)
- // This estimates the number of layers
- maxlayers := int64(ggml.NumLayers()) + 1
- devices := int64(info.DeviceCount)
- avg := vram / devices
- layers := maxlayers * (avg - graph) / (kv + size/devices)
- if layers > maxlayers {
- layers = maxlayers
- }
- // 1 + 2 must fit on the main gpu
- min := graph + kv*layers/maxlayers
- if layers <= 0 || min > avg {
- slog.Info("not enough vram available, falling back to CPU only")
- info.Library = "cpu"
- info.Variant = gpu.GetCPUVariant()
- opts.NumGPU = 0
- break
- }
- opts.NumGPU = int(layers)
- }
- opts.RopeFrequencyBase = 0.0
- opts.RopeFrequencyScale = 0.0
- return newLlmServer(info, model, adapters, projectors, opts)
- }
- // Give any native cgo implementations an opportunity to initialize
- func Init() error {
- return nativeInit()
- }
- func newLlmServer(gpuInfo gpu.GpuInfo, model string, adapters, projectors []string, opts api.Options) (LLM, error) {
- dynLibs := getDynLibs(gpuInfo)
- // Check to see if the user has requested a specific library instead of auto-detecting
- demandLib := os.Getenv("OLLAMA_LLM_LIBRARY")
- if demandLib != "" {
- libPath := availableDynLibs[demandLib]
- if libPath == "" {
- slog.Info(fmt.Sprintf("Invalid OLLAMA_LLM_LIBRARY %s - not found", demandLib))
- } else {
- slog.Info(fmt.Sprintf("Loading OLLAMA_LLM_LIBRARY=%s", demandLib))
- dynLibs = []string{libPath}
- }
- }
- // We stage into a temp directory, and if we've been idle for a while, it may have been reaped
- _, err := os.Stat(dynLibs[0])
- if err != nil {
- slog.Info(fmt.Sprintf("%s has disappeared, reloading libraries", dynLibs[0]))
- err = nativeInit()
- if err != nil {
- return nil, err
- }
- }
- err2 := fmt.Errorf("unable to locate suitable llm library")
- for _, dynLib := range dynLibs {
- srv, err := newDynExtServer(dynLib, model, adapters, projectors, opts)
- if err == nil {
- return srv, nil
- }
- slog.Warn(fmt.Sprintf("Failed to load dynamic library %s %s", dynLib, err))
- err2 = err
- }
- return nil, err2
- }
|